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Energy and mass transfer at interfaces in solar-driven
photocatalytic CO, reduction reactions

Shengjie Bai*®, Wenyu Zheng and Qingling Huang

Solar-driven photocatalytic CO, reduction represents a transformative approach to renewable energy storage and car-
bon neutrality. By converting low-density, intermittent solar energy into stable, energy-dense green chemicals, this
technology addresses critical limitations in renewable energy utilization and promotes a circular carbon economy.
However, its industrial-scale application is hindered by inefficiencies in energy and mass transfer across key interfaces.
This highlight introduces the fundamental challenges and recent advancements in optimizing three critical interfaces:
the light harvesting interface, charge transfer interface, and catalytic reaction interface. We discuss strategies to en-
hance light absorption, charge carrier dynamics, and reactant adsorption/desorption, providing insights into the design

of efficient photocatalytic systems for CO, reduction.

lobal energy transition demands innovative solu-

tions to harness renewable energy and mitigate

carbon emissions."l Solar-driven photocatalytic
CO, reduction, which converts CO, and water into hydrocar-
bons using sunlight, tackles two major challenges: stabilizing
intermittent solar energy into storable chemical bonds and
closing the anthropogenic carbon cycle. Despite decades of
research, practical applications remain hindered by low solar-
to-fuel conversion efficiencies (<5%), primarily due to ineffi-
ciencies in energy and mass transfer at functional interfaces.™?!
This process is governed by three critical interfaces (Figure 1):
(i) light harvesting interface, (ii) charge transfer interface,
and (iii) catalytic reaction interface.l®!

Light harvesting interface governs the absorption and con-
version of solar energy into photogenerated charge carriers.
However, suboptimal spectral utilization and inefficient ex-
citon transport to catalytic centers remain significant barriers.
Recent advances prioritize broadening the absorption spec-
trum of photocatalysts to harness visible and near-infrared
(NIR) light, beyond the ultraviolet (UV) range traditionally util-
ized. Synthesis of multi-gap semiconductor composites com-
bining materials with complementary absorption profiles —
for example, TiO, (UV-active) coupled with perovskites or
chalcogenides (visible to NIR-active) — has demonstrated
synergistic spectral extension and improved solar-to-fuel effi-
ciency.®! Photon upconversion converts low-energy photons
(e.g., NIR) into higher-energy photons (e.g., visible/UV), en-
abling the use of otherwise wasted solar energy. Incorpora-
tion of plasmonic nanoparticles (e.g., Au, Ag) exploits local-
ized surface plasmon resonances to amplify the local electro-
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magnetic field and enable photon upconversion, converting
low-energy photons into higher-energy carriers usable in
photocatalysis.”? Typically, lanthanide-doped upconversion
materials have been successfully employed to convert NIR
photons into visible or UV light, effectively recycling other-
wise wasted energy. Moreover, engineering heterojunctions
with well-aligned, layered or gradient energy levels —
through multilayer or gradient assemblies — facilitates direc-
tional photon-to-charge conversion pathways, suppressing
electron-hole recombination and maximizing full-spectrum
solar utilization.!® Additionally, optimizing the energy level
alignment and minimizing lattice mismatch between com-
ponents can significantly facilitate exciton transfer and
charge separation. Incorporating surface modifications can
improve interface stability and reactivity, thereby maximizing
overall photocatalytic efficiency and promoting effective sol-
ar energy utilization.

Charge transfer interface controls the separation, transfer,
and utilization of photogenerated charge carriers, which are
essential for photocatalytic CO, reduction. Built-in electric
fields (BIEFs) at heterojunctions generate steep energy gradi-
ents that spatially separate charge carriers, minimizing re-
combination. Prompt migration of carriers to active sites is es-
sential; however, defect states and trap centers within pho-
tocatalysts frequently capture carriers, leading to recombina-
tion and efficiency loss. Innovative interface engineering fo-
cus on mitigating these recombination pathways by optimiz-
ing structural order, tailor energy band alignment, and im-
proving carrier mobility. Heterojunction architectures, partic-
ularly Z-scheme systems, markedly enhance charge separa-
tion by combining semiconductors with complementary
band structures and matching energy potentials. For in-
stance, the In,05/Nb,0O5 S-scheme heterojunction enables ul-
trafast electron transfer (1.5x10'2 s71) for CO, photoreduction,
achieving 48.7 umol-g="-h~=" CO yield with 92.3% selectivity.!!
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Fig.1 The three primary interfaces governing photocatalytic performance: (i) light harvesting, (ii) charge transfer,
and (iii) catalytic reaction surface

Atomic intercalation modifications, such as Co/Cus-TPA-COF
incorporation, further adjust electronic structures to promote
efficient charge migration while suppressing recombination.
Cutting-edge spatiotemporal imaging techniques offer critic-
al mechanistic insights by tracking hot-electron dynamics and
anisotropic trapping phenomena, guiding rational interface
design.l'% Collectively, these strategies address intrinsic de-
fects and recombination issues, thereby advancing the
charge carrier utilization in solar-driven photocatalytic CO, re-
duction systems.

Catalytic reaction interface plays a critical role in reactant
adsorption/desorption, activation energy barriers, and reac-
tion kinetics — all determinants of product’s yield and se-
lectivity. Optimizing this interface is essential for improving
the efficiency and selectivity of photocatalytic CO,
reduction.'! Inefficient transfer of photogenerated carriers to
surface active sites frequently leads to suboptimal CO, reduc-
tion performance. Modifying the surface electronic structure
and active sites enhances charge transfer efficiency and min-
imizes interfacial energy losses. Development of hybrid cata-
lysts combining multiple catalytic sites enables optimized
CO, adsorption as well as selectivity in product desorption.
Furthermore, tuning surface morphology to increase active
site accessibility and modifying electronic properties acceler-
ates reaction kinetics. Targeted surface engineering can also
direct reaction pathways towards desired products, improv-
ing both selectivity and overall conversion efficiency. Recent
advancements in operando spectroscopy, particularly time-
resolved X-ray absorption spectroscopy (XAS), have provided
unprecedented insights into the dynamic processes occur-
ring at the catalytic reaction interface of photocatalytic sys-
tems. These techniques allow for real-time monitoring of
electronic and structural changes during photocatalytic CO,
reduction, offering a deeper understanding of the mechan-
isms governing charge transfer and catalytic reactions. For in-
stance, time-resolved XAS has elucidated the strong interfa-
cial bonding results in stable Cu—O-Si sites that maintain their
structure during the CO, reduction reaction, without signific-
ant reconstruction.'? Additionally, complementing experi-
mental advances, machine learning (ML) has emerged as a
transformative tool for accelerating interface optimization.
Neural network models trained on high-throughput datasets
of photocatalyst performance can predict optimal bandgap
alignments, defect configurations, and surface adsorption en-

Energy Lab 2025, 3, 250010

ergies with atomic-scale precision.'3 By integrating active
learning frameworks with robotic synthesis platforms, ML
bridges the gap between mechanistic understanding and
scalable photocatalyst design, addressing the combinatorial
complexity inherent in multi-interface systems.['4!

Optimizing energy and mass transfer at the light harvest-
ing, charge transfer, and catalytic reaction surface interfaces is
critical for advancing solar-driven photocatalytic CO, reduc-
tion. Although recent advances demonstrate significant per-
formance improvements, challenges persist in finely tuning
interfacial properties to achieve robust operation under real-
world conditions. Future efforts should emphasize integrated
interface engineering strategies that simultaneously address
multiple interfacial processes, supported by the develop-
ment of novel materials, advanced characterization tech-
niques, and innovative system designs. By addressing these
critical barriers, solar-driven photocatalytic CO, reduction can
emerge as a practical and sustainable technology for renew-
able energy conversion and carbon management, contribut-
ing meaningfully to global decarbonization efforts.
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