Lijian Zhang, Chunyan Wu, Wenhao Liang, Tao Chen. Low-dimensional antimony selenosulfide as an emerging material for solar cell applications[J]. Energy Lab, 2024, 2(1): 220016. doi: 10.54227/elab.20220016
Citation: Lijian Zhang, Chunyan Wu, Wenhao Liang, Tao Chen. Low-dimensional antimony selenosulfide as an emerging material for solar cell applications[J]. Energy Lab, 2024, 2(1): 220016. doi: 10.54227/elab.20220016

PERSPECTIVE

Low-dimensional antimony selenosulfide as an emerging material for solar cell applications

More Information
  • Corresponding author: tchenmse@ustc.edu.cn
  • Antimony chalcogenides (Sb2X3), including Sb2S3, Sb2Se3, and the alloy-type Sb2(S,Se)3, have been considered as a promising absorber materials for photovoltaic applications. Owing to its unique quasi-one-dimensional crystal structure, it displays distinct defect and carrier transport properties and requires special material synthesis strategy compared with the traditional three-dimensional crystal structure semiconductor materials. Recent studies on this class of materials have generated new understandings in film fabrication, defect characteristics and passivation, interfacial engineering, and efficiency improvement. With these efforts, the power conversion efficiency of the solar cell device has been increased from below 3% to 10.7% over the past 10 years. This efficiency achievement suggests that Sb2X3 possesses great potential for practical applications with further efficiency enhancement. This perspective article presents the critical development in the Sb2X3 materials and solar cells in recent years, including the unique crystal structure for solar cells, the preparation method for obtaining high-quality Sb2X3 films, and the discovery and passivation of unusual and complex defects. Finally, we propose several strategies for future efficiency improvement.


  • 加载中
  • Lijian Zhang obtained his PhD degree from University of Science and Technology of China in 2019. His work focuses on metal chalcogenides solar cells.
    Tao Chen obtained his PhD degree from Nanyang Technological University, Singapore in 2010. In 2011, he joined Department of Physics, Chinese University of Hong Kong as a research assistant professor. Since 2015, he has been working in Department of Materials Science and Engineering, University of Science and Technology of China as a full professor. His work focuses on metal chalcogenides solar cells.
  • 1. C. Chen, J. Tang, ACS Energy Lett., 2020, 5, 2294
    2. M. A. Green, E. D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Prog. Photovolt: Res. Appl., 2021, 29, 657
    3. NREL, Best Research-Cell Efficiency Chart, https://www.nrel.gov/pv/cell-efficiency.html, July 2023.
    4. L. Zhang, S. Cheng, J. Wang, T. Chen, Sol. RRL, 2022, 6, 2200561
    5. X. Jin, Y. Fang, T. Salim, M. Feng, S. Hadke, S. W. Leow, T. C. Sum, L. H. Wong, Adv. Funct. Mater., 2020, 30, 2002887
    6. Y. C. Choi, D. U. Lee, J. H. Noh, E. K. Kim, S. I. Seok, Adv. Funct. Mater., 2014, 24, 3587
    7. Y. Zhou, L. Wang, S. Chen, S. Qin, X. Liu, J. Chen, D.-J. Xue, M. Luo, Y. Cao, Y. Cheng, E. H. Sargent, J. Tang, Nat. Photonics, 2015, 9, 409
    8. R. Tang, X. Wang, W. Lian, J. Huang, Q. Wei, M. Huang, Y. Yin, C. Jiang, S. Yang, G. Xing, S. Chen, C. Zhu, X. Hao, M. A. Green, T. Chen, Nat. Energy, 2020, 5, 587
    9. X. Wang, R. Tang, C. Wu, C. Zhu, T. Chen, Journal of Energy Chemistry, 2018, 27, 713
    10. H. Dong, L. Zhang, B. Che, P. Xiao, H. Wang, C. Zhu, T. Chen, ACS Appl. Opt. Mater., 2023, 1, 374
    11. Y. Zhao, S. Wang, C. Jiang, C. Li, P. Xiao, R. Tang, J. Gong, G. Chen, T. Chen, J. Li, X. Xiao, Adv. Energy Mater., 2022, 12, 2103015
    12. A. Mavlonov, T. Razykov, F. Raziq, J. Gan, J. Chantana, Y. Kawano, T. Nishimura, H. Wei, A. Zakutayev, T. Minemoto, X. Zu, S. Li, L. Qiao, Solar Energy, 2020, 201, 227
    13. U. A. Shah, S. Chen, G. M. G. Khalaf, Z. Jin, H. Song, Adv. Funct. Mater., 2021, 31, 2100265
    14. J. Dong, Y. Liu, Z. Wang, Y. Zhang, Nano Select, 2021, 2, 1818
    15. C. Chen, K. Li, J. Tang, Sol. RRL, 2022, 6, 2200094
    16. S. Wang, Y. Zhao, B. Che, C. Li, X. Chen, R. Tang, J. Gong, X. Wang, G. Chen, T. Chen, J. Li, X. Xiao, Adv. Mater., 2022, 34, 2206242
    17. Y. Zhao, S. Wang, C. Li, B. Che, X. Chen, H. Chen, R. Tang, X. Wang, G. Chen, T. Wang, J. Gong, T. Chen, X. Xiao, J. Li, Energy Environ. Sci., 2022, 15, 5118
    18. A. Polman, M. Knight, E. C. Garnett, B. Ehrler, W. C. Sinke, Science, 2016, 352, aad4424
    19. L. Wang, D.-B. Li, K. Li, C. Chen, H.-X. Deng, L. Gao, Y. Zhao, F. Jiang, L. Li, F. Huang, Y. He, H. Song, G. Niu, J. Tang, Nat. Energy, 2017, 2, 17046
    20. C. Chen, D. C. Bobela, Y. Yang, S. Lu, K. Zeng, C. Ge, B. Yang, L. Gao, Y. Zhao, M. C. Beard, J. Tang, Frontiers of Optoelectronics, 2017, 10, 18
    21. X. Jin, Y. Fang, T. Salim, M. Feng, Z. Yuan, S. Hadke, T. C. Sum, L. H. Wong, Adv. Mater., 2021, 33, 2104346
    22. K. Li, F. Li, C. Chen, P. Jiang, S. Lu, S. Wang, Y. Lu, G. Tu, J. Guo, L. Shui, Z. Liu, B. Song, J. Tang, Nano Energy, 2021, 86, 106101
    23. C. Chen, K. Li, F. Li, B. Wu, P. Jiang, H. Wu, S. Lu, G. Tu, Z. Liu, J. Tang, ACS Photonics, 2020, 7, 352
    24. X. Wen, Z. Lu, L. Valdman, G. C. Wang, M. Washington, T. M. Lu, ACS Appl Mater Interfaces, 2020, 12, 35222
    25. C. Wang, S. Lu, S. Li, S. Wang, X. Lin, J. Zhang, R. Kondrotas, K. Li, C. Chen, J. Tang, Nano Energy, 2020, 71, 104577
    26. X. Wen, Z. Lu, G.-C. Wang, M. A. Washington, T.-M. Lu, Nano Energy, 2021, 85, 106019
    27. C. Wu, W. Lian, L. Zhang, H. Ding, C. Jiang, Y. Ma, W. Han, Y. Li, J. Zhu, T. Chen, C. Zhu, Sol. RRL, 2020, 4, 1900582
    28. C. Wu, L. Zhang, H. Ding, H. Ju, X. Jin, X. Wang, C. Zhu, T. Chen, Sol. Energy Mater. Sol. Cells, 2018, 183, 52
    29. D.-B. Li, X. Yin, C. R. Grice, L. Guan, Z. Song, C. Wang, C. Chen, K. Li, A. J. Cimaroli, R. A. Awni, D. Zhao, H. Song, W. Tang, Y. Yan, J. Tang, Nano Energy, 2018, 49, 346
    30. Y. Itzhaik, O. Niitsoo, M. Page, G. Hodes, J. Phys. Chem. C, 2009, 113, 4254
    31. M. Ishaq, H. Deng, U. Farooq, H. Zhang, X. Yang, U. A. Shah, H. Song, Sol. RRL, 2019, 3, 1900305
    32. W. Lian, C. Jiang, Y. Yin, R. Tang, G. Li, L. Zhang, B. Che, T. Chen, Nat. Commun., 2021, 12, 3260
    33. S. Messina, M. Nair, P. Nair, J. Electrochem. Soc., 2009, 156, H327
    34. X. Liu, C. Chen, L. Wang, J. Zhong, M. Luo, J. Chen, D.-J. Xue, D. Li, Y. Zhou, J. Tang, Prog. Photovolt: Res. Appl., 2015, 23, 1828
    35. X. Wen, C. Chen, S. Lu, K. Li, R. Kondrotas, Y. Zhao, W. Chen, L. Gao, C. Wang, J. Zhang, G. Niu, J. Tang, Nat. Commun., 2018, 9, 2179
    36. C. Chen, K. Li, S. Chen, L. Wang, S. Lu, Y. Liu, D. Li, H. Song, J. Tang, ACS Energy Lett., 2018, 3, 2335
    37. R. Tang, Z.-H. Zheng, Z.-H. Su, X.-J. Li, Y.-D. Wei, X.-H. Zhang, Y.-Q. Fu, J.-T. Luo, P. Fan, G.-X. Liang, Nano Energy, 2019, 64, 103929
    38. Z. Li, X. Liang, G. Li, H. Liu, H. Zhang, J. Guo, J. Chen, K. Shen, X. San, W. Yu, R. E. I. Schropp, Y. Mai, Nat. Commun., 2019, 10, 125
    39. T. D. C. Hobson, L. J. Phillips, O. S. Hutter, H. Shiel, J. E. N. Swallow, C. N. Savory, P. K. Nayak, S. Mariotti, B. Das, L. Bowen, L. A. H. Jones, T. J. Featherstone, M. J. Smiles, M. A. Farnworth, G. Zoppi, P. K. Thakur, T.-L. Lee, H. J. Snaith, C. Leighton, D. O. Scanlon, V. R. Dhanak, K. Durose, T. D. Veal, J. D. Major, Chem. Mater., 2020, 32, 2621
    40. Y. Ma, B. Tang, W. Lian, C. Wu, X. Wang, H. Ju, C. Zhu, F. Fan, T. Chen, J. Mater. Chem. A, 2020, 8, 6510
    41. W. Lian, R. Cao, G. Li, H. Cai, Z. Cai, R. Tang, C. Zhu, S. Yang, T. Chen, Adv. Sci., 2022, 9, 2105268
    42. Z. Duan, X. Liang, Y. Feng, H. Ma, B. Liang, Y. Wang, S. Luo, S. Wang, R. E. I. Schropp, Y. Mai, Z. Li, Adv. Mater., 2022, 34, e2202969
    43. Y. C. Choi, Y. H. Lee, S. H. Im, J. H. Noh, T. N. Mandal, W. S. Yang, S. I. Seok, Adv. Energy Mater., 2014, 4, 1301680
    44. LMPV, Detailed Balance (DB) Charts, https://www.lmpv.nl/db/, July 2023.
    45. X. Wang, R. Tang, C. Jiang, W. Lian, H. Ju, G. Jiang, Z. Li, C. Zhu, T. Chen, Adv. Energy Mater., 2020, 10, 2002341
    46. X. Liu, J. Chen, M. Luo, M. Leng, Z. Xia, Y. Zhou, S. Qin, D. J. Xue, L. Lv, H. Huang, D. Niu, J. Tang, ACS Appl. Mater. Interfaces, 2014, 6, 10687
    47. J. M. Ball, A. Petrozza, Nat. Energy, 2016, 1, 16149
    48. Z. Cai, C.-M. Dai, S. Chen, Sol. RRL, 2020, 4, 1900503
    49. M. Huang, P. Xu, D. Han, J. Tang, S. Chen, ACS Appl. Mater. Interfaces, 2019, 11, 15564
    50. C. Chen, L. Wang, L. Gao, D. Nam, D. Li, K. Li, Y. Zhao, C. Ge, H. Cheong, H. Liu, H. Song, J. Tang, ACS Energy Lett., 2017, 2, 2125
    51. M. Leng, M. Luo, C. Chen, S. Qin, J. Chen, J. Zhong, J. Tang, Appl. Phys. Lett., 2014, 105, 083905
    52. A. Shongalova, M. R. Correia, J. P. Teixeira, J. P. Leitão, J. C. González, S. Ranjbar, S. Garud, B. Vermang, J. M. V. Cunha, P. M. P. Salomé, P. A. Fernandes, Sol. Energy Mater. Sol. Cells, 2018, 187, 219
    53. A. Maiti, S. Chatterjee, A. J. Pal, ACS Appl. Energ. Mater., 2020, 3, 810
    54. J. Kim, S. Ji, Y. Jang, G. Jeong, J. Choi, D. Kim, S.-W. Nam, B. Shin, Sol. RRL, 2021, 5, 2100327
    55. S. Yuan, H. Deng, X. Yang, C. Hu, J. Khan, W. Ye, J. Tang, H. Song, ACS Photonics, 2017, 4, 2862
    56. H. Deng, S. Yuan, X. Yang, F. Cai, C. Hu, K. Qiao, J. Zhang, J. Tang, H. Song, Z. He, Materials Today Energy, 2017, 3, 15
    57. G.-X. Liang, Y.-D. Luo, S. Chen, R. Tang, Z.-H. Zheng, X.-J. Li, X.-S. Liu, Y.-K. Liu, Y.-F. Li, X.-Y. Chen, Z.-H. Su, X.-H. Zhang, H.-L. Ma, P. Fan, Nano Energy, 2020, 73, 104806
    58. M. Huang, Z. Cai, S. Wang, X. G. Gong, S. H. Wei, S. Chen, Small, 2021, 17, 2102429
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Information

Article Metrics

Article views(1203) PDF downloads(176) Citation(0)

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint