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Solar-driven photocatalytic CO2 reduction represents a transformative approach to renewable energy storage and car-
bon  neutrality.  By  converting  low-density,  intermittent  solar  energy  into  stable,  energy-dense  green  chemicals,  this
technology  addresses  critical  limitations  in  renewable  energy  utilization  and  promotes  a  circular  carbon  economy.
However, its industrial-scale application is hindered by inefficiencies in energy and mass transfer across key interfaces.
This highlight introduces the fundamental challenges and recent advancements in optimizing three critical interfaces:
the  light  harvesting  interface,  charge  transfer  interface,  and  catalytic  reaction  interface.  We  discuss  strategies  to  en-
hance light absorption, charge carrier dynamics, and reactant adsorption/desorption, providing insights into the design
of efficient photocatalytic systems for CO2 reduction.

 

G lobal  energy  transition  demands  innovative  solu-
tions  to  harness  renewable  energy  and  mitigate
carbon  emissions.[1] Solar-driven  photocatalytic

CO2 reduction,  which converts  CO2 and water  into hydrocar-
bons using sunlight, tackles two major challenges: stabilizing
intermittent  solar  energy  into  storable  chemical  bonds  and
closing  the  anthropogenic  carbon  cycle.  Despite  decades  of
research, practical applications remain hindered by low solar-
to-fuel  conversion  efficiencies  (<5%),  primarily  due  to  ineffi-
ciencies in energy and mass transfer at functional interfaces.[2]

This process is governed by three critical interfaces (Figure 1):
(i)  light  harvesting interface,[3] (ii)  charge  transfer  interface,[4]

and (iii) catalytic reaction interface.[5]

Light harvesting interface governs the absorption and con-
version  of  solar  energy  into  photogenerated  charge  carriers.
However,  suboptimal  spectral  utilization  and  inefficient  ex-
citon transport to catalytic centers remain significant barriers.
Recent  advances  prioritize  broadening  the  absorption  spec-
trum  of  photocatalysts  to  harness  visible  and  near-infrared
(NIR) light, beyond the ultraviolet (UV) range traditionally util-
ized. Synthesis of multi-gap semiconductor composites com-
bining  materials  with  complementary  absorption  profiles  —
for  example,  TiO2 (UV-active)  coupled  with  perovskites  or
chalcogenides  (visible  to  NIR-active)  —  has  demonstrated
synergistic spectral extension and improved solar-to-fuel effi-
ciency.[6] Photon upconversion converts  low-energy photons
(e.g.,  NIR)  into  higher-energy  photons  (e.g.,  visible/UV),  en-
abling  the  use  of  otherwise  wasted  solar  energy.  Incorpora-
tion  of  plasmonic  nanoparticles  (e.g.,  Au,  Ag)  exploits  local-
ized surface plasmon resonances to amplify the local electro-

magnetic  field  and  enable  photon  upconversion,  converting
low-energy  photons  into  higher-energy  carriers  usable  in
photocatalysis.[7] Typically,  lanthanide-doped  upconversion
materials  have  been  successfully  employed  to  convert  NIR
photons  into  visible  or  UV  light,  effectively  recycling  other-
wise  wasted  energy.  Moreover,  engineering  heterojunctions
with  well-aligned,  layered  or  gradient  energy  levels  —
through multilayer or gradient assemblies — facilitates direc-
tional  photon-to-charge  conversion  pathways,  suppressing
electron-hole  recombination  and  maximizing  full-spectrum
solar  utilization.[8] Additionally,  optimizing  the  energy  level
alignment  and  minimizing  lattice  mismatch  between  com-
ponents  can  significantly  facilitate  exciton  transfer  and
charge  separation.  Incorporating  surface  modifications  can
improve interface stability and reactivity, thereby maximizing
overall  photocatalytic efficiency and promoting effective sol-
ar energy utilization.

Charge  transfer  interface  controls  the  separation,  transfer,
and  utilization  of  photogenerated  charge  carriers,  which  are
essential  for  photocatalytic  CO2 reduction.  Built-in  electric
fields (BIEFs) at heterojunctions generate steep energy gradi-
ents  that  spatially  separate  charge  carriers,  minimizing  re-
combination. Prompt migration of carriers to active sites is es-
sential;  however,  defect  states  and  trap  centers  within  pho-
tocatalysts frequently capture carriers, leading to recombina-
tion  and  efficiency  loss.  Innovative  interface  engineering  fo-
cus on mitigating these recombination pathways by optimiz-
ing  structural  order,  tailor  energy  band  alignment,  and  im-
proving carrier  mobility.  Heterojunction architectures,  partic-
ularly  Z-scheme  systems,  markedly  enhance  charge  separa-
tion  by  combining  semiconductors  with  complementary
band  structures  and  matching  energy  potentials.  For  in-
stance, the In2O3/Nb2O5 S-scheme heterojunction enables ul-
trafast electron transfer (1.5×1012 s−1) for CO2 photoreduction,
achieving 48.7 μmol·g−1·h−1 CO yield with 92.3% selectivity.[9]
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Atomic  intercalation  modifications,  such  as  Co/Cu3-TPA-COF
incorporation, further adjust electronic structures to promote
efficient  charge  migration  while  suppressing  recombination.
Cutting-edge spatiotemporal imaging techniques offer critic-
al mechanistic insights by tracking hot-electron dynamics and
anisotropic  trapping  phenomena,  guiding  rational  interface
design.[10] Collectively,  these  strategies  address  intrinsic  de-
fects  and  recombination  issues,  thereby  advancing  the
charge carrier utilization in solar-driven photocatalytic CO2 re-
duction systems.

Catalytic  reaction  interface  plays  a  critical  role  in  reactant
adsorption/desorption,  activation  energy  barriers,  and  reac-
tion  kinetics  —  all  determinants  of  product’s  yield  and  se-
lectivity.  Optimizing  this  interface  is  essential  for  improving
the  efficiency  and  selectivity  of  photocatalytic  CO2

reduction.[11] Inefficient transfer of photogenerated carriers to
surface active sites frequently leads to suboptimal CO2 reduc-
tion  performance.  Modifying  the  surface  electronic  structure
and active sites enhances charge transfer efficiency and min-
imizes interfacial  energy losses.  Development of hybrid cata-
lysts  combining  multiple  catalytic  sites  enables  optimized
CO2 adsorption  as  well  as  selectivity  in  product  desorption.
Furthermore,  tuning  surface  morphology  to  increase  active
site accessibility and modifying electronic properties acceler-
ates  reaction  kinetics.  Targeted  surface  engineering  can  also
direct  reaction  pathways  towards  desired  products,  improv-
ing both selectivity  and overall  conversion efficiency.  Recent
advancements  in  operando  spectroscopy,  particularly  time-
resolved X-ray absorption spectroscopy (XAS), have provided
unprecedented  insights  into  the  dynamic  processes  occur-
ring  at  the  catalytic  reaction  interface  of  photocatalytic  sys-
tems.  These  techniques  allow  for  real-time  monitoring  of
electronic  and  structural  changes  during  photocatalytic  CO2

reduction,  offering  a  deeper  understanding  of  the  mechan-
isms governing charge transfer and catalytic reactions. For in-
stance,  time-resolved  XAS  has  elucidated  the  strong  interfa-
cial bonding results in stable Cu–O–Si sites that maintain their
structure during the CO2 reduction reaction, without signific-
ant  reconstruction.[12] Additionally,  complementing  experi-
mental  advances,  machine  learning  (ML)  has  emerged  as  a
transformative  tool  for  accelerating  interface  optimization.
Neural  network models trained on high-throughput datasets
of  photocatalyst  performance  can  predict  optimal  bandgap
alignments, defect configurations, and surface adsorption en-

ergies  with  atomic-scale  precision.[13] By  integrating  active
learning  frameworks  with  robotic  synthesis  platforms,  ML
bridges  the  gap  between  mechanistic  understanding  and
scalable  photocatalyst  design,  addressing  the  combinatorial
complexity inherent in multi-interface systems.[14]

Optimizing  energy  and  mass  transfer  at  the  light  harvest-
ing, charge transfer, and catalytic reaction surface interfaces is
critical  for  advancing  solar-driven  photocatalytic  CO2 reduc-
tion.  Although  recent  advances  demonstrate  significant  per-
formance  improvements,  challenges  persist  in  finely  tuning
interfacial  properties to achieve robust operation under real-
world conditions. Future efforts should emphasize integrated
interface  engineering  strategies  that  simultaneously  address
multiple  interfacial  processes,  supported  by  the  develop-
ment  of  novel  materials,  advanced  characterization  tech-
niques,  and  innovative  system  designs.  By  addressing  these
critical barriers, solar-driven photocatalytic CO2 reduction can
emerge as a  practical  and sustainable technology for  renew-
able  energy conversion and carbon management,  contribut-
ing meaningfully to global decarbonization efforts.
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Fig. 1    The three primary interfaces governing photocatalytic performance: (i) light harvesting, (ii) charge transfer,

and (iii) catalytic reaction surface
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