Citation: | Han Yang, Yuan Yu, Wanqi Jie, Chongjian Zhou. Roadmap of SnSe from high-performance thermoelectric material to efficient module[J]. Materials Lab, 2025, 4(1): 240012. doi: 10.54227/mlab.20240012 |
The past decade has seen an explosive interest in the thermoelectric performance of SnSe, as the pristine SnSe crystal exhibits an exceptionally high
1. | B. Qin, M. G. Kanatzidis, L. D. Zhao, Science, 2024, 386, eadp2444 |
2. | M. K. Han, J. Androulakis, S. J. Kim, M. G. Kanatzidis, Adv. Energy Mater., 2012, 2, 157 |
3. | H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, G. J. Snyder, Nat. Mater., 2012, 11, 422 |
4. | X.-L. Shi, W.-Y. Chen, X. Tao, J. Zou, Z.-G. Chen, Mater. Horiz., 2020, 7, 3065 |
5. | L.-D. Zhao, C. Chang, G. Tan, M. G. Kanatzidis, Energy Environ. Sci., 2016, 9, 3044 |
6. | L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Nature, 2014, 508, 373 |
7. | C. Chang, M. Wu, D. He, Y. Pei, C.-F. Wu, X. Wu, H. Yu, F. Zhu, K. Wang, Y. Chen, L. Huang, J.-F. Li, J. He, L.-D. Zhao, Science, 2018, 360, 778 |
8. | K. Peng, X. Lu, H. Zhan, S. Hui, X. Tang, G. Wang, J. Dai, C. Uher, G. Wang, X. Zhou, Energy Environ. Sci., 2016, 9, 454 |
9. | K. Peng, H. Wu, Y. Yan, L. Guo, G. Wang, X. Lu, X. Zhou, J. Mater. Chem. A, 2017, 5, 14053 |
10. | Y. K. Lee, Z. Luo, S. P. Cho, M. G. Kanatzidis, I. Chung, Joule, 2019, 3, 719 |
11. | C. Zhou, Y. K. Lee, Y. Yu, S. Byun, Z. Z. Luo, H. Lee, B. Ge, Y. L. Lee, X. Chen, J. Y. Lee, O. Cojocaru-Miredin, H. Chang, J. Im, S. P. Cho, M. Wuttig, V. P. Dravid, M. G. Kanatzidis, I. Chung, Nat. Mater., 2021, 20, 1378 |
12. | D. Liu, D. Wang, T. Hong, Z. Wang, Y. Wang, Y. Qin, L. Su, T. Yang, X. Gao, Z. Ge, B. Qin, L.-D. Zhao, Science, 2023, 380, 841 |
13. | B. Zhu, X. Liu, Q. Wang, Y. Qiu, Z. Shu, Z. Guo, Y. Tong, J. Cui, M. Gu, J. He, Energy Environ. Sci., 2020, 13, 2106 |
14. | J. Yang, G. Li, H. Zhu, N. Chen, T. Lu, J. Gao, L. Guo, J. Xiang, P. Sun, Y. Yao, R. Yang, H. Zhao, Joule, 2022, 6, 193 |
15. | F. Zhang, M. He, L. Zhu, B. Jia, Y. Shi, W. Wang, Z. Peng, P. Liang, X. Chao, Z. Yang, D. Wu, Small, 2024, 20, 2405182 |
16. | Y. Qin, B. Qin, T. Hong, X. Zhang, D. Wang, D. Liu, Z.-Y. Wang, L. Su, S. Wang, X. Gao, Z.-H. Ge, L.-D. Zhao, Science, 2024, 383, 1204 |
17. | M. Jin, H. Shao, H. Hu, D. Li, H. Shen, J. Xu, J. Jiang, J. Alloys Compd., 2017, 712, 857 |
18. | M. Jin, H. Shao, H. Hu, D. Li, J. Xu, G. Liu, H. Shen, J. Xu, H. Jiang, J. Jiang, J. Cryst. Growth, 2017, 460, 112 |
19. | M. Jin, X. L. Shi, T. Feng, W. Liu, H. Feng, S. T. Pantelides, J. Jiang, Y. Chen, Y. Du, J. Zou, Z. G. Chen, ACS Appl. Mater. Interfaces, 2019, 11, 8051 |
20. | M. Jin, Z. Tang, J. Jiang, R. Zhang, L. Zhou, S. Zhao, Y. Chen, Y. Chen, X. Wang, R. Li, Mater. Res. Bull., 2020, 126, 110819 |
21. | K. Peng, B. Zhang, H. Wu, X. Cao, A. Li, D. Yang, X. Lu, G. Wang, X. Han, C. Uher, X. Zhou, Mater. Today, 2018, 21, 501 |
22. | B. Qin, D. Wang, W. He, Y. Zhang, H. Wu, S. J. Pennycook, L. D. Zhao, J. Am. Chem. Soc., 2019, 141, 1141 |
23. | B. Qin, D. Wang, T. Hong, Y. Wang, D. Liu, Z. Wang, X. Gao, Z. H. Ge, L. D. Zhao, Nat. Commun., 2023, 14, 1366 |
24. | B. Qin, D. Wang, X. Liu, Y. Qin, J.-F. Dong, J. Luo, J.-W. Li, W. Liu, G. Tan, X. Tang, J.-F. Li, J. He, L.-D. Zhao, Science, 2021, 373, 556 |
25. | B. Qin, Y. Zhang, D. Wang, Q. Zhao, B. Gu, H. Wu, H. Zhang, B. Ye, S. J. Pennycook, L. D. Zhao, J. Am. Chem. Soc., 2020, 142, 5901 |
26. | L.-D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V. P. Dravid, C. Uher, G. J. Snyder, C. Wolverton, M. G. Kanatzidis, Science, 2015, 351, 141 |
27. | C. Chang, D. Wang, D. He, W. He, F. Zhu, G. Wang, J. He, L. D. Zhao, Adv. Energy Mater., 2019, 9, 1901334 |
28. | A. T. Duong, V. Q. Nguyen, G. Duvjir, V. T. Duong, S. Kwon, J. Y. Song, J. K. Lee, J. E. Lee, S. Park, T. Min, J. Lee, J. Kim, S. Cho, Nat. Commun., 2016, 7, 13713 |
29. | L. Mao, Y. Yin, Q. Zhang, G.-Q. Liu, H. Wang, Z. Guo, H. Hu, Y. Xiao, X. Tan, J. Jiang, Energy Environ. Sci., 2020, 13, 616 |
30. | L. Su, D. Wang, S. Wang, B. Qin, Y. Wang, Y. Qin, Y. Jin, C. Chang, L.-D. Zhao, Science, 2022, 375, 1385 |
31. | Asfandiyar, B. Cai, H.-L. Zhuang, H. Tang, J.-F. Li, Nano Energy, 2020, 69, 104393 |
32. | C.-L. Chen, H. Wang, Y.-Y. Chen, T. Day, G. J. Snyder, J. Mater. Chem. A, 2014, 2, 11171 |
33. | Y. X. Chen, Z. H. Ge, M. Yin, D. Feng, X. Q. Huang, W. Zhao, J. He, Adv. Funct. Mater., 2016, 26, 6836 |
34. | Z. H. Ge, D. Song, X. Chong, F. Zheng, L. Jin, X. Qian, L. Zheng, R. E. Dunin-Borkowski, P. Qin, J. Feng, L. D. Zhao, J. Am. Chem. Soc., 2017, 139, 9714 |
35. | Y. Gong, P. Ying, Q. Zhang, Y. Liu, X. Huang, W. Dou, Y. Zhang, D. Li, D. Zhang, T. Feng, M. Wang, G. Chen, G. Tang, Energy Environ. Sci., 2024, 17, 1612 |
36. | H. Guo, H. Xin, X. Qin, J. Zhang, D. Li, Y. Li, C. Song, C. Li, J. Alloys Compd., 2016, 689, 87 |
37. | J. C. Li, D. Li, X. Y. Qin, J. Zhang, Scripta Mater., 2017, 126, 6 |
38. | S. Li, X. Lou, X. Li, J. Zhang, D. Li, H. Deng, J. Liu, G. Tang, Chem. Mater., 2020, 32, 9761 |
39. | C.-C. Lin, R. Lydia, J. H. Yun, H. S. Lee, J. S. Rhyee, Chem. Mater., 2017, 29, 5344 |
40. | J. Liu, P. Wang, M. Wang, R. Xu, J. Zhang, J. Liu, D. Li, N. Liang, Y. Du, G. Chen, G. Tang, Nano Energy, 2018, 53, 683 |
41. | Y. Liu, M. Calcabrini, Y. Yu, S. Lee, C. Chang, J. David, T. Ghosh, M. C. Spadaro, C. Xie, O. Cojocaru-Miredin, J. Arbiol, M. Ibanez, ACS Nano, 2022, 16, 78 |
42. | Y. Liu, S. Lee, C. Fiedler, M. Chiara Spadaro, C. Chang, M. Li, M. Hong, J. Arbiol, M. Ibáñez, Chem. Eng. J., 2024, 490, 151405 |
43. | X. Lou, S. Li, X. Chen, Q. Zhang, H. Deng, J. Zhang, D. Li, X. Zhang, Y. Zhang, H. Zeng, G. Tang, ACS Nano, 2021, 15, 8204 |
44. | W. Lu, S. Li, R. Xu, J. Zhang, D. Li, Z. Feng, Y. Zhang, G. Tang, ACS Appl. Mater. Interfaces, 2019, 11, 45133 |
45. | Y. Luo, S. Cai, X. Hua, H. Chen, Q. Liang, C. Du, Y. Zheng, J. Shen, J. Xu, C. Wolverton, V. P. Dravid, Q. Yan, M. G. Kanatzidis, Adv. Energy Mater., 2019, 9, 1803072 |
46. | X. Shi, A. Wu, T. Feng, K. Zheng, W. Liu, Q. Sun, M. Hong, S. T. Pantelides, Z. G. Chen, J. Zou, Adv. Energy Mater., 2019, 9, 1803242 |
47. | X. Shi, A. Wu, W. Liu, R. Moshwan, Y. Wang, Z. G. Chen, J. Zou, ACS Nano, 2018, 12, 11417 |
48. | X. Shi, K. Zheng, M. Hong, W. Liu, R. Moshwan, Y. Wang, X. Qu, Z. G. Chen, J. Zou, Chem. Sci., 2018, 9, 7376 |
49. | X. L. Shi, W. D. Liu, M. Li, Q. Sun, S. D. Xu, D. Du, J. Zou, Z. G. Chen, Adv. Energy Mater., 2022, 12, 2200670 |
50. | B. Su, Z. Han, Y. Jiang, H. L. Zhuang, J. Yu, J. Pei, H. Hu, J. W. Li, Y. X. He, B. P. Zhang, J. F. Li, Adv. Funct. Mater., 2023, 33, 2301971 |
51. | G. Tang, W. Wei, J. Zhang, Y. Li, X. Wang, G. Xu, C. Chang, Z. Wang, Y. Du, L. D. Zhao, J. Am. Chem. Soc., 2016, 138, 13647 |
52. | Y. Wang, B. Qin, T. Hong, L. Su, X. Gao, D. Wang, L.-D. Zhao, Acta Mater., 2022, 227, 117681 |
53. | Y. Wang, B. Qin, H. Shi, L. Su, D. Wang, L.-D. Zhao, Acta Mater., 2023, 247, 118754 |
54. | Y.-P. Wang, B.-C. Qin, D.-Y. Wang, T. Hong, X. Gao, L.-D. Zhao, Rare Met., 2021, 40, 2819 |
55. | T. R. Wei, C. F. Wu, X. Zhang, Q. Tan, L. Sun, Y. Pan, J. F. Li, Phys. Chem. Chem. Phys., 2015, 17, 30102 |
56. | W. Wei, C. Chang, T. Yang, J. Liu, H. Tang, J. Zhang, Y. Li, F. Xu, Z. Zhang, J. F. Li, G. Tang, J. Am. Chem. Soc., 2018, 140, 499 |
57. | R. Xu, L. Huang, J. Zhang, D. Li, J. Liu, J. Liu, J. Fang, M. Wang, G. Tang, J. Mater. Chem. A, 2019, 7, 15757 |
58. | L. Zhang, J. Wang, Q. Sun, P. Qin, Z. Cheng, Z. Ge, Z. Li, S. Dou, Adv. Energy Mater., 2017, 7, 1700573 |
59. | Q. Zhao, B. Qin, D. Wang, Y. Qiu, L.-D. Zhao, ACS Appl. Energy Mater., 2020, 3, 2049 |
60. | Q. Zhao, D. Wang, B. Qin, G. Wang, Y. Qiu, L.-D. Zhao, J. Solid State Chem., 2019, 273, 85 |
61. | J. Cai, Y. Zhang, Y. Yin, X. Tan, S. Duan, G.-Q. Liu, H. Hu, Y. Xiao, Z. Ge, J. Jiang, J. Mater. Chem. C, 2020, 8, 13244 |
62. | C. Chang, Q. Tan, Y. Pei, Y. Xiao, X. Zhang, Y.-X. Chen, L. Zheng, S. Gong, J.-F. Li, J. He, L.-D. Zhao, RSC Adv., 2016, 6, 98216 |
63. | Y. Gong, W. Dou, B. Lu, X. Zhang, H. Zhu, P. Ying, Q. Zhang, Y. Liu, Y. Li, X. Huang, M. F. Iqbal, S. Zhang, D. Li, Y. Zhang, H. Wu, G. Tang, Nat. Commun., 2024, 15, 4231 |
64. | S. Li, Y. Wang, C. Chen, X. Li, W. Xue, X. Wang, Z. Zhang, F. Cao, J. Sui, X. Liu, Q. Zhang, Adv. Sci., 2018, 5, 1800598 |
65. | X. L. Shi, K. Zheng, W. D. Liu, Y. Wang, Y. Z. Yang, Z. G. Chen, J. Zou, Adv. Energy Mater., 2018, 8, 1800775 |
66. | L. Su, T. Hong, D. Wang, S. Wang, B. Qin, M. Zhang, X. Gao, C. Chang, L.-D. Zhao, Mater. Today Phys., 2021, 20, 100452 |
67. | X. Wang, J. Xu, G. Liu, Y. Fu, Z. Liu, X. Tan, H. Shao, H. Jiang, T. Tan, J. Jiang, Appl. Phys. Lett., 2016, 108, 083902 |
68. | Q. Zhang, E. K. Chere, J. Sun, F. Cao, K. Dahal, S. Chen, G. Chen, Z. Ren, Adv. Energy Mater., 2015, 5, 1500360 |
69. | J. Yu, C. Fu, Y. Liu, K. Xia, U. Aydemir, T. C. Chasapis, G. J. Snyder, X. Zhao, T. Zhu, Adv. Energy Mater., 2018, 8, 1701313 |
70. | Q. Zhang, Z. Guo, R. Wang, X. Tan, K. Song, P. Sun, H. Hu, C. Cui, G. Q. Liu, J. Jiang, Adv. Funct. Mater., 2022, 32, 2205458 |
71. | B. Jiang, Y. Yu, J. Cui, X. Liu, L. Xie, J. Liao, Q. Zhang, Y. Huang, S. Ning, B. Jia, B. Zhu, S. Bai, L. Chen, S. J. Pennycook, J. He, Science, 2021, 371, 830 |
72. | B. Jia, D. Wu, L. Xie, W. Wang, T. Yu, S. Li, Y. Wang, Y. Xu, B. Jiang, Z. Chen, Y. Weng, J. He, Science, 2024, 384, 81 |
73. | H. Hu, Y. Ju, J. Yu, Z. Wang, J. Pei, H. C. Thong, J. W. Li, B. Cai, F. Liu, Z. Han, B. Su, H. L. Zhuang, Y. Jiang, H. Li, Q. Li, H. Zhao, B. P. Zhang, J. Zhu, J. F. Li, Nat. Mater., 2024, 23, 527 |
74. | R. Liu, Y. Xing, J. Liao, X. Xia, C. Wang, C. Zhu, F. Xu, Z. G. Chen, L. Chen, J. Huang, S. Bai, Nat. Commun., 2022, 13, 7738 |
75. | J. Mao, H. Zhu, Z. Ding, Z. Liu, G. A. Gamage, G. Chen, Z. Ren, Science, 2019, 365, 495 |
76. | D.-Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, M. G. Kanatzidis, Science, 2000, 287, 1024 |
77. | N. Chen, H. Zhu, G. Li, Z. Fan, X. Zhang, J. Yang, T. Lu, Q. Liu, X. Wu, Y. Yao, Y. Shi, H. Zhao, Nat. Commun., 2023, 14, 4932 |
78. | D. Li, H. Zhao, S. Li, B. Wei, J. Shuai, C. Shi, X. Xi, P. Sun, S. Meng, L. Gu, Z. Ren, X. Chen, Adv. Funct. Mater., 2015, 25, 6478 |
79. | T. Zhu, Z. Xu, J. He, J. Shen, S. Zhu, L. Hu, T. M. Tritt, X. Zhao, J. Mater. Chem. A, 2013, 1, 11589 |
80. | Q. Dong, J. Xiang, Z. Wang, Y. Li, R. Lu, T. Zhang, N. Chen, Y. Huang, Y. Wang, W. Zhu, G. Li, H. Zhao, X. Zheng, S. Zhang, Z. Ren, J. Yang, G. Chen, P. Sun, Sci. Bull. (Beijing), 2023, 68, 920 |
81. | N. Sidorenko, T. Parashchuk, M. Maksymuk, Z. Dashevsky, Cryogenics, 2020, 112, 103197 |
82. | C. Chen, B.-H. Wang, C. Chen, H.-D. Zhao, B. Zhang, D. Wang, T. Shen, P.-H. Li, S. Zhao, D.-L. Yu, Y.-J. Tian, B. Xu, J. Adv. Ceram., 2023, 12, 1081 |
83. | A. Das, A. Chauhan, V. Trivedi, M. Tiadi, R. Kumar, M. Battabyal, D. K. Satapathy, Phys. Chem. Chem. Phys., 2021, 23, 4230 |
84. | J. Fu, X. Su, H. Xie, Y. Yan, W. Liu, Y. You, X. Cheng, C. Uher, X. Tang, Nano Energy, 2018, 44, 53 |
85. | J. Li, B. Duan, J. Li, Z. Ruan, T. Gao, Z. Fang, G. Li, P. Zhai, G. Chen, J. Mater. Sci.: Mater. Electron., 2019, 30, 8502 |
86. | X. Liu, Y. Chen, H. Wang, S. Liu, B. Zhang, X. Lu, G. Wang, G. Han, X. Chen, X. Zhou, ACS Appl. Mater. Interfaces, 2024, 16, 2240 |
87. | X. L. Shi, W. D. Liu, A. Y. Wu, V. T. Nguyen, H. Gao, Q. Sun, R. Moshwan, J. Zou, Z. G. Chen, InfoMat, 2020, 2, 1201 |
88. | G. Yang, L. Sang, M. Li, S. M. Kazi Nazrul Islam, Z. Yue, L. Liu, J. Li, D. R. G. Mitchell, N. Ye, X. Wang, ACS Appl. Mater. Interfaces, 2020, 12, 12910 |
89. | B. Chen, J. Li, M. Wu, L. Hu, F. Liu, W. Ao, Y. Li, H. Xie, C. Zhang, ACS Appl. Mater. Interfaces, 2019, 11, 45746 |
90. | H. He, Z. Wang, S. Duan, X. Wang, L. Yin, S. Hou, C. Chen, K. Liu, L. Wei, J. Sui, B. Yang, S. Zhang, J. Mao, F. Cao, Q. Zhang, ChemNanoMat, 2023, 9, 202200389 |
91. | L. Y. Lou, J. Yang, Y. K. Zhu, H. Liang, Y. X. Zhang, J. Feng, J. He, Z. H. Ge, L. D. Zhao, Adv. Sci., 2022, 9, 2203250 |
92. | Y. Pan, T.-R. Wei, Q. Cao, J.-F. Li, Mater. Sci. Eng. B, 2015, 197, 75 |
93. | Z.-L. Wang, T. Akao, T. Onda, Z.-C. Chen, J. Alloys Compd., 2016, 663, 134 |
94. | C. Zhang, X. Geng, B. Chen, J. Li, A. Meledin, L. Hu, F. Liu, J. Shi, J. Mayer, M. Wuttig, O. Cojocaru-Miredin, Y. Yu, Small, 2021, 17, 2104067 |
95. | C. Zhang, Q. Lai, W. Wang, X. Zhou, K. Lan, L. Hu, B. Cai, M. Wuttig, J. He, F. Liu, Y. Yu, Adv. Sci., 2023, 10, 2302688 |
96. | L.-D. Zhao, B.-P. Zhang, J.-F. Li, M. Zhou, W.-S. Liu, J. Liu, J. Alloys Compd., 2008, 455, 259 |
97. | G. Zheng, X. Su, T. Liang, Q. Lu, Y. Yan, C. Uher, X. Tang, J. Mater. Chem. A, 2015, 3, 6603 |
98. | Y. Zhou, F. Meng, J. He, A. Benton, L. Hu, F. Liu, J. Li, C. Zhang, W. Ao, H. Xie, ACS Appl. Mater. Interfaces, 2020, 12, 31619 |
99. | Y. K. Zhu, Y. Jin, J. Zhu, X. Dong, M. Liu, Y. Sun, M. Guo, F. Li, F. Guo, Q. Zhang, Z. Liu, W. Cai, J. Sui, Adv. Sci., 2023, 10, 2206395 |
100. | Y. K. Zhu, Y. Sun, J. Zhu, K. Song, Z. Liu, M. Liu, M. Guo, X. Dong, F. Guo, X. Tan, B. Yu, W. Cai, J. Jiang, J. Sui, Small, 2022, 18, 2201352 |
101. | Y.-K. Zhu, P. Wu, J. Guo, Y. Zhou, X. Chong, Z.-H. Ge, J. Feng, Ceram. Int., 2020, 46, 14994 |
102. | J. L. Cui, X. Qian, X. B. Zhao, J. Alloys Compd., 2003, 358, 228 |
103. | L. Fu, J. Cui, Y. Yu, Y. Huang, Y. Wang, Y. Chen, J. He, J. Mater. Chem. A, 2019, 7, 6304 |
104. | C. Gayner, N. Nandihalli, Materialia, 2020, 14, 100912 |
105. | Y. Gelbstein, G. Gotesman, Y. Lishzinker, Z. Dashevsky, M. P. Dariel, Scripta Mater., 2008, 58, 251 |
106. | E. Łusakowska, S. Adamiak, R. Minikayev, P. Skupiński, A. Szczerbakow, W. Szuszkiewicz, Acta Phys. Pol. A, 2018, 134, 941 |
107. | J. P. Male, L. Abdellaoui, Y. Yu, S. Zhang, N. Pieczulewski, O. Cojocaru‐Mirédin, C. Scheu, G. J. Snyder, Adv. Funct. Mater., 2021, 31, 2108006 |
108. | J. E. Ni, E. D. Case, K. N. Khabir, R. C. Stewart, C.-I. Wu, T. P. Hogan, E. J. Timm, S. N. Girard, M. G. Kanatzidis, Mater. Sci. Eng. B, 2010, 170, 58 |
109. | S. Sarkar, X. Zhang, S. Hao, X. Hua, T. P. Bailey, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, ACS Energy Lett., 2018, 3, 2593 |
110. | A. Schmitz, J. de Boor, K. Mull, E. Müller, J. Mater. Sci., 2016, 51, 6933 |
111. | A. Schmitz, C. Stiewe, K. Zabrocki, J. de Boor, K. Mull, E. Müller, Mater. Res. Bull., 2017, 86, 159 |
112. | Y. Zhang, L. Wu, J. Zhang, J. Xing, J. Luo, Acta Mater., 2016, 111, 202 |
113. | T. Zhu, H. Xie, C. Zhang, X. Cheng, J. Zhang, P. F. P. Poudeu, G. Tan, Y. Yan, W. Liu, X. Su, X. Tang, ACS Appl. Mater. Interfaces, 2019, 11, 41472 |
114. | A. Banik, B. Vishal, S. Perumal, R. Datta, K. Biswas, Energy Environ. Sci., 2016, 9, 2011 |
115. | F. Guo, B. Cui, C. Li, Y. Wang, J. Cao, X. Zhang, Z. Ren, W. Cai, J. Sui, Adv. Funct. Mater., 2021, 31, 2101554 |
116. | F. Guo, J. Zhu, B. Cui, Y. Sun, X. Zhang, W. Cai, J. Sui, Acta Mater., 2022, 231, 117922 |
117. | S. K. Kihoi, U. S. Shenoy, J. N. Kahiu, H. Kim, D. K. Bhat, H. S. Lee, ACS Sustainable Chem. Eng., 2022, 10, 1367 |
118. | S. K. Kihoi, U. S. Shenoy, H. Kim, J. N. Kahiu, C. M. Kim, K.-I. Park, D. K. Bhat, H. S. Lee, ACS Appl. Energy Mater., 2024, 7, 1149 |
119. | J. Ma, X.-Y. Xin, H.-Q. Liu, Y.-J. Gu, Y.-F. Wang, Ceram. Int., 2023, 49, 21916 |
120. | T. Wang, H. Wang, W. Su, J. Zhai, G. Yakovleva, X. Wang, T. Chen, A. Romanenko, C. Wang, J. Mater. Chem. C, 2020, 8, 7393 |
121. | B. Yang, S. Li, X. Li, Y. Wang, H. Zhong, S. Feng, Intermetallics, 2019, 112, 106499 |
122. | H. Yang, X. Huang, B. Duan, L. Wu, H. Wang, X. Feng, M. Jiang, G. Li, L. Zhou, P. Zhai, Q. Zhang, J. Mater. Sci. Technol., 2023, 144, 213 |
123. | H. Yang, L. Wu, X. Feng, X. Huang, H. Wang, B. Duan, G. Li, P. Zhai, Q. Zhang, Adv. Funct. Mater., 2024, 34, 2316344 |
124. | H. Yang, L. Wu, X. Feng, H. Wang, X. Huang, B. Duan, G. Li, P. Zhai, Q. Zhang, Small, 2024, 20, 2310692 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
The maximum ZT value of SnSe crystal and polycrystal collected from literatures. The maximum ZT value of SnSe reported in the past decade, which were classified into p-type single crystal,[6,12,17–26] n-type single crystal,[7,27–30] p-type polycrystalline[10,11,31–60] and n-type polycrystal.[61–68] The reported maximum ZT reported for Half-heusler compound,[69] Bi2Te3-based,[13] SnTe-based,[70] PbSe-based,[71] PbTe-based,[72] and Cu2Se-based materials[73] are included for comparsion.
The power generation efficiency and Peltier cooling performance of SnSe-based thermoelectric devices. a The maximum conversion efficiency of the device as a function of ΔT.[12,13,23,24,49,70–74] The S-L denotes the single-leg device. b The maximum cooling temperature difference of the Peltier device was measured at the different hot end temperatures (Th).[12,14–16,24,75]
The low temperature thermoelectric performance and room temperature mechanical properties of SnSe-based compounds. a The ZT values of SnSe at temperature lower than 300 K.[24] The low temperature thermoelectric performance of CsBi4Te6-0.05 mol% SbI3,[76] Mg3.15Bi