Citation: | Yang Ding, Hengyue Li, Mustafa Haider, Yuanji Gao, Junliang Yang, Chenyi Yi, Zijian Zheng. Perovskite/organic tandem solar cells: a review[J]. Energy Lab, 2024, 2(1): 230002. doi: 10.54227/elab.20230002 |
The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has rapidly increased and exceeded 25% based on strategies such as interface modification, doping engineering, and optimization of preparation methods. further improvement seems to have entered a bottleneck period due to Shockley-Quiesser (S-Q) limit of single-junction devices. Tandem cell designed to achieve efficient matching of a wider range of the solar spectrum is considered a successful method to solve this difficulty. In tandem architecture, the PSC is a perfect top-cell candidate owing to its large absorption coefficient, adjustable band gap, and feasible low-temperature solution processibility. The perovskite-based tandem solar cells (TSCs) such as perovskite-silicon, perovskite-perovskite, and perovskite-organic devices have stimulated enormous research interest and got significant progress in the past few years. Among them, the abundant perovskite and organic semiconductor materials with tunable components, adjustable bandgap, and various physical and chemical properties make the perovskite/organic TSCs (PO-TSCs) more competitive. In this work, a general introduction and review of recent advances in perovskite/organic tandem features are provided. In addition, a perspective and some suggestions about future developments in this field are also discussed.
1. | K. Yoshikawa, W. Yoshida, T. Irie, H. Kawasaki, K. Konishi, H. Ishibashi, T. Asatani, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Sol, Energy Mater. Sol. Cells, 2017, 173, 37 |
2. | B. Yang, S. Peng, W. C. H. Choy, EcoMat., 2021, 3, e12127 |
3. | F. Qi, X. Deng, X. Wu, L. Huo, Y. Xiao, X. Lu, Z. Zhu, A. K. Y. Jen, Adv. Energy Mater., 2019, 9, 1902600 |
4. | J. Wang, J. Zhang, Y. Zhou, H. Liu, Q. Xue, X. Li, C. C. Chueh, H. L. Yip, Z. Zhu, A. K. Jen, Nat. Commun., 2020, 11, 177 |
5. | R. J. Stoddard, A. Rajagopal, R. L. Palmer, I. L. Braly, A. K. Y. Jen, H. W. Hillhouse, ACS Energy Lett., 2018, 3, 1261 |
6. | Best Research-Cell Efficiency Chart, NREL, https://www.nrel.gov/pv/cell-efficiency.html |
7. | D. Bi, C. Yi, J. Luo, J. D. Décoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, M. Grätzel, Nat. Energy, 2016, 1, 16142 |
8. | N. Jeon, H. Na, E. Jung, T. Y. Yang, Y. G. Lee, G. Kim, H. W. Shin, S. Seok, J. Lee, J. Seo, Nat. Energy, 2018, 3, 682 |
9. | X. Luo, X. Lin, F. Gao, Y. Zhao, X. Li, L. Zhan, Z. Qiu, J. Wang, C. Chen, L. Meng, X. Gao, S. (Frank) Liu, R. Zhu, J. Nakazaki, Y. Li, L. Han, Sci China Chem., 2022, 65, 2369 |
10. | S. Li, J. Liu, S. Liu, D. Zhang, C. Liu, D. Li, J. Qi, Y. Hu, A. Mei, H. Han, EcoMat., 2022, 4, e12202 |
11. | J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. Yoon, I. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, J. Y. Kim, Nature, 2021, 592, 381 |
12. | J. Madan, Shivani, R. Pandey, R. Sharma, Sol. Energy, 2020, 197, 212 |
13. | P. Cheng, Y. Liu, S. Y. Chang, T. Li, P. Sun, R. Wang, H.-W. Cheng, T. Huang, L. Meng, S. Nuryyeva, Joule, 2019, 3, 432 |
14. | W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, J. Hou, J. Am. Chem. Soc., 2017, 139, 7148 |
15. | Y. Cho, B. Hou, J. Lim, S. Lee, S. Pak, J. Hong, P. Giraud, A. R. Jang, Y. W. Lee, J. Lee, J. E. Jang, H. J. Snaith, S. M. Morris, J. I. Sohn, S. Cha, J. M. Kim, ACS Energy Lett., 2018, 3, 1036 |
16. | P. Wang, Y. Zhao, T. Wang, Appl. Phys. Rev., 2020, 7, 031303 |
17. | N. Lal, Y. Dkhissi, W. Li, Q. Hou, Y. B. Cheng, U. Bach, Adv. Energy Mater., 2017, 7, 1602761 |
18. | G. S. Kinsey, K. M. Edmondson, Prog. J. Photovolt., 2010, 17, 279 |
19. | S. Xing, M. Yun, Z. Chen, A. Kaily, J. Rogers, Adv. Energy Mater., 2015, 5, 1 |
20. | M. Li, J. Fu, Q. Xu, T. Sum, Adv. Mater., 2019, 31, 1802486 |
21. | I. Konovalov, V. Emelianov, Energy Sci. Eng., 2017, 5, 113 |
22. | G. Tang, P. You, Q. Tai, R. Wu, F. Yan, Sol. RRL, 2018, 2, 1800066 |
23. | P. Liu, W. Wang, S. Liu, H. Yang, Z. Shao, Adv. Energy Mater., 2019, 9, 1803017 |
24. | Y. Yao, F. Lv, L. Luo, L. Liao, G. Wang, D. Liu, C. Xu, G. Zhou, X. Zhao, Q. Song, Sol. RRL, 2020, 4, 1900396 |
25. | P. Holzhey, P. Yadav, S. H. Turren-Cruz, A. Ummadisingu, M. Grätzel, A. Hagfeldt, M. Saliba, Mater. Today, 2019, 29, 10 |
26. | Y. C. Shih, L. Wang, H. C. Hsieh, K. J. Lin, ACS Appl. Mater. Interfaces, 2018, 10, 11722 |
27. | S. Rahmany, L. Etgar, ACS Energy Lett., 2020, 5, 1519 |
28. | Y. M. Xie, Q. Xue, Q. Yao, S. Xie, T. Niu, H. L. Yip, Nano Select, 2021, 1 |
29. | F. Dávid, G. E. Lidón, P. D. R., Daniel, C. Momblona, J. Werner, B. Niesen, C. Ballif, M. Sessolo, H J. Bolink, Adv. Energy Mater., 2017, 7, 1602121 |
30. | H. Fu, W. Gao, Y. Li, F. Lin, X. Wu, J. H. Son, J. Luo, H. Y. Woo, Z. Zhu and A. K. Y. Jen, Small Methods, 2020, 4, 2000687 |
31. | T. Todorov, O. Gunawan, S. Guha, Mol. Syst. Des. Eng., 2016, 1, 370 |
32. | J. Di, J. Chang, S. Liu, EcoMat, 2020, 2, e12036 |
33. | H. Shen, D. Walter, Y. Wu, K. C. Fong, D. A. Jacobs, T. Duong, J. Peng, K. Weber, T. P. White, K. R. Catchpole, Adv. Energy Mater., 2020, 10, 1902840 |
34. | Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin and J. You, Nat. Photonics, 2019, 13, 460 |
35. | W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, Y. Yan, J. Am. Chem. Soc., 2015, 137, 6730 |
36. | M. I. Saidaminov, J. Kim, A. Jain, R.Quintero-Bermudez, H. Tan, G. Long, F. Tan, A. Johnston, Y. Zhao, o. Voznyy, E. H. Sargent, Nature Energy, 2018, 3, 648 |
37. | X. Li, J. M. Hoffman, M. G. Kanatzidis, Chem. Rev., 2021, 121, 2230 |
38. | K. Xiao, R. Lin, Q. Han, Y. Hou, Z. Qin, H. T. Nguyen, J. Wen, M. Wei, V. Yeddu, M. I. Saidaminov, Y. Gao, X. Luo, Y. Wang, H. Gao, C. Zhang, J. Xu, J. Zhu, E. H. Sargent, H. Tan, Nat. Energy, 2020, 5, 870 |
39. | A. F. Palmstrom, G. E. Eperon, T. Leijtens, R. Prasanna, S. N. Habisreutinger, W. Nemeth, E. A. Gaulding, S. P. Duneld, M. Reese, S. Nanayakkara, Joule, 2019, 3, 2193 |
40. | C. H. Chiang, C. G. Wu, Nat. Photonics, 2016, 10, 196 |
41. | T. Todorov, T. Gershon, O. Gunawan, C. Sturdevant, L. Y. Chang, S. Guha, Adv. Energy Mater., 2015, 5, 1500799 |
42. | A. Rajagopal, Z. Yang, S. B. Jo, L. Braly, P. W. Liang, H. W. Hillhouse, A. K. Y. Jen, Adv. Mater., 2017, 29, 1702140 |
43. | M. Zhang, L. Zhu, T. Hao, G. Zhou, H. H. Huang, Adv. Mater., 2021, 33, 2007177 |
44. | J. Wu, S. C. Liu, Z. Li, S. Wang, D. J. Xue, Y. Lin, J. S. Hu, National Science Review, 2021, 8, nwab047 |
45. | S. Wang, W. H. Fang, R. Long, J. Phys. Chem. Lett., 2019, 10, 2445 |
46. | Y. M. Xie, Z. Zeng, X. Xu, C. Ma, Y. Ma, M. Li, C. S. Lee, S. W. Tsang, Small, 2020, 16, 1907226 |
47. | L. Dou, C.-C. Chen, K. Yoshimura, K. Ohya, W.-H. Chang, J. Gao, Y. Liu, E. Richard, Y. Yang, Macromolecules, 2013, 46, 4734 |
48. | Z. Wang, Z. Song, Y. Yan, S. Liu, D. Yang, Adv. Sci., 2019, 6, 1801704 |
49. | B. Chen, S. W. Baek, Y. Hou, E. Aydin, M. De Bastiani, B. Scheffffel, A. Proppe, Z. Huang, M. Wei, Y.-K. Wang, E. H. Jung, T. G. Allen, E. Van Kerschaver, F. P. Garcı´a De Arquer, M. I. Saidaminov, S. Hoogland, S. De Wolf and E. H. Sargent, Nat. Commun., 2020, 11, 1257 |
50. | Z. Wang, X. Zhu, S. Zuo, M. Chen, C. Zhang, C. Wang, X. Ren, Z. Yang, Z. Liu, X. Xu, Q. Chang, S. Yang, F. Meng, Z. Liu, N. Yuan, J. Ding, S. Liu, D. Yang, Adv. Funct. Mater., 2020, 30, 1908298 |
51. | A. Onno, N. Rodkey, A. Asgharzadeh, S. Manzoor, Z. S. J. Yu, F. Toor, Z. C. Holman, Joule, 2020, 4, 580 |
52. | M. T. Ho¨rantner, T. Leijtens, M. E. Ziffffer, G. E. Eperon, M. G. Christoforo, M. D. McGehee, H. J. Snaith, ACS Energy Lett., 2017, 2, 2506 |
53. | Y. Hu, L. Song, Y. Chen, W. Huang, Sol. RRL, 2019, 3, 1900080 |
54. | K. Jger, P. Tillmann, E. A. Katz, C. Becker, Sol. RRL, 2021, 5, 2000628 |
55. | R. Xue, M. Zhang, D. Luo, W. Chen, R. Zhu, Y. M. Yang, Y. Li, Y. Li, Sci. China Chem., 2020, 63, 987 |
56. | G. Kim, H. Min, K. S. Lee, D. Y. Lee, S. M. Yoon, S. I. Seok, Science, 2020, 370, 108 |
57. | J. Hu, Q. Cheng, R. Fan, H. Zhou, Sol. RRL, 2017, 1, 1700045 |
58. | X. Chen, Z. Jia, Z. Chen, T. Jiang, L. Bai, F. Tao, J. Chen, X. Chen, T. Liu, X. Xu, C. Yang, W. Shen, W. E. I. Sha, H. Zhu, Y. Yang, Joule, 2020, 4, 1594 |
59. | S. Sanchez, N. Christoph, B. Grobety, N. Phung, U. Steiner, M. Saliba, A. Abate, Adv. Energy Mater., 2018, 8, 1802060 |
60. | Y. Cui, H. Yao, B. Gao, Y. Qin, S. Zhang, B. Yang, C. He, B. Xu, J. Hou, J. Am. Chem. Soc., 2017, 139, 7302 |
61. | K. M. Yeom, S. U. Kim, M. Y. Woo, J. H. Noh, S. H. Im, Adv. Mater., 2020, 32, 2002228 |
62. | K. Wang, L. Zheng, T. Zhu, X. Yao, C. Yi, X. Zhang, Y. Cao, L. Liu, W. Hu, X. Gong, Nanomater. Energy, 2019, 61, 352 |
63. | K. Ghosh, C. Y. Yue, M. M. Sk, R. K. Jena, ACS Appl. Mater. Interfaces, 2017, 9, 15350 |
64. | T. Leijtens, K. A. Bush, R. Prasanna, M. D. McGehee, Nat. Energy, 2018, 3, 828 |
65. | W. Chen, H. Sun, Q. Hu, A. B. Djurišić, T. P. Russell, X. Guo, Z. He, ACS Energy Lett., 2019, 4, 2535 |
66. | Y. Shen, Y. Liu, H. Ye, Y. Zheng, Q. Wei, Y. Xia, Y. Chen, K. Zhao, W. Huang, S. Liu, Angew. Chem. Int. Ed., 2020, 59, 14896 |
67. | H. Wei, Y. Fang, P. Mulligan, W. Chuirazzi, H. H. Fang, C. Wang, B. R. Ecker, Y. Gao, M. A. Loi, L. Cao, J. Huang, Nat. Photonics, 2016, 10, 333 |
68. | Y. Gao, K. Huang, C. Long, Y. Ding, J. Chang, D. Zhang, E. Lioz, M. Liu, J. Yang, ACS Energy Lett., 2022, 7, 1412 |
69. | H. Li, C. Zuo, D. Angmo, H. Weerasinghe, M. Gao, J. Yang, Nano-Micro Lett., 2022, 14, 79 |
70. | Y. Ahmed, B. Khan, M. Bilal Faheem, K. Huang, Y. Gao, J. Yang, J. Energy Chem., 2022, 67, 361 |
71. | C. Long, M. He, K. Huang, Y. Peng, P. He, B. Liu, J. Zhang, J. Yang, Synthetic Met., 2020, 269, 116564 |
72. | H. Li, C. Zuo, A. Scully, D. Angmo, J. Yang, M. Gao, Flex. Print. Electron., 2020, 5, 014006 |
73. | K. Huang, Y. Peng, Y. Gao, J. Shi, H. Li, X. Mo, H. Huang, Y. Gao, L. Ding, J. Yang, Adv. Energy Mater., 2019, 9, 1901419 |
74. | Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, J. Hou, Adv. Mater., 2020, 32, 1908205 |
75. | D. H. Kim, J. H. Heo, S. H. Im, ACS Appl. Mater. Interfaces, 2019, 11, 19123 |
76. | G. E. Eperon, T. Leijtens, K. A. Bush, R. Prasanna, T. Green, J. T. W. Wang, M. B. Johnston, M. D. McGehee, H. J. Snaith, Science, 2016, 354, 861 |
77. | D. Zhao, C. Chen, C. Wang, M. M. Junda, Z. Song, C. R. Grice, Y. Yu, C. Li, B. Subedi, N. J. Podraza, X. Zhao, G. Fang, R. G. Xiong, K. Zhu, Y. Yan, Nat. Energy, 2018, 3, 1093 |
78. | B. A. Nejand, I. M. Hossain, M. Jakoby, S. Moghadamzadeh, T. Abzieher, S. Gharibzadeh, J. A. Schwenzer, P. Nazari, F. Schackmar, D. Hauschild, L. Weinhardt, U. Lemmer, B. S. Richards, I. A. Howard, U. W. Paetzold, Adv. Energy Mater., 2020, 10, 1902583 |
79. | Z. Yu, Z. Yang, Z. Ni, Y. Shao, B. Chen, Y. Lin, H. Wei, Z. J. Yu, Z. Holman, J. Huang, Nat. Energy, 2020, 5, 657 |
80. | R. Lin, J. Xu, M. Wei, Y. Wang, Z. Qin, Z. Liu, J. Wu, K. Xiao, B. Chen, S. Park, G. Chen, H. R. Atapattu, K. R. Graham, J. Xu, J. Zhu, L. Li, C. Zhang, E. H. Sargent, H. Tan, Nature, 2022, 603, 73 |
81. | C. M. Wolff, P. Caprioglio, M. Stolterfoht, D. Neher, Adv. Mater., 2019, 31, 1902762 |
82. | Z. Zheng, J. Wang, P. Bi, J. Ren, Y. Wang, Y. Yang, X. Liu, S. Zhang, J. Hou, Joule, 2021, 6, 171 |
83. | L. Arunagiri, Z. Peng, X. Zou, H. Yu, G. Zhang, Z. Wang, J. Y. Lin Lai, J. Zhang, Y. Zheng, C. Cui, F. Huang, Y. Zou, K. S. Wong, P. C. Y. Chow, H. Ade, H. Yan, Joule, 2020, 4, 1790 |
84. | K. Lang, Q. Guo, Z. He, Y. Bai, J. Yao, M. Wakeel, M. S. Alhodaly, Z. Tan, J. Phys. Chem. Lett., 2020, 11, 9596 |
85. | H. Aqoma, I. F. Imran, F. T. A. Wibowo, N. V. Krishna, Lee, W. A. K. Sarker, D. Y. Ryu, S. Y. Jang, Adv. Energy Mater., 2020, 10, 2001188 |
86. | X. Wu, Y. Liu, F. Qi, F. Lin, H. Fu, K. Jiang, S. Wu, L. Bi, D. Wang, F. Xu, Alex K. Y. Jen and Z. Zhu, J. Mater. Chem. A, 2021, 9, 19778 |
87. | Y. Ding, Q. Guo, Y. Geng, Z. Dai, Z. Wang, Z. Chen, Q. Guo, Z. Zheng, Y. Li, E. Zhou, Nano Today, 2022, 46, 101586 |
88. | J. Liu, S. Lu, L. Zhu, X. Li, W C. H. Choy, Nanoscale, 2016, 8, 3638 |
89. | L. Liu, H. Xiao, K. Jin, Z. Xiao, X. Du, K. Yan, F. Hao, Q. Bao, C. Yi, F. Liu, W. Wang, C. Zuo, L. Ding, Nano-Micro Lett., 2023, 15, 23 |
90. | Q. Sun, X. Xu, Q. Sun, Q. Yao, Y. Cai, Y. Li, L. Xu, W. He, M. Zhu, X. Lv, R. Lin, A. K. Y. Jen, T. Shi, H. Yip, M. Fung, Y. Xie, Adv. Energy Mater., 2023, 13, 2204347 |
91. | C. Chen, S. H. Bae, W. H. Chang, Z. Hong, G. Li, Q. Chen, H. Zhou and Y. Yang, Mater. Horiz., 2015, 2, 203 |
92. | Y. Liu, L. A. Renna, M. Bag, A. Page, Y. Kim, J. Choi, T. Emrick, D. Venkataraman, P. Russell, ACS Appl. Mater. Interfaces, 2016, 8, 7070 |
93. | W. Chen, J. Zhang, G. Xu, R. Xue, Y. Li, Y. Zhou, J. Hou, and Y. Li, Adv. Mater., 2018, 30, 1800855 |
94. | R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang, M. Wei, M. I. Saidaminov, Y. Gao, J. Xu, M. Xiao, A. Li, J. Zhu, E. H. Sargent, H. Tan, Nat. Energy, 2019, 4, 864 |
95. | X. Chen, Z. Jia, Z. Chen, Wei E. I. Sha, H. Zhu, Y. Yang, Joule, 2020, 4, 1 |
96. | L. Zuo, X. Shi, S. B. Jo, Y. Liu, F. Lin, A. K. Y. Jen, Adv. Mater., 2018, 30, 1706816 |
97. | Z. Zhang, C. Cueto, Y. Ding, L. Yu, T. P. Russell, T. Emrick, Y. Liu, ACS Appl. Mater. Interfaces, 2022, 14, 29896 |
98. | Y. M. Xie, Q. Yao, Z. Zeng, Q. Xue, T. Niu, R. Xia, Y. Cheng, F. Lin, S. W. Tsang, Alex K. Y. Jen, H. L. Yip, Y. Cao, Adv. Funct. Mater., 2022, 32, 2112126 |
99. | Y. M. Xie, T. Niu, Q. Yao, Q. Xue, Z. Zeng, Y. Cheng, H. L. Yip, Y. Cao, J. Energy Chem., 2022, 71, 12 |
100. | S. Qin, C. Lu, Z. Jia, Y. Wang, S. Li, W. Lai, P. Shi, R. Wang, C. Zhu, J. Du, J. Zhang, L. Meng, Y. Li, Adv. Mater., 2022, 34, 2108829 |
101. | W. Chen, Y. Zhu, J. Xiu, G. Chen, H. Liang, S. Liu, H. Xue, E. Birgersson, J. Ho, X. Qin, J. Lin, R. Ma, T. Liu, Y. He, A. M. C. Ng, X. Guo, Z. He, H. Yan, A. B. Djurišić, Y. Hou, Nat. Energy, 2022, 7, 229 |
102. | K. O. Brinkmann, T. Becker, F. Zimmermann, C. Kreusel, T. Gahlmann, M. Theisen, T. Haeger, S. Olthof, C. Tückmantel, M. Günster, T. Maschwitz, F. Göbelsmann, C. Koch, D. Hertel, P. Caprioglio, F. Peña-Camargo, L. Perdigón Toro, A. Al Ashouri, L. Merten, A. Hinderhofer, L. Gomell, S. Zhang, F. Schreiber, S. Albrecht, T. Riedl, Nature, 2022, 604, 280 |
103. | X. Luo, T. Wu, Y. Wang, X. Lin, H. Su, Q. Han, L. Han, Sci. China Chem., 2021, 2, 218 |
104. | C. Yan, J. Huang, D. Li, G. Li, Mater. Chem. Front., 2021, 5, 4538 |
105. | K. Jiang, Q. Wei, J. Y. L. Lai, H. Ade, Y. Zou, H. Yan, Joule, 2019, 3, 3020 |
106. | W. Chen, D. Li, X. Chen, H. Chen, S. Liu, H. Yang, X. Li, Y. Shen, X. Ou, Y. Yang, L. Jiang, Y. Li, Y. Li, Adv. Funct. Mater., 2022, 32, 2109321 |
107. | S. Xie, R. Xia, Z. Chen, J. Tian, L. Yan, M. Ren, Z. Li, G. Zhang, Q. Xue, H. L. Yip, Y. Cao, Nano Energy, 2020, 78, 105238 |
108. | S. Roland, S. Neubert, S. Albrecht, B. Stannowski, M. Seger, A. Facchetti, R. Schlatmann, B. Rech, D. Neher, Adv. Mater., 2015, 27, 1262 |
109. | S. Li, L. Ye, W. Zhao, S. Zhang, S. Mukherjee, H. Ade, J. Hou, Adv. Mater., 2016, 28, 9423 |
110. | W. Zhao, D. Qian, S. Zhang, S. Li, O. Inganäs, F. Gao, J. Hou, Adv. Mater., 2016, 28, 4734 |
111. | Y. Lin, F. Zhao, S. K. K. Prasad, J.-D. Chen, W. Cai, Q. Zhang, K. Chen, Y. Wu, W. Ma, F. Gao, Adv. Mater., 2018, 30, 1706363 |
112. | J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, Joule, 2019, 3, 1140 |
113. | Q. An, J. Wang, X. Ma, J. Gao, Z. Hu, B. Liu, H. Sun, X. Guo, X. Zhang, F. Zhang, Energy Environ. Sci., 2020, 13, 5039 |
114. | G. Chai, Y. Chang, J. Zhang, X. Xu, L. Yu, X. Zou, X. Li, Y. Chen, S. Luo, B. Liu, Energy Environ. Sci., 2021, 14, 3469 |
115. | W. Gao, F. Qi, Z. Peng, F. R. Lin, K. Jiang, C. Zhong, W. Kaminsky, Z. Guan, C.-S. Lee, T. J. Marks, H. Ade, A. K.-Y. Jen, Adv. Mater., 2022, 34, 2202089 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Schematic diagram of 2T a and 4T b tandem structure.
Theoretical PCEs for 2T and 4T TSCs[64]. Copyright 2023, Springer Nature.
The PCE evolution of single-junction OSCs, single-junction PSCs, PO-TSCs based all-inorganic perovskite, perovskite/organic tandem solar cells based organic-inorganic hybrid perovskite sub-cells and monolithic all-perovskite tandem devices.
a J-V and b EQE curves of TSCs with different thicknesses of the organic active layer; c J-V curves of the best-performance single-junction PSC, OSC, and TSC[84]. Copyright 2020, American Chemical Society. d J-V characteristic of the hybrid tandem device under AM 1.5G one-sun illumination[85]. Copyright 2020, John Wiley and Sons. e Semi-empirical calculation of the PCE of hybrid tandem devices with respect to Eloss, BC and Eg, BC. f Semi-empirical calculation of the PCE of hybrid tandem devices with respect to Eg, FC and Eg, BC when using the best-reported parameters of sub-cells[85]. Copyright 2020, John Wiley and Sons.
a Absorption spectra of the different materials used in the tandem cell. b J-V curves of tandems cells, measured under AM1.5G simulated illumination. c EQE spectra of the corresponding tandem cells[107]. Copyright 2020, Elsevier. d The J–V curves of the single junction wide-bandgap PVSC, single-junction narrow-bandgap OSC, and 2T tandem solar cell under AM 1.5G illumination. e PCE evolution of the single-junction CsPbI2.1Br0.9 PVSC, OSC and 2T tandem solar cells under 365 nm UV light. f Schematic illustration of the filtering of UV light by the perovskite top cell to protect the UV-unstable OSCs[86]. Copyright 2021, Royal Society of Chemistry.
a Device structure of 4T TSCs: semitransparent top cell with a structure of glass/ITO/ZnO/CsPbBr3/spiro-OMeTAD/transfer-laminated PH1000; bottom OSCs with a structure of glass/ITO/ZnO/organic photoactive layer/MoO3/Al, and molecular structures of donor and acceptor materials used in the corresponding organic photoactive layer. b J-V curves of the top semitransparent CsPbBr3-based solar cell illuminated from the glass/ITO side, and the small-bandgap PBDB-T-SF:IT-4F-based bottom OSC with and without the CsPbBr3-based semitransparent device functioning as a filter. c EQE spectra of a CsPbBr3-based top semitransparent solar cell and a filtered PBDB-T-SF:IT-4F-based bottom OSC[93]. Copyright 2018, John Wiley and Sons. d J-V curves for the semi-transparent CsPbI2Br solar cells and organic solar cells. e EQE spectra for the semi-transparent CsPbI2Br solar cells and organic solar cells. f Structure for the 4-terminal perovskite/organic tandem solar cells. g J-V curves for the best semi-transparent PSC (top cell), stand-alone OSC, and filtered OSC (bottom cell)[89]. Copyright 2022, Springer Nature.
a Device architecture with corresponding energy levels for the hybrid TSC. b J-V characteristics of single-junction PVSK and PBDTT-DPP:PC70BM reference solar cells and hybrid tandem solar cell[88]. Copyright 2016, Royal Society of Chemistry. c Device structure and cross-sectional SEM image of a tandem device with a perovskite layer thickness of ~90 nm. d J-V curves and device metrics of the optimal polymer/perovskite hybrid TSC[92]. Copyright 2016, American Chemical Society. e Cross-section SEM of PO-TSC. f Stimulated current density as a function of the variable thicknesses of the front and rear sub-cells[95]. Copyright 2020, Elsevier.
a J-V curves of representative PSCs. b Transmittance measurement of the perovskite films with different thicknesses and tandem devices. c Photovoltaic performance of tandem devices with different thicknesses of C60-ionene films in interconnecting layers (average values with standard deviation were obtained from 15 individual devices; the thicknesses of C60-ionene films were determined by optical profilometry)[97]. Copyright 2022, American Chemical Society.
SEM images of MA1.06PbI2Br(SCN)0.12 films taken with annealing time of a 0 s, b 10 s, c 20 s, d 30 s, and e 1 min, respectively, and the SEM images of MA0.96FA0.1PbI2Br(SCN)0.12 films taken with annealing time of f 0 s, g 10 s, h 20 s, i 30 s, and j 1 min, respectively. Schematic illustration of the film formation processes for the k MA1.06PbI2Br(SCN)0.12 film and l the MA0.96FA0.1PbI2Br(SCN)0.12 film[98]. Copyright 2022, John Wiley and Sons.
Optimal performance of the perovskite/organic TSCs. a J-V curves (reverse and forward scans) of the champion small-area (0.08 cm2) PO-TSC with IZO-based ICLs. b EQE and reflection (denoted as 1-R) spectra for the champion device. c J-V curves (reverse and forward scans) of the champion large-area perovskite/organic TSC with IZO-based ICLs. d Operational stability evaluation of the encapsulated small-area perovskite/organic TSC with IZO-based ICL using the maximum power point tracking method in a N2 environment and without temperature control[101]. Copyright 2022, Springer Nature.
Calculated energy loss for a single-junction PSC, b single-junction OSC, and c 2T TSC. d Converted energy as a function of wavelength for single-junction devices and tandem[86]. Copyright 2021, Royal Society of Chemistry.