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S olid-state  batteries  (SSBs)  are  gaining  considerable
attention  as  the  next-generation  energy  storage
technology  due  to  their  potential  for  high  energy

density,  enhanced  safety,  and  long  cycle  life  compared  to
conventional  liquid  electrolyte-based  batteries[1,2].  Among
the  various  types  of  SSBs,  solid  polymer-based  electrolytes
(SPEs)  stand  out  due  to  their  flexibility  and  processability,
which  facilitate  better  electrode-electrolyte  contact  and  en-
able  safer,  compact  designs[3].  Notably,  polyethylene  oxide
(PEO)-based electrolytes have emerged as promising candid-
ates  due  to  their  ease  of  fabrication,  low  cost,  and  environ-
mental friendliness[4].

However,  the  poor  high-voltage  compatibility  of  PEO-
based SPEs leads to the compromise of the energy density of
SSBs[5].  The  primary  challenge  lies  in  their  intrinsically  poor
oxidative  stability,  especially  at  voltages  exceeding  4.2  V[6,7].
Additionally,  the  strong  interactions  between  the  ether  oxy-
gen  (EO)  chains  in  PEO  and  the  high-voltage  cathode  active
materials  (e.g.  LiNixMnyCo(1−x−y)O2)  lead  to  electrochemical
side  reactions  at  the  cathode/electrolyte  interface,  which
hampers  the  capacity  of  the  battery  and  shortens  its  cycle
life[8–11].  Overcoming these challenges is  crucial  to unlocking
the  potential  of  PEO-based  electrolytes  in  high-voltage  bat-
teries, and consequently, high-energy applications.

As summarized in our recent review[12], manipulating Lewis
acid-base  coordination  interactions,  including  the  hydrogen
bond, the dipole-dipole interaction and the positive vacancy-
salt interaction, have proven fruitful in regulating the chemic-
al structure of PEO-based SPEs to extend the electrochemical
stability  window  (Figure 1).  This  concept  is  further  validated
in  a  recent  study  published  in Nature  Communications,  Prof.
Jiajun Wang and colleagues from Harbin Institute of Techno-
logy propose a novel Lewis-acid coordination strategy to en-
hance  the  high-voltage  performance  of  PEO-based  SPEs[13].
By  introducing  Mg2+ and  Al3+ ions  as  Lewis-acidic  electron-

withdrawing ligands into the EO chains  (Figure 2a),  the elec-
tron  density  of  the  EO  chains  is  decreased,  leading  to  re-
duced  coordination  between  Li+ and  EO  chains  and  de-
creased  highest  occupied  molecular  orbital  (HOMO)  of  the
salt-polymer  complex  (Figure 2b).  The presence of  Mg2+/Al3+

ions  also  decreases  the adsorption energy of  the  SPE on the
high-Ni  cathode  (Figure 2c),  indicative  of  increased  energy
barrier  for  the  parasitic  reactions.  Meanwhile,  the  modified
electrolyte enables the formation of a more stable inorganic-
rich  cathode-electrolyte  interphase  (CEI)  as  a  result  of  more
TFSI– anions participating in the solvation sheath of the elec-
trolyte  (Figure 2d).  Consequently,  this  innovative  design  ef-
fectively  mitigates  cathode/electrolyte  interfacial  degrada-
tion  and  improves  the  oxidative  stability  of  the  PEO-based
electrolyte up to 4.8 V.

Electrochemical  testing  demonstrates  the  remarkable  per-
formance  of  the  PEO-based  SSBs  using  the  Lewis-acid  co-
ordinated  electrolyte.  The  batteries  demonstrate  good  cyc-
ling  stability  of  over  300  cycles  at  4.8  V.  Notably,  Ah-level
pouch  cells  with  an  impressively  high  energy  density  of  586
Wh  kg−1 were  achieved  (Figure 2e),  retaining  80.6%  of  their
capacity after 50 cycles and 63.5% after 100 cycles. These res-
ults  underscore  the  great  potential  of  the  modified  electro-
lyte to support high-energy-density applications while main-
taining robust cycle stability.

Moreover,  the  scalability  of  the  Lewis-acid  coordinated
electrolyte is showcased through the successful production of
industrial-scale  flexible  membranes  (Figure 2f).  These  mem-
branes,  manufactured  via  a  cost-effective,  continuous  slurry-
casting  processes,  exhibit  uniform  thickness  and  good  sur-
face quality, making them suitable for large-scale battery pro-
duction.  This  demonstration  bridges  the  gap  of  solid-state
batteries between laboratory-scale research and practical im-
plementation, highlighting both the feasibility and economic
potential of the proposed strategy.

In  summary,  this  work  represents  a  significant  advance  in
the  development  of  high-voltage  PEO-based  solid-state  bat-
teries.  By  addressing  the  oxidative  stability  and  interfacial
challenges  of  PEO-based  electrolytes  through  Lewis-acid  co-
ordination, Prof.  Jiajun Wang and colleagues provide a path-
way to enhance the performance and scalability  of  polymer-
based  solid-state  batteries.  This  study  not  only  introduces  a
novel electrolyte design but also lays the groundwork for fu-
ture innovations in next-generation energy storage technolo-
gies.
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Fig. 1    Lewis acid (LA)-base (LB) interaction in next-generation battery chemistry[12].
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Fig. 2    a Schematic of Lewis-acid coordinated PEO-based SPEs. b The HOMO energy of different electrolyte components. c Adsorption ener-
gies of PEO-based electrolytes with and without Lewis-acid additives on the high-Ni cathode. d Quantitative analysis of the CEI organics and in-
organics. e Galvanostatic  charge/discharge voltage profiles  of  a  high-voltage pouch cell. f A  roll  of  industrial-scale  flexible  electrolyte  mem-
branes[13].
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