Citation: | Yurou Song, Yuye Jiao, Licheng Sun, Jungang Hou. Effective charge transfer regulation for robust photoelectrochemical water splitting[J]. Energy Lab, 2024, 2(1): 220017. doi: 10.54227/elab.20220017 |
The direct conversion of solar energy to chemical fuels is an important approach to address the world's challenges of sustainable energy, environmental and climate issues owing to the abundant solar energy. Photoectrochemical (PEC) cells as a promising technology by the utilization of solar energy have received much attention for the generation of renewable hydrogen from water splitting on a large scale. However, the efficiency of solar energy conversion into hydrogen is still limited by narrow light absorption, slow charge transfer and sluggish surface reaction kinetics. Great efforts in the regulation of charge transfer have been summarized toward efficient solar-to-chemical energy conversion in this review. Firstly, various photoanodes and photocathodes are been discussed. Then, different strategies such as morphological regulation, heteroatom and defect introduction, heterostructure engineering and cocatalyst incorporation are elaborated to accelerate the charge transfer process and optimize the PEC performance. Finally, the perspectives and comprehensive outlooks on the future regulation of charge transfer are also proposed. This review offers an overview for the rational design and development of the promising photoelectrodes and the delicate manipulation of photogenerated charge transfer in PEC systems for effective solar-to-chemical energy conversion.
1. | M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev., 2010, 110, 6446 |
2. | A. Kudo, Y. Miseki, Chem. Soc. Rev., 2009, 38, 253 |
3. | P. Zhang, T. Wang, X. Chang, J. Gong, Acc. Chem. Res., 2016, 49, 911 |
4. | T. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev., 2014, 43, 7520 |
5. | P. Zhang, J. Zhang, J. Gong, Chem. Soc. Rev., 2014, 43, 4395 |
6. | D. Zhang, Y. Li, Yi Li, S. Zhan, SmartMat, 2022, 3, 417 |
7. | Y. Zhang, L. Ran, Z. Li, P. Zhai, B. Zhang, Z. Fan, C. Wang, X. Zhang, J. Hou, L. Sun, Trans. Tianjin Univ., 2021, 27, 348 |
8. | J. Hou, Y. Wu, B. Zhang, S. Cao, Z. Li, L. Sun, Adv. Funct. Mater., 2019, 29, 1808367 |
9. | P. Zhai, Y. Zhang, Y. Wu, J. Gao, B. Zhang, S. Cao, Y. Zhang, Z. Li, L. Sun, J. Hou, Nat. Commun., 2020, 11, 5462 |
10. | T. Lu, T. Li, D. Shi, J. Sun, H. Pang, L. Xu, J. Yang, Y. Tang, SmartMat, 2021, 2, 591 |
11. | J. Hou, B. Zhang, Z. Li, S. Cao, Y. Sun, Y. Wu, Z. Gao, L. Sun, ACS Catal., 2018, 8, 4612 |
12. | C. Wang, P. Zhai, M. Xia, W. Liu, J. Gao, L. Sun, J. Hou, Adv. Mater., 2023, 35, 2209307 |
13. | Y. Wu, Y. Zhao, P. Zhai, C. Wang, J. Gao, L. Sun, J. Hou, Adv. Mater., 2022, 34, 2202523 |
14. | J. Hou, Y. Sun, Y. Wu, S. Cao, L. Sun, Adv. Funct. Mater., 2018, 28, 1704447 |
15. | P. Zhai, M. Xia, Y. Wu, G. Zhang, J. Gao, B. Zhang, S. Cao, Y. Zhang, Z. Li, Z. Fan, C. Wang, X. Zhang, J. T. Miller, L. Sun, J. Hou, Nat. Commun., 2021, 12, 4587 |
16. | C. Wang, P. Zhai, M. Xia, Y. Wu, B. Zhang, Z. Li, L. Ran, J. Gao, X. Zhang, Z. Fan, L. Sun, J. Hou, Angew. Chem. Int. Ed., 2021, 60, 27126 |
17. | Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Chem. Rev., 2014, 114, 9987 |
18. | M. Abouelela, G. Kawamura, A. Matsuda, J. Energy Chem., 2022, 73, 189 |
19. | I. Bagal, M. Arunachalam, A. Abdullah, A. Waseem, M. Kulkarni, S. Kang, S. Ryu, J. Energy Chem., 2022, 71, 45 |
20. | S. Monny, Z. Wang, M. Konarova, L. Wang, J. Energy Chem., 2021, 61, 517 |
21. | K. Song, F. He, E. Zhou, L. Wang, H. Hou, W. Yang, J. Energy Chem., 2022, 68, 49 |
22. | A. Fujishima, K. Honda, Nature, 1972, 238, 37 |
23. | Y. Park, K. J. McDonald, K. Choi, Chem. Soc. Rev., 2013, 42, 2321 |
24. | X. Chen, L. Liu, F. Huang, Chem. Soc. Rev., 2015, 44, 1861 |
25. | S. Kment, F. Riboni, S. Pausova, L. Wang, L. Wang, H. Han, Z. Hubicka, J. Krysa, P. Schmuki, R. Zboril, Chem. Soc. Rev., 2017, 46, 3716 |
26. | C. Bignozzi, S. Caramori, V. Cristino, R. Argazzi, L. Meda, A. Tacca, Chem. Soc. Rev., 2013, 42, 2228 |
27. | H. Chen, C. Chen, Y. Chang, C. Tsai, R. Liu, S. Hu, W. Chang, K. Chen, Angew. Chem. Int. Ed., 2010, 49, 5966 |
28. | G. Zhang, G. Liu, L. Wang, J. Irvine, Chem. Soc. Rev., 2016, 45, 5951 |
29. | J. Hou, H. Cheng, O. Takeda, H. Zhu, Energy Environ. Sci., 2015, 8, 1348 |
30. | J. Hou, C. Yang, H. Cheng, S. Jiao, O. Takeda, H. Zhu, Energy Environ. Sci., 2014, 7, 3758 |
31. | J. Hou, Z. Wang, C. Yang, H. Cheng, S. Jiao, H. Zhu, Energy Environ. Sci., 2013, 6, 3322 |
32. | L. Ran, S. Qiu, P. Zhai, Z. Li, J. Gao, X. Zhang, B. Zhang, C. Wang, L. Sun, J. Hou, J. Am. Chem. Soc., 2021, 143, 7402 |
33. | J. Feng, W. Luo, T. Fang, H. Lv, Z. Wang, J. Gao, W. Liu, T. Yu, Z. Li, Z. Zou, Adv. Funct. Mater., 2014, 24, 3535 |
34. | K. Ueda, T. Minegishi, J. Clune, M. Nakabayashi, T. Hisatomi, H. Nishiyama, M. Katayama, N. Shibata, J. Kubota, T. Yamada, K. Domen, J. Am. Chem. Soc., 2015, 137, 2227 |
35. | S. Cao, Y. Wu, J. Hou, B. Zhang, Z. Li, X. Nie, L. Sun, Adv. Energy Mater., 2020, 10, 1902935 |
36. | J. Hou, S. Cao, Y. Wu, F. Liang, Y. Sun, Z. Lin, L. Sun, Adv. Energy Mater., 2018, 8, 1701114 |
37. | T. Higashi, Y. Shinohara, A. Ohnishi, J. Liu, K. Ueda, S. Okamura, T. Hisatomi, M. Katayama, H. Nishiyama, T. Yamada, T. Minegishi, K. Domen, ChemPhotoChem, 2017, 1, 167 |
38. | Y. Cao, M. Denny, J. Caspar, W. Farneth, Q. Guo, A. Ionkin, L. Johnson, M. Lu, I. Malajovich, D. Radu, H. Rosenfeld, K. Choudhury, W. Wu, J. Am. Chem. Soc., 2012, 134, 15644 |
39. | H. Kumagai, T. Minegishi, N. Sato, T. Yamada, J. Kubota, K. Domen, J. Mater. Chem. A, 2015, 3, 8300 |
40. | S. Alam, M. Qureshi, J. Phys. Chem. Lett., 2021, 12, 8947 |
41. | X. Wang, Z. Li, J. Shi, Y. Yu, Chem. Rev., 2014, 114, 9346 |
42. | B. O. Dabbousi, J. RodriguezViejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi, J. Phys. Chem. B, 1997, 101, 9463 |
43. | C. Li, Y. F. Yu, M. F. Chi, L. Y. Cao, Nano Lett., 2013, 13, 948 |
44. | J. Shi, Y. Hara, C. L. Sun, M. A. Anderson, X. D. Wang, Nano Lett., 2011, 11, 3413 |
45. | J. Ran, J. Zhang, J. Yu, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev., 2014, 43, 7787 |
46. | Y. He, T. Hamann, D. Wang, Chem. Soc. Rev., 2019, 48, 2182 |
47. | Z. Jin, Y. Li, Q. Ma, Trans. Tianjin Univ., 2021, 27, 127 |
48. | T. Wang, Z. Luo, C. Li, J. Gong, Chem. Soc. Rev., 2014, 43, 7469. |
49. | X. Chen, S. Shen, L. Guo, S. S. Mao, Chem. Rev., 2010, 110, 6503 |
50. | Z. Li, W. Luo, M. Zhang, J. Feng, Z. Zou, Energy Environ. Sci., 2013, 6, 347 |
51. | Z. Chen, T. Jaramillo, T. Deutsch, A. Kleiman-Shwarsctein, A. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. McFarland, K. Domen, E. Miller, J. Turner, H. Dinh, J. Mater. Res., 2010, 25, 3 |
52. | Z. Luo, T. Wang, J. Zhang, C. Li, H. Li, J. Gong, Angew. Chem. Int. Ed., 2017, 56, 12878 |
53. | B. Liu, X. Wang, Y. Zhang, L. Xu, T. Wang, X. Xiao, S. Wang, L. Wang, W. Huang, Angew. Chem. Int. Ed., 2023, 62, e202217346 |
54. | Y. Song, X. Zhang, Y. Zhang, P. Zhai, Z. Li, D. Jin, J. Cao, C. Wang, B. Zhang, J. Gao, L. Sun, J. Hou, Angew. Chem. Int. Ed., 2022, 61, e202200946 |
55. | G. Liu, J. Shi, F. Zhang, Z. Chen, J. Han, C. Ding, S. Chen, Z. Wang, H. Han, C. Li, Angew. Chem. Int. Ed., 2014, 53, 7295 |
56. | Y. Fang, Y. Hou, X. Fu and X. Wang, Chem. Rev., 2022, 122, 4204 |
57. | X. Zhang, P. Zhai, Y. Zhang, Y. Wu, C. Wang, L. Ran, J. Gao, Z. Li, B. Zhang, Z. Fan, L. Sun, J. Hou, J. Am. Chem. Soc., 2021, 143, 20657 |
58. | Q. Zhao, Y. Wang, M. Li, S. Zhu, T. Li, J. Yang, T. Lin, E. P. Delmo, Y. Wang, J. Jang, M. Gu, M. Shao, SmartMat, 2022, 3, 183 |
59. | Y. Xiao, C. Feng, J. Fu, F. Wang, C. Li, V. Kunzelmann, C. Jiang, M. Nakabayashi, N. Shibata, I. Sharp, K. Domen, Y. Li, Nat. Catal., 2020, 3, 932 |
60. | H. Dotan, K. Sivula, M. Grätzel, A. Rothschild, S. Warren, Energy Environ. Sci., 2011, 4, 958 |
61. | A. Kay, I. Cesar, M. Grätzel, J. Am. Chem. Soc., 2006, 128, 15714 |
62. | M. Mayer, Y. Lin, G. Yuan, D. Wang, Acc. Chem. Res., 2013, 46, 1558 |
63. | D. Kang, T. Kim, S. Kubota, A. Cardiel, H. Cha, K. Choi, Chem. Rev., 2015, 115, 12839 |
64. | M. Grätzel, Nature, 2001, 414, 338 |
65. | C. Li, Z. Luo, T. Wang, J. Gong, Adv. Mater., 2018, 30, 1707502 |
66. | S. D. Tilley, M. Cornuz, K. Sivula, M. Gräzel, Angew. Chem. Int. Ed., 2010, 122, 6549 |
67. | P. Peerakiatkhajohn, J. Yun, H. Chen, M. Lyu, T. Butburee, L. Wang, Adv. Mater., 2016, 28, 6405 |
68. | C. Li, A. Li, Z. Luo, J. Zhang, X. Chang, Z. Huang, T. Wang, J. Gong, Angew. Chem. Int. Ed., 2017, 129, 4214 |
69. | C. Li, T. Wang, Z. Luo, S. Liu, J. Gong, Small, 2016, 12, 3415 |
70. | Q. Yu, X. Meng, T. Wang, P. Li, J. Ye, Adv. Funct. Mater., 2015, 25, 2686 |
71. | M. Ai, X. Li, L. Pan, X. Xu, J. Yang, J. Zou, X. Zhang, Chem. Eng. Sci., 2022, 250, 117397 |
72. | H. Zhang, D. Li, W. Byun, X. Wang, T. Shin, H. Jeong, H. Han, C. Li, J. Lee, Nat. Commun., 2020, 11, 4622 |
73. | K. Yoon, J. Park, M. Jung, S. Ji, H. Lee, J. Seo, M. Kwak, S. Seok, J. Lee, J. Jang, Nat. Commun., 2021, 12, 4309 |
74. | M. Walter, E. Warren, J. McKone, S. Boettcher, Q. Mi, E. Santori, N. Lewis, Chem. Rev., 2011, 1110, 5815 |
75. | M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu, A. Iwase, Q. Jia, H. Nishiyama, T. Minegishi, M. Nakabayashi, N. Shibata, R. Niishiro, C. Katayama, H. Shibano, M. Katayama, A. Kudo, T. Yamada, K. Domen, J. Am. Chem. Soc., 2015, 137, 5053 |
76. | F. Abdi, L. Han, A. Smets, M. Zeman, B. Dam, R. van de Krol, Nat. Commun., 2013, 4, 2195 |
77. | Y. Chen, J. Manser, P. Kamat, J. Am. Chem. Soc., 2015, 137, 974 |
78. | X. Chang, T. Wang, P. Zhang, J. Zhang, A. Li, J. Gong, J. Am. Chem. Soc., 2015, 137, 8356 |
79. | B. Zhang, L. Wang, Y. Zhang, Y. Ding, Y. Bi, Angew. Chem. Int. Ed., 2018, 57, 2248 |
80. | B. Zhang, X. Huang, Y. Zhang, G. Lu, L. Chou, Y. Bi, Angew. Chem. Int. Ed., 2020, 59, 18990 |
81. | B. Zhang, S. Yu, Y. Dai, X. Huang, L. Chou, G. Lu, G. Dong, Y. Bi, Nat. Commun., 2021, 12, 6969 |
82. | T. W. Kim, K. S. Choi, Science, 2014, 343, 990 |
83. | B. Jin, Y. Cho, C. Park, J. Jeong, S. Kim, J. Jin, W. Kim, L. Wang, S. Lu, S. Zhang, S. Oh, K. Zhang, J. Park, Energy Environ. Sci., 2022, 15, 672 |
84. | X. Ning, B. Lu, Z. Zhang, P. Du, H. Ren, D. Shan, J. Chen, Y. Gao, X. Lu, Angew. Chem. Int. Ed., 2019, 58, 16800 |
85. | D. K. Lee, K.-S. Choi, Nat. Energy, 2018, 3, 53 |
86. | S. Feng, T. Wang, B. Liu, C. Hu, L. Li, Z. Zhao, J. Gong, Angew. Chem. Int. Ed., 2020, 59, 2044 |
87. | S. Wang, P. Chen, J. Yun, Y. Hu, L. Wang, Angew. Chem. Int. Ed., 2017, 56, 8500 |
88. | Y. Kuang, Q. Jia, G. Ma, T. Hisatomi, T. Minegishi, H. Nishiyama, M. Nakabayashi, N. Shibata, T. Yamada, A. Kudo, K. Domen, Nat. Energy, 2016, 2, 16191 |
89. | J. Tian, Z. Zhao, A. Kumar, R. Boughton, H. Liu, Chem. Soc. Rev., 2014, 43, 6920 |
90. | X. Chen, S. S. Mao, Chem. Rev., 2007, 107, 2891 |
91. | I. Cho, M. Logar, C. Lee, L. Cai, F. Prinz, X. Zheng, Nano Lett., 2014, 14, 24 |
92. | I. Cho, C. Lee, Y. Feng, M. Logar, P. Rao, L. Cai, D. Kim, R. Sinclair, X. Zheng, Nat. Commun., 2013, 4, 1723 |
93. | F. Wu, Y. Yu, H. Yang, L. German, Z. Li, J. Chen, W. Yang, L. Huang, W. Shi, L. Wang, X. Wang, Adv. Mater., 2017, 29, 1701432 |
94. | M. Ye, J. Gong, Y. Lai, C. Lin, Z. Lin, J. Am. Chem. Soc., 2012, 134, 15720 |
95. | M. Xu, P. Da, H. Wu, D. Zhao, G. Zheng, Nano Lett., 2012, 12, 1503 |
96. | X. Liu, F. Wang, Q. Wang, Phys. Chem. Chem. Phys., 2012, 14, 7894 |
97. | S. Wang, H. Chen, G. Gao, T. Butburee, M. Lyu, S. Thaweesak, J. Yun, A. Du, G. Liu, L. Wang, Nano Energy, 2016, 24, 94 |
98. | Q. Mi, A. Zhanaidarova, B. Brunschwig, H. Gray, N. S. Lewis, Energy Environ. Sci., 2012, 5, 5694 |
99. | W. Li, P. Da, Y. Zhang, Y. Wang, X. Lin, X. Gong, G. Zheng, ACS Nano, 2014, 8, 11770 |
100. | J. Zhang, P. Zhang, T. Wang, J. Gong, Nano Energy, 2015, 11, 189 |
101. | H. Song, Y. Li, Z. Lou, M. Xiao, L. Hu, Z. Ye, L. Zhu, Appl. Catal. B, 2015, 166-167, 112 |
102. | Y. Hou, F. Zuo, A. Dagg, J. Liu, P. Feng, Adv. Mater., 2014, 26, 5043 |
103. | H. Zhang, W. Zhou, Y. Yang, C. Cheng, Small, 2017, 13, 1603840 |
104. | M. Cai, P. Fan, J. Long, J. Han, Y. Lin, H. Zhang, M. Zhong, ACS Appl. Mater. Interfaces, 2017, 9, 17856 |
105. | D. Yamasita, T. Takata, M. Hara, J. N. Kondo, K. Domen, Solid State Ionics, 2004, 172, 591 |
106. | Y. Zhong, Z. Li, X. Zhao, T. Fang, H. Huang, Q. Qian, X. Chang, P. Wang, S. Yan, Z. Yu, Z. Zou, Adv. Funct. Mater., 2016, 26, 7156 |
107. | X. Wang, H. Huang, M. Zhao, W. Hao, Z. Li, Z. Zou, J. Phys. Chem. C, 2017, 121, 6864 |
108. | X. Luo, Y. Xiao, B. Zhang, C. Feng, Z. Fan, Y. Li, J. Catal., 2022, 411, 109 |
109. | X. Xu, W. Wang, Y. Zhang, Y. Chen, H. Huang, T. Fang, Y. Li, Z. Li, Z. Zou, Sci. Bull., 2022, 67, 1458 |
110. | Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, S. Jin, J. Am. Chem. Soc., 2014, 136, 8504 |
111. | D. H. van Dorp, N. Hijnen, M. Di Vece, J. J. Kelly, Angew. Chem. Int. Ed., 2009, 48, 6085 |
112. | X. Deng, R. Li, S. Wu, L. Wang, J. Hu, J. Ma, W. Jiang, N. Zhang, X. Zheng, C. Gao, L. Wang, Q. Zhang, J. Zhu, Y. Xiong, J. Am. Chem. Soc., 2019, 141, 10924 |
113. | D. Huang, L. Li, K. Wang, Y. Li, K. Feng, F. Jiang, Nat. Commun., 2021, 12, 3795 |
114. | S. Fan, B. AlOtaibi, S. Y. Woo, Y. Wang, G. A. Botton, Z. Mi, Nano Lett., 2015, 15, 2721 |
115. | H. Kobayashi, N. Sato, M. Orita, Y. Kuang, H. Kaneko, T. Minegishi, T. Yamada, K. Domen, Energy Environ. Sci., 2018, 11, 3003 |
116. | S. Ahmed, K. Reuter, O. Gunawan, L. Guo, L. Romankiw, H. Deligianni, Adv. Energy Mater., 2012, 2, 253 |
117. | R.-T. Gao, J. Zhang, T. Nakajima, J. He, X. Liu, X. Zhang, L. Wang, L. Wu, Nat. Commun., 2023, 14, 2640 |
118. | D. Bookbinder, N. Lewis, M. Bradley, A. Bocarsly, M. Wrighton, J. Am. Chem. Soc., 1979, 101, 7721 |
119. | A. Bocarsly, D. Bookbinder, R. Dominey, N. Lewis, M. Wrighton, J. Am. Chem. Soc., 1980, 102, 3683 |
120. | S. Boettcher, J. Spurgeon, M. Putnam, E. Warren, D. Turner-Evans, M. Kelzenberg, J. Maiolo, H. Atwater, N. Lewis, Science, 2010, 327, 185 |
121. | I. Oh, J. Kye, S. Hwang, Nano Lett., 2012, 12, 298 |
122. | C. Battaglia, C. Hsu, K. Söderström, J. Escarré, F. Haug, M. Charrière, M. Boccard, M. Despeisse, D. Alexander, M. Cantoni, Y. Cui, C. Ballif, ACS Nano, 2012, 6, 2790 |
123. | Y. Lin, C. Battaglia, M. Boccard, M. Hettick, Z. Yu, C. Ballif, J. Ager, A. Javey, Nano Lett., 2013, 13, 5615 |
124. | L. Ji, M. McDaniel, S. Wang, A. Posadas, X. Li, H. Huang, J. Lee, A. Demkov, A. Bard, J. Ekerdt, E. Yu, Nat. Nanotech., 2015, 10, 84 |
125. | Y. Wang, Y. Wu, J. Schwartz, S. Sung, R. Hovden, Z. Mi, Joule, 2019, 3, 2444 |
126. | S. Vanka, B. Zhou, R. Awni, Z. Song, F. Chowdhury, X. Liu, H. Hajibabaei, W. Shi, Y. Xiao, I. Navid, A. Pandey, R. Chen, G. Botton, T. Hamann, D. Wang, Y. Yan, Z. Mi, ACS Energy Lett., 2020, 5, 3741 |
127. | S. D. Tilley, Adv. Energy Mater., 2019, 9, 1802877 |
128. | J. Kosco, M. Bidwell, H. Cha, T. Martin, C. Howells, M. Sachs, D. Anjum, S. Lopez, L. Zou, A. Wadsworth, W. Zhang, L. Zhang, J. Tellam, R. Sougrat, F. Laquai, D. DeLongchamp, R. Durrant, I. McCulloch, Nat. Mater., 2020, 19, 559 |
129. | S. Ye, W. Shi, Y. Liu, D. Li, H. Yin, H. Chi, Y. Luo, N. Ta, F. Fan, X. Wang, C. Li, J. Am. Chem. Soc., 2021, 143, 12499 |
130. | Y. Zhang, H. Lv, Z. Zhang, L. Wang, X. Wu, H. Xu, Adv. Mater., 2021, 33, 2008264 |
131. | L. Pan, Y. Liu, L. Yao, D. Ren, K. Sivula, M. Grätzel, A. Hagfeldt, Nat. Commun., 2020, 11, 318 |
132. | Y. Song, Y. Wu, S. Cao, Y. Zhang, D. Luo, J. Gao, Z. Li, L. Sun, J. Hou, Adv. Energy Mater., 2022, 12, 2201782 |
133. | J. Su, T. Minegishi, K. Domen, J. Mater. Chem. A, 2017, 5, 13154 |
134. | W. Yang, J. Kim, O. Hutter, L. Phillips, J. Tan, J. Park, H. Lee, J. Major, J. Lee, J. Moon, Nat. Commun., 2020, 11, 861 |
135. | J. Zhao, T. Minegishi, L. Zhang, M. Zhong, Gunawan, M. Nakabayashi, G. Ma, T. Hisatomi, M. Katayama, S. Ikeda, N. Shibata, T. Yamada, K. Domen, Angew. Chem. Int. Ed., 2014, 53, 11808 |
136. | L. Zhang, Y. Li, X. Li, C. Li, R. Zhang, J. Delaunay, H. Zhu, Nano Energy, 2016, 28, 135 |
137. | M. Chen, Y. Liu, C. Li, A. Li, X. Chang, W. Liu, Y. Sun, T. Wang, J. Gong, Energy Environ. Sci., 2018, 11, 2025 |
138. | F. Jiang, Gunawan, T. Harada, Y. Kuang, T. Minegishi, K. Domen, S. Ikeda, J. Am. Chem. Soc., 2015, 137, 13691 |
139. | L. Wang, D. Li, K. Li, C. Chen, H. Deng, L. Gao, Y. Zhao, F. Jiang, L. Li, F. Huang, Y. He, H. Song, G. Niu, J. Tang, Nat. Energy, 2017, 2, 17046 |
140. | H. Lee, W. Yang, J. Tan, Y. Oh, J. Park, J. Moon, ACS Energy Lett., 2019, 4, 995 |
141. | Y. Cheng, C. Xin, J. Zhao, J. Wang, M. Gong, H. Miao, X. Hu, Electrochimica Acta, 2022, 403, 139610 |
142. | S. Siebentritt, S. Schorr, Prog. Photovoltaics, 2012, 20, 512 |
143. | J. Burschka, N. Pellet, S. Moon, R. Humphry-Baker, P. Gao, M. Nazeeruddin, M. Grätzel, Nature, 2013, 499, 316 |
144. | Y. Li, L. Zhang, A. Torres-Pardo, J. M. Gonzάlez-Calbet, Y. Ma, P. Oleynikov, O. Terasaki, S. Asahina, M. Shima, D. Cha, L. Zhao, K. Takanabe, J. Kubota, K. Domen, Nat. Commun., 2013, 4, 2566 |
145. | C. Chen, Y. Lu, R. Fan, M. Shen, ChemSusChem, 2020, 13, 3893 |
146. | C. Santato, M. Ulmann, J. Augustynski, Adv. Mater., 2001, 13, 511 |
147. | S. Baeck, K. Choi, T. Jaramillo, G. Stucky, E. McFaland, Adv. Mater., 2003, 15, 1269 |
148. | D. Chen, J. H. Ye, Adv. Funct. Mater., 2008, 18, 1922 |
149. | J. Yan, T. Wang, G. Wu, W. Dai, N. Guan, L. Li, J. Gong, Adv. Mater., 2015, 27, 1580 |
150. | J. Park, W. Yang, Y. Oh, J. Tan, H. Lee, R. Boppella, J. Moon, ACS Energy Lett., 2019, 4, 517 |
151. | M. Zhou, H. Wu, J. Bao, L. Liang, X. Lou, Y. Xie, Angew. Chem. Int. Ed., 2013, 52, 8579 |
152. | J. Shi, C. Sun, M. Starr, X. Wang, Nano Lett., 2011, 11, 624 |
153. | S. Qarechalloo, N. Naseri, F. Salehi, A. Z. Moshfegh, Appl. Surf. Sci., 2019, 464, 68 |
154. | N. Saveh-Shemshaki, M. Latifi, R. Bagherzadeh, M. M. Byranvand, N. Naseri, A. Dabirian, Polym. Adv. Technol., 2016, 27, 358 |
155. | B. Bazria, E. Kowsaria, N. Seifvanda, N. Naseri, J. Electroanal. Chem., 2019, 843, 1 |
156. | M. Fathabadi, M. Qorbani, A. Sabbah, S. Quadir, C.-Y. Huang, K.-H. Chen, L.-C. Chen, N. Naseri, J. Mater. Chem. A, 2022, 10, 16655 |
157. | M. Rahman, J. Thomas, K. Leung, Adv. Energy Mater., 2018, 8, 1701234 |
158. | Y. Mi, L. Wen, R. Xu, Z. Wang, D. Cao, Y. Fang, Y. Lei, Adv. Energy Mater., 2016, 6, 1501496 |
159. | A. Kay, D. Grave, D. Eills, H. Dotan, A. Rothschild, ACS Energy Lett., 2016, 1, 827 |
160. | R. Asahi, T. Morikawa, H. Irie, T. Ohwaki, Chem. Rev., 2014, 114, 9824 |
161. | K. Ye, H. Li, D. Huang, S. Xiao, W. Qiu, M. Li, Y. Hu, W. Mai, H. Ji, S. Yang, Nat. Commun., 2019, 10, 3687 |
162. | F. Abdi, T. Savenije, M. May, B. Dam, R. van de Krol, J. Phys. Chem. Lett., 2013, 4, 2752 |
163. | D. Zhong, S. Choi, D. Gamelin, J. Am. Chem. Soc., 2011, 133, 18370 |
164. | Y. Xi, H. Jiang, B. Jin, J. Shi, T. Lei, Z. Zhang, Adv. Mater. Res., 2013, 873, 845 |
165. | D. Chen, Z. Liu, ChemSusChem, 2018, 11, 3438 |
166. | H. Ma, M. Mahadik, J. Park, M. Kumar, H. Chung, W. Chae, G. Kong, H. Lee, S. Choi, J. Jang, Nanoscale, 2018, 10, 22560 |
167. | Z. Zhang, T. Tsuchimochi, T. Ina, Y. Kumabe, S. Muto, K. Ohara, H. Yamada, S. Ten-no, T. Tachikawa, Nat. Commun., 2022, 13, 1499 |
168. | S. Farhoosh, B. Eftekharinia, M. Tayebi, B.-K. Lee, N. Naseri, Appl. Surf. Sci., 2021, 550, 149374 |
169. | H. Wang, Y. Hu, G. Song, D. Zheng, Chem. Eng. J., 2022, 435, 135016 |
170. | C. Xiao, Z. Zhou, L. Li, S. Wu, X. Li, Nanoscale Res. Lett., 2020, 15, 54 |
171. | M. Ma, K. Zhang, P. Li, M. Jung, M. Jeong, J. Park, Angew. Chem. Int. Ed., 2016, 55, 11819 |
172. | F. Lei, Y. Sun, K. Liu, S. Gao, L. Liang, B. Pan, Y. Xie, J. Am. Chem. Soc., 2014, 136, 6826 |
173. | S. Jin, X. Ma, J. Pan, C. Zhu, S. Saji, J. Hu, X. Xu, L. Sun, Z. Yin, Appl. Catal. B, 2021, 281, 119477 |
174. | P. Rao, L. Cai, C. Liu, I. Cho, C. Lee, J. Weisse, P. Yang, X. Zheng, Nano Lett., 2014, 14, 1099 |
175. | D. Bae, B. Seger, P. C. K. Vesborg, O. Hansen, I. Chorkendorff, Chem. Soc. Rev., 2017, 46, 1933 |
176. | Q. Liu, J. He, T. Yao, Z. Sun, W. Cheng, S. He, Y. Xie, Y. Peng, H. Cheng, Y. Sun, Y. Jiang, F. Hu, Z. Xie, W. Yan, Z. Pan, Z. Wu, S. Wei, Nat. Commun., 2014, 5, 5122 |
177. | M. Faraji, M. Yousefi, S. Yousefzadeh, M. Zirak, N. Naseri, T. H. Jeon, W. Choi, A. Z., Moshfegh, Energy Environ. Sci., 2019, 12, 59 |
178. | J. A. Seabold, K. S. Choi, J. Am. Chem. Soc., 2012, 134, 2186 |
179. | F. Li, H. Yang, Q. Zhuo, D. Zhou, X. Wu, P. Zhang, Z. Yao, L. Sun, Angew. Chem. Int. Ed., 2021, 60, 1976 |
180. | S. Wang, T. He, J. Yun, Y. Hu, M. Xiao, A. Du, L. Wang, Adv. Funct. Mater., 2018, 28, 1802685 |
181. | R. Gao, D. He, L. Wu, K. Hu, X. Liu, Y. Su, L. Wang, Angew. Chem. Int. Ed., 2020, 59, 6213 |
182. | B. Nepal, S. Das, Angew. Chem. Int. Ed., 2013, 52, 7224 |
183. | C. Liu, H. Luo, Y. Xu, Z. Zhang, Q. Liang, W. Wang, Z. Chen, Chem. Eng. J., 2020, 384, 123333 |
184. | J. Pan, B. Wang, J. Wang, H. Ding, W. Zhou, X. Liu, J. Zhang, S. Shen, J. Guo, L. Chen, C. Au, L. Jiang, S. Yin, Angew. Chem. Int. Ed., 2021, 60, 1433 |
185. | S. Li, H. Lin, G. Yang, X. Ren, S. Luo, X. Wang, Z. Chang, J. Ye, Appl. Catal. B, 2022, 304, 120954 |
186. | Z. Sun, H. Yin, K. Liu, S. Cheng, G. Li, S. Kawi, H. Zhao, G. Jia, Z. Yin, SmartMat, 2022, 3, 68 |
187. | Y. Sun, W. Hu, SmartMat, 2022, 3, 474 |
188. | Y. Da, R. Jiang, Z. Tian, X. Han, W. Chen, W. Hu, SmartMat, 2023, 4, e1136 |
189. | J. Khan, R. Ahmad, J. Tan, R. Zhang, U. Khan, B. Liu, SmartMat, 2023, 4, e1156 |
190. | Q. Lan, S. Jin, B. Yang, Q. Zhao, C. Si, H. Xie, Z. Zhang, Trans. Tianjin Univ., 2022, 28, 214 |
191. | S. Chu, C. Kang, W. Park, Y. Han, S. Hong, L. Hao, H. Zhang, T. W. Benedict Lo, A. W. Robertson, Y. Jung, B. Han, Z. Sun, SmartMat, 2022, 3, 194 |
192. | Y. Li, T. Wang, M. Asim, L. Pan, R. Zhang, Z.-F. Huang, Z. Chen, C. Shi, X. Zhang, J.-J. Zou, Trans. Tianjin Univ., 2022, 28, 163 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
a Illustration of the charge transfer on FexNi1-xOOH/BiVO4 photoanodes.[80] Copyright 2020, Wiley-VCH Verlag GmbH & Co. b Schematic diagrams of charge transfer of Co3O4/Co(II)/Ta3N5 photoanode.[31] Copyright 2013, The Royal Society of Chemistry. c Schematic illustration of charge transfer process of α-Fe2O3 photoanode.[71] Copyright 2022, Elsevier. d Schematic illustration of PEC water splitting for WO3 photoanode.[104] Copyright 2017, American Chemical Society.
a Scheme of Sb3Se3 photocathode–BiVO4 photoanode operating in pH 7.0 phosphate buffer for solar overall water splitting PEC cell.[134] Copyright 2020, Springer Nature. b Illustration of PEC-PV tandem configuration based on CuSCN-incorporated Cu2O photocathode, PSC and IrOx anode.[131] Copyright 2020, Springer Nature. c Schematic illustration of InGaN nanowire tunnel-junction structure grown directly on planar n-type Si wafer.[125] Copyright 2019, Cell. d Schematic diagram of the charge carrier transfer of lateral sulfur-gradient Sb2(SxSe1-x)3 nanorod heterojunctions.[141] Copyright 2022, Elsevier. e Schematic diagram of a simple two-electrode cell consisting of Pt/In2S3/CdS/CZTS photocathode and a BiVO4 photoanode.[138] Copyright 2015, American Chemical Society.
a Morphological characterizations of three-dimensional ordered macroporous BCN/CsTaWO6-xNx.[32] Copyright 2021, American Chemical Society. b Overview of a cross section of the AAO template after 660 growth cycles. c-e Higher magnification SEM images showing the uniform and dense coating of TiO2 nanorods within the AAO channels. f TiO2 nanorods rooted on the walls of AAO channels showing a squarelike cross section and well-faceted shape.[152] Copyright 2011, American Chemical Society.
a-d SEM images of TiO2 nanorods on dense Si nanowires array backbones.[44] Copyright 2011, American Chemical Society. e Schematic models of the hierarchical ZrO2 nanowire film before and after the HF treatment.[157] Copyright 2018, Wiley-VCH Verlag GmbH & Co. f Tilt-angle SEM image of as grown AAO template. g Tilt-angle and h enlarged SEM images of an Al NCA after removing the AAO template. i Cross-sectional SEM image of an AZO/TiO2 NCA after a two-step ALD deposition. j Top-down and k tilt-angle SEM images of an AZO/TiO2/Au NCA after Au film evaporation and annealing.[158] Copyright 2016, Wiley-VCH Verlag GmbH & Co.
a Band structures and band bending schematics of pure-BiVO4, 0.05% Mo-BiVO4, 0.1% Mo-BiVO4 and 0.5% Mo-BiVO4.[161] Copyright 2019, Springer Nature. b Top-view and cross-sectional scanning electron microscopy images for TiO2:(W,C) NWs. Scale bar, 500nm (top view) and 1 µm (cross-sectional). c TEM and energy-dispersive X-ray spectrometer mapping images. Scale bar, 100 nm.[92] Copyright 2013, Springer Nature.
a Schematically showing the formation of hybrid CTF-BTh/Cu2O and CTF-BTh/Mo:BiVO4 photoelectrodes via electropolymerization. b Experimentally determined energy diagrams of Cu2O, Mo:BiVO4, and CTF-BTh. The suitable band edge alignments enable the formation of a p–n junction between CTF-BTh and Cu2O and a staggered type-II heterojunction between CTF-BTh and Mo:BiVO4.[130] Copyright 2021, Wiley-VCH Verlag GmbH & Co. c Schematic electronic band diagram of the TiO2-SrTiO3 interface with positive poling, no poling, and negative poling conditions.[93] Copyright 2017, Wiley-VCH Verlag GmbH & Co.
a Hotocurrent density versus applied potential curves and b BPE curves.[180] Copyright 2018, Wiley-VCH Verlag GmbH & Co. c, d Hotocurrent density versus applied potential curves. Reproduced with permission.[181] Copyright 2020, Wiley-VCH Verlag GmbH & Co. e, f Hotocurrent density versus applied potential curves and schematic illustration of charge transfer path.[183] Copyright 2020, Wiley-VCH Verlag GmbH & Co.