Xiaoming Xu, Yuanming Zhang, Yong Chen, Changhao Liu, Yang Li, Zhonghua Li, Zhetong Yang, Zhaosheng Li, Zhigang Zou. Green organic conversion with H2O2: challenges and opportunities[J]. Energy Lab, 2024, 2(1): 230011. doi: 10.54227/elab.20230011
Citation: Xiaoming Xu, Yuanming Zhang, Yong Chen, Changhao Liu, Yang Li, Zhonghua Li, Zhetong Yang, Zhaosheng Li, Zhigang Zou. Green organic conversion with H2O2: challenges and opportunities[J]. Energy Lab, 2024, 2(1): 230011. doi: 10.54227/elab.20230011

REVIEW ARTICLE

Green organic conversion with H2O2: challenges and opportunities

More Information
  • Corresponding author: zsli@nju.edu.cn
  • Hydrogen peroxide (H2O2), as a green oxidant, plays an important role in organic conversion reactions, such as cyclohexanone ammoximation and olefin oxidation. However, the production of H2O2 relies on the anthraquinone process, which is costly, complex, and typically done on clustered production. Furthermore, H2O2 is prone to decomposition or the generation of ineffective byproducts and unfavorable reactive groups, leading to low efficiency and waste of resources. Achieving the widespread application of H2O2 in green organic conversion reactions requires efficient utilization and low-cost on-site production of H2O2. Effective activation of H2O2 is the key to realizing efficient utilization of H2O2, which has been widely recognized. In addition, some emerging methods of on-site production of H2O2 are convenient and low-cost. These methods may gradually overcome the shortcomings of traditional methods in the future. In this review, we introduce common organic conversion reactions with H2O2, summarize the challenges of H2O2 activation, and review the progress on electrochemical, photoelectrochemical or photochemical H2O2 production. We also discuss the vision of organic conversion reactions via in-situ-generated H2O2.


  • 加载中
  • Xiaoming Xu obtained his bachelor’s degree in Materials Science and Engineering from Zhengzhou University in 2019. Now, he is a Ph.D. student at Nanjing University under the supervision of Prof. Zhaosheng Li. His research interest mainly focuses on the study of H2O2 activation and utilization.
    Zhaosheng Li received his Ph.D. degree in Condensed Matter Physics from the Institute of Solid State Physics, Chinese Academy of Sciences, in 2003. After a two-year postdoctoral fellowship at Nanjing University, he became a Lecturer at this university. In 2006, he was promoted to Associate Professor. Since 2011, he has become a full Professor of Materials Science and Engineering at the College of Engineering and Applied Sciences, Nanjing University. His current research interest includes photochemistry and photocatalysis.
  • 1. T. Punniyamurthy, S. Velusamy, J. Iqbal, Chem. Rev., 2005, 105, 2329
    2. J. Schranck, A. Tlili, M. Beller, Angew. Chem. Int. Ed., 2013, 52, 7642
    3. Y. Shi, Y. Xia, Wen Langyou, L. Gao, G. Xu, B. Zong, Chem. Ind. Eng. Prog., 2021, 40, 2048
    4. A. Aquino, O. Korup, R. Horn, Ind. Eng. Chem. Res., 2023, 62, 3098
    5. Y. Shi, Y. Xia, G. Xu, L. Wen, G. Gao, B. Zong, Chinese J. Chem. Eng., 2022, 41, 145
    6. A. A. Ingle, S. Z. Ansari, D. Z. Shende, K. L. Wasewar, A. B. Pandit, Environ. Sci. Pollut. Res. Int., 2022, 29, 86468
    7. C. P. Gordon, H. Engler, A. S. Tragl, M. Plodinec, T. Lunkenbein, A. Berkessel, J. H. Teles, A. N. Parvulescu, C. Coperet, Nature, 2020, 586, 708
    8. R. Vithalani, D. S. Patel, C. K. Modi, V. Sharma, P. K. Jha, Appl. Organomet. Chem., 2020, 34, e5500
    9. X. Xu, Y. Zhang, Y. Chen, C. Liu, W. Wang, J. Wang, H. Huang, J. Feng, Z. Li, Z. Zou, Proc. Natl. Acad. Sci., 2022, 119, e2205562119
    10. S. C. Perry, D. Pangotra, L. Vieira, L. I. Csepei, V. Sieber, L. Wang, C. Ponce de León, F. C. Walsh, Nat. Rev. Chem., 2019, 3, 442
    11. C. Xia, J. Y. Kim, H. Wang, Nat. Catal., 2020, 3, 605
    12. C. M. Crombie, R. J. Lewis, R. L. Taylor, D. J. Morgan, T. E. Davies, A. Folli, D. M. Murphy, J. K. Edwards, J. Qi, H. Jiang, C. J. Kiely, X. Liu, M. S. Skjøth-Rasmussen, G. J. Hutchings, ACS Catal., 2021, 11, 2701
    13. R. J. Lewis, K. Ueura, X. Liu, Y. Fukuta, T. E. Davies, D. J. Morgan, L. W. Chen, J. Z. Qi, J. Singleton, J. K. Edwards, S. J. Freakley, C. J. Kiely, Y. Yamamoto, G. J. Hutchings, Science, 2022, 376, 615
    14. M. Taramasso, G. Perego, B. Notari, U. S. Patent: 4, 410, 501[P], 1983.
    15. X. Liang, Z. Mi, Y. Wang, L. Wang, X. Zhang, W. Wu, E. Min, S. Fu, J. Chem. Technol. Biot., 2004, 79, 658
    16. G. Blanco-Brieva, M. C. Capel-Sanchez, M. P. de Frutos, A. Padilla-Polo, J. M. Campos-Martin, J. L. G. Fierro, Ind. Eng. Chem. Res., 2008, 47, 8011
    17. T. Cousin, G. Chatel, N. Kardos, B. Andrioletti, M. Draye, Catal. Sci. Technol., 2019, 9, 5256
    18. K. Dong, Y. Wang, L. Zhang, X. Fan, Z. Li, D. Zhao, L. Yue, S. Sun, Y. Luo, Q. Liu, A. A. Alshehri, Q. Li, D. Ma, X. Sun, Green Chem., 2022, 24, 8264
    19. S. Tian, C. Peng, J. Dong, Q. Xu, Z. Chen, D. Zhai, Y. Wang, L. Gu, P. Hu, H. Duan, D. Wang, Y. Li, ACS Catal., 2021, 11, 4946
    20. X. Li, Q. Wang, J. Lyu, X. Li, ChemistrySelect, 2021, 6, 9735
    21. Y. Wan, Q. Liang, Z. Li, S. Xu, X. Hu, Q. Liu, D. Lu, J. Mol. Catal. A Chem., 2015, 402, 29
    22. S. Ito, Y. Kon, T. Nakashima, D. Hong, H. Konno, D. Ino, K. Sato, Molecules, 2019, 24, 2520
    23. C. Che, W. Yip, W. Yu, Chem. Asian J., 2006, 1, 453
    24. M. N. Timofeeva, O. A. Kholdeeva, S. H. Jhung, J. S. Chang, Appl. Catal. A, 2008, 345, 195
    25. Y. Zhang, X. Dai, J. Wang, J. Liang, J. Rabeah, X. Tian, X. Yao, Y. Wang, S. Pang, ChemSusChem, 2023, 16, e202202104
    26. Y. Zeng, T. Chen, X. Zhang, Y. Chen, H. Zhou, L. Yu, Appl. Organomet. Chem., 2022, 36, e6658
    27. L. Balapoor, R. Bikas, M. Dargahi, Inorg. Chim. Acta, 2020, 510, 119734
    28. Y. Kon, T. Nakashima, A. Yada, T. Fujitani, S. Y. Onozawa, S. Kobayashi, K. Sato, Org. Biomol. Chem., 2021, 19, 1115
    29. J. Wang, H. Yu, Z. Wei, Q. Li, W. Xuan, Y. Wei, Research, 2020, 2020, 3875920
    30. Y. Zhang, N. Zhang, T. Wang, H. Huang, Y. Chen, Z. Li, Z. Zou, Appl. Catal. B, 2019, 245, 410
    31. N. V. Maksimchuk, V. Y. Evtushok, O. V. Zalomaeva, G. M. Maksimov, I. D. Ivanchikova, Y. A. Chesalov, I. V. Eltsov, P. A. Abramov, T. S. Glazneva, V. V. Yanshole, O. A. Kholdeeva, R. J. Errington, A. Solé-Daura, J. M. Poblet, J. J. Carbó, ACS Catal., 2021, 11, 10589
    32. N. V. Maksimchuk, I. D. Ivanchikova, G. M. Maksimov, I. V. Eltsov, V. Y. Evtushok, O. A. Kholdeeva, D. Lebbie, R. J. Errington, A. Solé-Daura, J. M. Poblet, J. J. Carbó, ACS Catal., 2019, 9, 6262
    33. J. Li, C. Xiao, K. Wang, Y. Li, G. Zhang, Environ. Sci. Technol., 2019, 53, 11023
    34. H. Zheng, Y. Zeng, J. Chen, R. Lin, W. Zhuang, R. Cao, Z. J. Lin, Inorg. Chem., 2019, 58, 6983
    35. C. Ling, X. Liu, H. Li, X. Wang, H. Gu, K. Wei, M. Li, Y. Shi, H. Ben, G. Zhan, C. Liang, W. Shen, Y. Li, J. Zhao, L. Zhang, Angew. Chem. Int. Ed., 2022, 61, e202200670
    36. Z. Yang, J. Qian, A. Yu, B. Pan, Proc. Natl. Acad. Sci., 2019, 116, 6659
    37. Q. Yan, C. Lian, K. Huang, L. Liang, H. Yu, P. Yin, J. Zhang, M. Xing, Angew. Chem. Int. Ed., 2021, 60, 17155
    38. Y. Xue, Y. Wang, Z. Pan, K. Sayama, Angew. Chem. Int. Ed., 2021, 60, 10469
    39. N. Karamoschos, D. Tasis, Energies, 2022, 15, 6202
    40. H. Lu, X. Li, S. A. Monny, Z. Wang, L. Wang, Chinese J. Catal., 2022, 43, 1204
    41. X. Shi, S. Back, T. M. Gill, S. Siahrostami, X. Zheng, Chem, 2021, 7, 38
    42. S. Li, J. Ma, F. Xu, L. Wei, D. He, Chem. Eng. J., 2023, 452, 139371
    43. E. Berl1, Trans. Electrochem. Soc., 1939, 76, 359
    44. C. Xia, Y. Xia, P. Zhu, L. Fan, H. Wang, Science, 2019, 366, 226
    45. K. Wu, D. Wang, X. Lu, X. Zhang, Z. Xie, Y. Liu, B.-J. Su, J.-M. Chen, D.-S. Su, W. Qi, S. Guo, Chem, 2020, 6, 1443
    46. Y. Wen, T. Zhang, J. Wang, Z. Pan, T. Wang, H. Yamashita, X. Qian, Y. Zhao, Angew. Chem. Int. Ed., 2022, 61, e202205972
    47. Y. Kondo, Y. Kuwahara, K. Mori, H. Yamashita, Chem, 2022, 8, 2924
    48. Y. Zhang, C. Pan, G. Bian, J. Xu, Y. Dong, Y. Zhang, Y. Lou, W. Liu, Y. Zhu, Nat. Energy, 2023, 8, 361
    49. H. Yang, C. Li, T. Liu, T. Fellowes, S. Y. Chong, L. Catalano, M. Bahri, W. Zhang, Y. Xu, L. Liu, W. Zhao, A. M. Gardner, R. Clowes, N. D. Browning, X. Li, A. J. Cowan, A. I. Cooper, Nat. Nanotechnol., 2023, 18, 307
    50. W. Zhang, P. Zhang, Q. Yang, K. Li, Chinese J. Org. Chem., 2022, 42, 732
    51. S. J. Freakley, S. Kochius, J. van Marwijk, C. Fenner, R. J. Lewis, K. Baldenius, S. S. Marais, D. J. Opperman, S. T. L. Harrison, M. Alcalde, M. S. Smit, G. J. Hutchings, Nat. Commun., 2019, 10, 4178
    52. Z. Jiang, L. Wang, J. Lei, Y. Liu, J. Zhang, Appl. Catal. B, 2019, 241, 367
    53. F. Li, Q. Shao, M. Hu, Y. Chen, X. Huang, ACS Catal., 2018, 8, 3418
    54. A. Prieto, M. Palomino, U. Díaz, A. Corma, Appl. Catal. A, 2016, 523, 73
    55. W. Lee, L. Lai, M. Cem Akatay, E. A. Stach, F. H. Ribeiro, W. N. Delgass, J. Catal., 2012, 296, 31
    56. N. Callaghan and J. A. Sullivan, Appl. Catal. B, 2014, 146, 258
    57. R. J. Lewis, K. Ueura, X. Liu, Y. Fukuta, T. Qin, T. E. Davies, D. J. Morgan, A. Stenner, J. Singleton, J. K. Edwards, S. J. Freakley, C. J. Kiely, L. Chen, Y. Yamamoto, G. J. Hutchings, ACS Catal., 2023, 13, 1934
    58. R. J. Lewis, K. Ueura, Y. Fukuta, T. E. Davies, D. J. Morgan, C. B. Paris, J. Singleton, J. K. Edwards, S. J. Freakley, Y. Yamamoto, G. J. Hutchings, Green Chem., 2022, 24, 9496
    59. J. Lyu, L. Niu, F. Shen, J. Wei, Y. Xiang, Z. Yu, G. Zhang, C. Ding, Y. Huang, X. Li, ACS Omega, 2020, 5, 16865
    60. A. K. Sinha, S. Seelan, S. Tsubota, M. Haruta, Angew. Chem. Int. Ed., 2004, 43, 1546
    61. M. Ko, Y. Kim, J. Woo, B. Lee, R. Mehrotra, P. Sharma, J. Kim, S. W. Hwang, H. Y. Jeong, H. Lim, S. H. Joo, J.-W. Jang, J. H. Kwak, Nat. Catal., 2022, 5, 37
    62. L. Lu, B. Fang, Chem, 2022, 8, 1548
    63. A. Zong, B. R. Nebgen, S. Lin, J. A. Spies, M. Zuerch, Nat. Rev. Mater., 2023, 8, 224
    64. M. Dan, R. Zhong, S. Hu, H. Wu, Y. Zhou, Z. Liu, Chem Catal., 2022, 2, 1919
    65. S. Kala Thirumalaikumaran, R. Suwathy, M. Venkatesan, J. Aerosp. Technol. Manag., 2018, 10, e2818
    66. S. Corby, R. Rao, L. Steier, J. R. Durrant, Nat. Rev. Mater., 2021, 6, 1136
    67. M. Y. Qi, M. Conte, M. Anpo, Z. R. Tang, Y. J. Xu, Chem. Rev., 2021, 121, 13051
    68. Y. H. Li, Z. R. Tang, Y. J. Xu, Chinese J. Catal., 2022, 43, 708
    69. Y. L. Wu, M. Y. Qi, C. L. Tan, Z. R. Tang, Y. J. Xu, Chinese J. Catal., 2022, 43, 1851
    70. J. Y. Li, M. Y. Qi, Y. J. Xu, Chinese J. Catal., 2022, 43, 1084
    71. Z. Zhang, T. Tsuchimochi, T. Ina, Y. Kumabe, S. Muto, K. Ohara, H. Yamada, S. L. Ten-no, T. Tachikawa, Nat. Commun., 2022, 13, 1499
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Information

Article Metrics

Article views(1124) PDF downloads(217) Citation(0)

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint