Citation: | Xiaojun Li, Wenke He, Li-Dong Zhao. Point defect engineering advances thermoelectric SnS crystals[J]. Materials Lab, 2025, 4(1): 240010. doi: 10.54227/mlab.20240010 |
The pursuit of low-cost, high-performance thermoelectric materials is a fundamental challenge in thermoelectric research and its applications, as it can realize the direct thermal to electrical energy conversion. In the past decade, with the emergence of the hot-spot SnSe thermoelectric material, the homologous SnS has gradually gained wide attention as its lower cost and higher abundance of S. However, the highly electronegative (ionic) nature of S and the large bandgap (~ 1.2 eV) in SnS cause inherently poor electrical transport. Additionally, grain boundary in the polycrystals brings about complex defects and which further deteriorates the performance. The behavior of defects in polycrystalline SnS is difficult to clarify and modulate, but higher carrier mobility and the only point defects are considered in the crystals where factors with less influence make the identification and optimization of the transport mechanism easier. Based on it, this article proposes the improvement strategy of thermoelectric performance in SnS crystals enabled by the point defect engineering.
1. | Q. Yan, M. G. Kanatzidis, Nat. Mater., 2022, 21, 503 |
2. | B. Qin, D. Liu, Q. Cao, X. Zhang, L.-D. Zhao, Mater. Lab, 2023, 2, 230029 |
3. | X. L. Shi, J. Zou, Z. G. Chen, Chem. Rev., 2020, 120, 7399 |
4. | D. L. Zhao, G. Tan, Appl. Therm. Eng., 2014, 66, 15 |
5. | J. Mao, G. Chen, Z. F. Ren, Nat. Mater., 2021, 20, 454 |
6. | W. Liu, S. Bai, J. Materiomics, 2019, 5, 321 |
7. | Q. Zhu, S. Wang, X. Wang, A. Suwardi, M. H. Chua, X. Y. D. Soo, J. Xu, Nano-Micro Lett., 2021, 13, 119 |
8. | G. Tan, L.-D. Zhao, M. G. Kanatzidis, Chem. Rev., 2016, 116, 12123 |
9. | J. Sun, Y. Zhang, Y. Fan, X. Tang, G. Tan, Chem. Eng. J., 2022, 431, 133699 |
10. | Z. Liu, W. Gao, F. Guo, W. Cai, Q. Zhang, J. Sui, Mater. Lab, 2022, 1, 220003 |
11. | X. Tang, Z. Li, W. Liu, Q. Zhang, C. Uher, Interdiscip Mater., 2022, 1, 88 |
12. | Z. Liu, T. Hong, L. Xu, S. Wang, X. Gao, C. Chang, X. Ding, Y. Xiao, L.-D. Zhao, Interdiscip Mater., 2023, 2, 161 |
13. | B. Qin, L. -D. Zhao, Mater. Lab, 2022, 1, 220004 |
14. | F. Zhang, D. Wu, J. He, Mater. Lab, 2022, 1, 220012 |
15. | C. Fu, H. Wu, Y. Liu, J. He, X. Zhao, T. Zhu, Adv. Sci., 2016, 3, 1600035 |
16. | J. He, T. M. Tritt, Science, 2017, 357, eaak9997 |
17. | L.-D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Nature, 2014, 508, 373 |
18. | J. Jiang, Y. Pan, T. Zhou, Y. Niu, X. Kong, J. Song, C. Yang, Y. Yu, C. Wang, Mater. Today Commun., 2020, 24, 101167 |
19. | D. Liu, B. Qin, L.-D. Zhao, Mater. Lab, 2022, 1, 220006 |
20. | Y. Hu, S. Bai, Y. Wen, D. Liu, T. Hong, S. Liu, S. Zhan, T. Gao, P. Chen, Y. Li, L. Wang, D. Gao, X. Gao, Q. Tan, B. Qin, L.-D. Zhao, Adv. Funct. Mater, 2025, 35, 2414881 |
21. | Z. Wang, D. Wang, Y. Qiu, J. He, L.-D. Zhao, J. Alloys Compd., 2019, 789, 485 |
22. | W. He, D. Wang, H. Wu, Y. Xiao, Y. Zhang, D. He, Y. Feng, Y.-J. Hao, J.-F. Dong, R. Chetty, L. Hao, D. Chen, J. Qin, Q. Yang, X. Li, J.-M. Song, Y. Zhu, W. Xu, C. Niu, X. Li, G. Wang, C. Liu, M. Ohta, S. J. Pennycook, J. He, J.-F. Li, L.-D. Zhao, Science, 2019, 365, 1418 |
23. | Z. He, J. Zhu, W. Su, X. An, C. Zhao, W. Yuan, L. Lin, R. Ang, Appl. Phys. Lett., 2023, 123, 242104 |
24. | Asfandiyar, W. Xue, J. Mao, K. Liu, Q. Zhang, J.-F. Li, ACS Appl. Mater. Interfaces, 2024, 16, 38073 |
25. | Asfandiyar, B. Cai, L.-D. Zhao, J.-F. Li, J. Materiomics, 2020, 6, 77 |
26. | H. Wu, K. Peng, B. Zhang, X. N. Gong, Z. Z. Feng, X. M. Zhang, M. Xi, X. M. Yan, Y. S. Zhang, G. Y. Wang, X. Lu, X. Y. Zhou, Mater. Today Phys., 2020, 14, 100221 |
27. | W. He, B. Qin, L.-D. Zhao, Chin. Phys. Lett., 2020, 37, 087104 |
28. | W. He, D. Wang, J.-F. Dong, Y. Qiu, L. Fu, Y. Feng, Y. Hao, G. Wang, J. Wang, C. Liu, J.-F. Li, J. He, L.-D. Zhao, J. Mater. Chem. A, 2018, 6, 10048 |
29. | H. Wu, X. Lu, G. Wang, K. Peng, H. Chi, B. Zhang, Y. Chen, C. Li, Y. Yan, L. Guo, C. Uher, X. Zhou, X. Han, Adv. Energy Mater., 2018, 8, 1800087 |
30. | W. He, R. Ang, L.-D. Zhao, Sci. China Mater., 2022, 65, 1143 |
31. | Q. Tan, L.-D. Zhao, J.-F. Li, C.-F. Wu, T.-R. Wei, Z.-B. Xing, M. G. Kanatzidis, J. Mater. Chem. A, 2014, 2, 17302 |
32. | Q. Tan, C.-F. Wu, W. Sun, J.-F. Li, RSC Advances, 2016, 6, 43985 |
33. | Y. Niu, Y. Chen, J. Jiang, Y. Pan, C. Yang, C. Wang, IOP Conf. Ser.: Mater. Sci. Eng., 2020, 738, 012016 |
34. | L.-D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V. P. Dravid, C. Uher, G. J. Snyder, C. Wolverton, M. G. Kanatzidis, Science, 2016, 351, 141 |
35. | C. Chang, M. Wu, D. He, Y. Pei, C.-F. Wu, X. Wu, H. Yu, F. Zhu, K. Wang, Y. Chen, L. Huang, J.-F. Li, J. He, L.-D. Zhao, Science, 2018, 360, 778 |
36. | J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G. J. Snyder, Science, 2008, 321, 554 |
37. | K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V. P. Dravid, M. G. Kanatzidis, Nat. Chem., 2011, 3, 160 |
38. | S. Wang, G. Zheng, T. Luo, X. She, H. Li, X. Tang, J. Phys. D: Appl. Phys., 2011, 44, 475304 |
39. | Y. Qin, T. Hong, B. Qin, D. Wang, W. He, X. Gao, Y. Xiao, L. -D. Zhao, Adv. Funct. Mater., 2021, 31, 2102185 |
40. | G. J. Snyder, A. H. Snyder, M. Wood, R. Gurunathan, B. H. Snyder, C. Niu, Adv. Mater., 2020, 32, 2001537 |
41. | R. Guo, X. Wang, Y. Kuang, B. Huang, Phys. Rev. B, 2015, 92, 115202 |
42. | O. Delaire, J. Ma, K. Marty, A. F. May, M. A. McGuire, M. H. Du, D. J. Singh, A. Podlesnyak, G. Ehlers, M. D. Lumsden, B. C. Sales, Nat. Mater., 2011, 10, 614 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Point defect engineering in SnS crystals.
Electrical transport properties for undoped, Li and Na doped SnS crystals. a Electrical conductivity, inset shows Seebeck coefficients of group IV-VI thermoelectric compounds at a carrier concentration of ~ 3 × 1019 cm−3.[37–39] b Power factor.[28]
Electrical transport properties in SnS1-xSex (x = 0-9%) crystals. a The ratio of quality factor (β/β0). b Weighted mobility and power factor.[22]
Thermal transport properties for SnS-based crystals. a Lattice thermal conductivities with fitted Callaway model at room temperature, inset shows the temperature dependent lattice thermal conductivity. b ZT and ZTave values.[22]