Citation: | Yinhua Lv, Yang Zhang, Jiangshan Feng, Bing Cai, Xiaodong Ren, Jian Zhang, Wen-Hua Zhang. Challenge and strategy to address the stability of perovskite solar cells for commercialization[J]. Energy Lab, 2024, 2(1): 230005. doi: 10.54227/elab.20230005 |
Halide perovskite solar cells (PSCs) have attracted great interest in both scientific research and industrial communities due to their exceptional power conversion efficiency above 26% and costive solution-processed fabrication. However, the unsatisfied long-term stability of PSCs severely hurdles their commercial application. This review deals with the recent research progress in PSCs in terms of stability, including the degradation mechanism and feasible strategies to improve their stability. Composition manipulation, defect passivation, dimension engineering, charge transport design and encapsulation were discussed. This article concludes optimistically with some recommendations for the future perspectives and research directions to promote the commercialization of PSCs.
1. | Y. Wu, C. Li, Z. Tian and J. Sun, J. Power Sources, 2020, 478, 228762 |
2. | J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, Nano Lett., 2013, 13, 1764 |
3. | W. J. Yin, T. Shi and Y. Yan, Adv. Mater., 2014, 26, 4653 |
4. | Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao and J. Huang, Science, 2015, 347, 967 |
5. | R. E. Brandt, V. Stevanović, D. S. Ginley and T. Buonassisi, MRS Commun., 2015, 5, 265 |
6. | M. A. Green, A. Ho-Baillie and H. J. Snaith, Nat. Photonics, 2014, 8, 506 |
7. | NREL, Best Research-Cell Efficiency Chart, https://www.nrel.gov/pv/cell-efficiency.html. |
8. | P. Holzhey and M. Saliba, J. Mater. Chem. A, 2018, 6, 21794 |
9. | T. Matsui, T. Yamamoto, T. Nishihara, R. Morisawa, T. Yokoyama, T. Sekiguchi and T. Negami, Adv. Mater., 2019, 31, 1806823 |
10. | R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A. S. Subbiah, J. Liu, G. T. Harrison, M. I. Nugraha, M. K. Eswaran, M. Babics, Y. Chen, F. Xu, T. G. Allen, A. U. Rehman, C. L. Wang, T. D. Anthopoulos, U. Schwingenschlogl, M. De Bastiani, E. Aydin and S. De Wolf, Science, 2022, 376, 73 |
11. | X. Zhao, T. Liu, Q. C. Burlingame, T. Liu, R. Holleylll, G. Cheng, N. Yao, F. Gao and Y. L. Loo, Science, 2022, 377, 307 |
12. | D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Hörantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz and H. J. Snaith, Science, 2016, 351, 151 |
13. | P. Wang, Y. Wu, B. Cai, Q. Ma, X. Zheng and W.-H. Zhang, Adv. Funct. Mater., 2019, 29, 1807661 |
14. | Y. Huang, X. Lei, T. He, Y. Jiang and M. Yuan, Adv. Energy Mater., 2022, 12, 2100690 |
15. | X. Ling, J. Yuan, X. Zhang, Y. Qian, S. M. Zakeeruddin, B. W. Larson, Q. Zhao, J. Shi, J. Yang, K. Ji, Y. Zhang, Y. Wang, C. Zhang, S. Duhm, J. M. Luther, M. Grätzel and W. Ma, Adv. Mater., 2020, 32, 2001906 |
16. | A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti and J. M. Luther, Science, 2016, 354, 92 |
17. | Y. Fu, M. T. Rea, J. Chen, D. J. Morrow, M. P. Hautzinger, Y. Zhao, D. Pan, L. H. Manger, J. C. Wright, R. H. Goldsmith and S. Jin, Chem. Mater., 2017, 29, 8385 |
18. | Z. Li, M. Yang, J. S. Park, S. H. Wei, J. J. Berry and K. Zhu, Chem. Mater., 2016, 28, 284 |
19. | F. Hao, C. C. Stoumpos, R. P. H. Chang and M. G. Kanatzidis, J. Am. Chem. Soc., 2014, 136, 8094 |
20. | Y. Liu, X. Zhu, M. Li, R. P. O’Hayre and W. Yang, Nano Lett., 2015, 15, 7678 |
21. | S. G. Cao, Y. Li, H. H. Wu, J. Wang, B. Huang and T.-Y. Zhang, Nano Lett., 2017, 17, 5148 |
22. | R. E. Beal, D. J. Slotcavage, T. Leijtens, A. R. Bowring, R. A. Belisle, W. H. Nguyen, G. F. Burkhard, E. T. Hoke and M. D. McGehee, J. Phys. Chem. Lett., 2016, 7, 746 |
23. | R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore and H. J. Snaith, Adv. Energy Mater., 2016, 6, 1502458 |
24. | Z. Ni, C. Bao, Y. Liu, Q. Jiang, W. Q. Wu, S. Chen, X. Dai, B. Chen, B. Hartweg, Z. Yu, Z. Holman, J. Huang, Science, 2020, 367, 1352 |
25. | Y. Li, H. Xie, E. L. Lim, A. Hagfeldt and D. Bi, Adv. Energy Mater., 2022, 12, 2102730 |
26. | F. S. Zu, P. Amsalem, I. Salzmann, R.-B. Wang, M. Ralaiarisoa, S. Kowarik, S. Duhm and N. Koch, Adv. Opt. Mater., 2017, 5, 1700139 |
27. | H. Tsai, R. Asadpour, J. C. Blancon, C. C. Stoumpos, O. Durand, J. W. Strzalka, B. Chen, R. Verduzco, P. M. Ajayan, S. Tretiak, J. Even, M. A. Alam, M. G. Kanatzidis, W. Nie and A. D. Mohite, Science, 2018, 360, 67 |
28. | Q. M. Hong, R. P. Xu, T. Y. Jin, J. X. Tang and Y. Q. Li, Org. Electron., 2019, 67, 19 |
29. | W. Nie, J. C. Blancon, A. J. Neukirch, K. Appavoo, H. Tsai, M. Chhowalla, M. A. Alam, M. Y. Sfeir, C. Katan, J. Even, S. Tretiak, J. J. Crochet, G. Gupta and A. D. Mohite, Nat. Commun., 2016, 7, 11574 |
30. | K. Domanski, B. Roose, T. Matsui, M. Saliba, S. H. Turren-Cruz, J. P. Correa-Baena, C. R. Carmona, G. Richardson, J. M. Foster, F. De Angelis, J. M. Ball, A. Petrozza, N. Mine, M. K. Nazeeruddin, W. Tress, M. Grätzel, U. Steiner, A. Hagfeldt and A. Abate, Energy Environ. Sci., 2017, 10, 604 |
31. | T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee and H. J. Snaith, Nat. Commun., 2013, 4, 2885 |
32. | S. Ito, S. Tanaka, K. Manabe and H. Nishino, J. Phys. Chem. C, 2014, 118, 16995 |
33. | J. Ji, X. Liu, H. Jiang, M. Duan, B. Liu, H. Huang, D. Wei, Y. Li and M. Li, iScience, 2020, 23, 101013 |
34. | B. Park, N. Kedem, M. Kulbak, D. Y. Lee, W. S. Yang, N. J. Jeon, J. Seo, G. Kim, K. J. Kim, T. J. Shin, G. Hodes, D. Cahen and S. I. Seok, Nat. Commun., 2018, 9, 3301 |
35. | Q. Chen, H. Zhou, T. B. Song, S. Luo, Z. Hong, H.-S. Duan, L. Dou, Y. Liu and Y. Yang, Nano Lett., 2014, 14, 4158 |
36. | F. Jiang, Y. Rong, H. Liu, T. Liu, L. Mao, W. Meng, F. Qin, Y. Jiang, B. Luo, S. Xiong, J. Tong, Y. Liu, Z. Li, H. Han and Y. Zhou, Adv. Funct. Mater., 2016, 26, 8119 |
37. | Y. H. Lee, J. Luo, R. Humphry-Baker, P. Gao, M. Grätzel and M. K. Nazeeruddin, Adv. Funct. Mater., 2015, 25, 3925 |
38. | Y. Zhao, Q. Li, W. Zhou, Y. Hou, Y. Zhao, R. Fu, D. Yu, X. Liu and Q. Zhao, Sol. RRL, 2019, 3, 1800296 |
39. | T. J. Jacobsson, J. P. Correa-Baena, E. H. Anaraki, B. Philippe, S. D. Stranks, M. E. F. Bouduban, W. Tress, K. Schenk, J. Teuscher, J. E. Moser, H. Rensmo and A. Hagfeldt, J. Am. Chem. Soc., 2016, 138, 10331 |
40. | F. Liu, Q. Dong, M. K. Wong, A. B. Djurišić, A. Ng, Z. Ren, Q. Shen, C. Surya, W. K. Chan, J. Wang, A. M. C. Ng, C. Liao, H. Li, K. Shih, C. Wei, H. Su and J. Dai, Adv. Energy Mater., 2016, 6, 1502206 |
41. | R. I. Dawood, A. J. Forty, M. R. Tubbs and F. C. Frank, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1965, 284, 272 |
42. | M. G. Albrecht and M. Green, J. Phys. Chem. Solids, 1977, 38, 297 |
43. | A. Friedenberg and Y. Shapira, Surf. Sci., 1982, 115, 606 |
44. | J. F. Verwey, J. Phys. Chem. Solids, 1970, 31, 163 |
45. | E. J. Juarez-Perez, L. K. Ono, M. Maeda, Y. Jiang, Z. Hawash and Y. Qi, J. Mater. Chem. A, 2018, 6, 9604 |
46. | G. Tumen-Ulzii, C. Qin, D. Klotz, M. R. Leyden, P. Wang, M. Auffray, T. Fujihara, T. Matsushima, J. W. Lee, S. J. Lee, Y. Yang and C. Adachi, Adv. Mater., 2020, 32, 1905035 |
47. | B. Roose, K. Dey, Y.-H. Chiang, R. H. Friend and S. D. Stranks, J. Phys. Chem. Lett., 2020, 11, 6505 |
48. | J. Liang, X. Hu, C. Wang, C. Liang, C. Chen, M. Xiao, J. Li, C. Tao, G. Xing, R. Yu, W. Ke and G. Fang, Joule, 2022, 6, 816 |
49. | N. Aristidou, I. Sanchez-Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez, T. Rath and S. A. Haque, Angew. Chem. Int. Ed., 2015, 54, 8208 |
50. | N. Aristidou, C. Eames, I. Sanchez-Molina, X. Bu, J. Kosco, M. S. Islam and S. A. Haque, Nat. Commun., 2017, 8, 15218 |
51. | J. Huang, S. Tan, P. D. Lund and H. Zhou, Energy Environ. Sci., 2017, 10, 2284 |
52. | Y. Ouyang, Y. Li, P. Zhu, Q. Li, Y. Gao, J. Tong, L. Shi, Q. Zhou, C. Ling, Q. Chen, Z. Deng, H. Tan, W. Deng and J. Wang, J. Mater. Chem. A, 2019, 7, 2275 |
53. | Y. Ouyang, L. Shi, Q. Li and J. Wang, Small Methods, 2019, 3, 1900154 |
54. | N. H. Nickel, F. Lang, V. V. Brus, O. Shargaieva and J. Rappich, Adv. Electron. Mater., 2017, 3, 1700158 |
55. | G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz and H. J. Snaith, Energy Environ. Sci., 2014, 7, 982 |
56. | E. T. Hoke, D. J. Slotcavage, E. R. Dohner, A. R. Bowring, H. I. Karunadasa and M. D. McGehee, Chem. Sci., 2015. 6, 613 |
57. | G. F. Samu, Á. Balog, F. De Angelis, D. Meggiolaro, P. V. Kamat and C. Janáky, J. Am. Chem. Soc., 2019, 141, 10812 |
58. | R. A. Kerner, Z. Xu, B. W. Larson and B. P. Rand, Joule, 2021, 5, 2273 |
59. | A. K. Jena, A. Kulkarni and T. Miyasaka, Chem. Rev., 2019, 119, 3036 |
60. | N. Li, Y. Luo, Z. Chen, X. Niu, X. Zhang, J. Lu, R. Kumar, J. Jiang, H. Liu, X. Guo, B. Lai, G. Brocks, Q. Chen, S. Tao, D. P. Fenning and H. Zhou, Joule, 2020, 4, 1743 |
61. | J. Jung, D. L. Kim, S. H. Oh and H. J. Kim, Sol. Energy Mater. Sol. Cells, 2012, 102, 103 |
62. | I. L. Braly, R. J. Stoddard, A. Rajagopal, A. R. Uhl, J. K. Katahara, A. K. Y. Jen and H. W. Hillhouse, ACS Energy Lett., 2017, 2, 1841 |
63. | Z. Andaji-Garmaroudi, M. Abdi-Jalebi, D. Guo, S. Macpherson, A. Sadhanala, E. M. Tennyson, E. Ruggeri, M. Anaya, K. Galkowski, R. Shivanna, K. Lohmann, K. Frohna, S. Mackowski, T. J. Savenije, R. H. Friend and S. D. Stranks, Adv. Mater., 2019, 31, 1902374 |
64. | S. S. Shin, E. J. Yeom, W. S. Yang, S. Hur, M. G. Kim, J. Im, J. Seo, J. H. Noh and S. I. Seok, Science, 2017, 356, 167 |
65. | M. Neophytou, M. De Bastiani, N. Gasparini, E. Aydin, E. Ugur, A. Seitkhan, F. Moruzzi, Y. Choaie, A. J. Ramadan, J. R. Troughton, R. Hallani, A. Savva, L. Tsetseris, S. Inal, D. Baran, F. Laquai, T. D. Anthopoulos, H. J. Snaith, S. De Wolf and I. McCulloch, ACS Appl. Energy Mater., 2019, 2, 8090 |
66. | F. Guo, X. Sun, B. Liu, Z. Yang, J. Wei and D. Xu, Angew. Chem. Int. Ed., 2019, 58, 18460 |
67. | M. F. Arendt, J. Mater. Res., 1993, 8, 3131 |
68. | B. Roose, J.-P. C. Baena, K. C. Gödel, M. Graetzel, A. Hagfeldt, U. Steiner and A. Abate, Nano Energy, 2016, 30, 517 |
69. | R. Yuan, B. Cai, Y. Lv, X. Gao, J. Gu, Z. Fan, X. Liu, C. Yang, M. Liu and W.-H. Zhang, Energy Environ. Sci., 2021, 14, 5074 |
70. | J. J. Yoo, G. Seo, M. R. Chua, T. G. Park, Y. Lu, F. Rotermund, Y.-K. Kim, C. S. Moon, N. J. Jeon, J. P. Correa-Baena, V. Bulović, S. S. Shin, M. G. Bawendi and J. Seo, Nature, 2021, 590, 587 |
71. | H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin and S. Il Seok, Nature, 2021, 598, 444 |
72. | J. Song, E. Zheng, J. Bian, X. F. Wang, W. Tian, Y. Sanehira and T. Miyasaka, J. Mater. Chem. A, 2015, 3, 10837 |
73. | H. Xu, Y. Miao, N. Wei, H. Chen, Z. Qin, X. Liu, X. Wang, Y. Qi, T. Zhang and Y. Zhao, Adv. Energy Mater., 2022, 12, 2103151 |
74. | L. Xiong, J. Li, F. Ye, H. Wang, Y. Guo, X. Ming, Q. Chen, S. Zhang, R. Xie, Z. Chen, Y. Lv, G. Hu, Y. He and G. Fang, Adv. Funct. Mater., 2021, 31, 2103949 |
75. | K. Liu, S. Chen, J. Wu, H. Zhang, M. Qin, X. Lu, Y. Tu, Q. Meng and X. Zhan, Energy Environ. Sci., 2018, 11, 3463 |
76. | S. You, H. Zeng, Z. Ku, X. Wang, Z. Wang, Y. Rong, Y. Zhao, X. Zheng, L. Luo, L. Li, S. Zhang, M. Li, X. Gao and X. Li, Adv. Mater., 2020, 32, 2003990 |
77. | Z. Ren, K. Liu, H. Hu, X. Guo, Y. Gao, P. W. K. Fong, Q. Liang, H. Tang, J. Huang, H. Zhang, M. Qin, L. Cui, H. T. Chandran, D. Shen, M. F. Lo, A. Ng, C. Surya, M. Shao, C. S. Lee, X. Lu, F. Laquai, Y. Zhu and G. Li, Light-Sci. Appl., 2021, 10, 239 |
78. | N. Chander, A. F. Khan, P. S. Chandrasekhar, E. Thouti, S. K. Swami, V. Dutta and V. K. Komarala, Appl. Phys. Lett., 2014, 105, 033904 |
79. | Z. Shi, D. Zhou, Y. Wu, G. Pan, W. Xu, N. Wang, S. Liu, R. Sun, L. Liu, X. Zhuang, Y. Zhang, S. Lu and H. Song, Chem. Eng. J., 2022, 435, 134792 |
80. | A. F. Akbulatov, L. A. Frolova, N. N. Dremova, I. Zhidkov, V. M. Martynenko, S. A. Tsarev, S. Y. Luchkin, E. Z. Kurmaev, S. M. Aldoshin, K. J. Stevenson and P. A. Troshin, J. Phys. Chem. Lett., 2020, 11, 333 |
81. | J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel and J. Y. Kim, Nature, 2021, 592, 381 |
82. | N. Li, S. Tao, Y. Chen, X. Niu, C. K. Onwudinanti, C. Hu, Z. Qiu, Z. Xu, G. Zheng, L. Wang, Y. Zhang, L. Li, H. Liu, Y. Lun, J. Hong, X. Wang, Y. Liu, H. Xie, Y. Gao, Y. Bai, S. Yang, G. Brocks, Q. Chen and H. Zhou, Nat. Energy, 2019, 4, 408 |
83. | S. R. Pering, W. Deng, J. R. Troughton, P. S. Kubiak, D. Ghosh, R. G. Niemann, F. Brivio, F. E. Jeffrey, A. B. Walker, M. S. Islam, T. M. Watson, P. R. Raithby, A. L. Johnson, S. E. Lewis and P. J. Cameron, J. Mater. Chem. A, 2017, 5, 20658 |
84. | S. Tan, I. Yavuz, N. De Marco, T. Huang, S. J. Lee, C. S. Choi, M. Wang, S. Nuryyeva, R. Wang, Y. Zhao, H. C. Wang, T. H. Han, B. Dunn, Y. Huang, J. W. Lee and Y. Yang, Adv. Mater., 2020, 32, 1906995 |
85. | Y. Zhan, F. Yang, W. Chen, H. Chen, Y. Shen, Y. Li and Y. Li, Adv. Mater., 2021, 33, 2105170 |
86. | K. Liu, Q. Liang, M. Qin, D. Shen, H. Yin, Z. Ren, Y. Zhang, H. Zhang, P. W. K. Fong, Z. Wu, J. Huang, J. Hao, Z. Zheng, S. So, C. S. Lee, X. Lu, G. Li, Joule, 2020, 4, 2404 |
87. | G. Kim, H. Min, K. S. Lee, D. Y. Lee, S. M. Yoon and S. I. Seok, Science, 2020, 370, 108 |
88. | J. Wen, Y. Zhao, Z. Liu, H. Gao, R. Lin, S. Wan, C. Ji, K. Xiao, Y. Gao, Y. Tian, J. Xie, C. J. Brabec and H. Tan, Adv. Mater., 2022, 34, 2110356 |
89. | W. Xiang, Z. Wang, D. J. Kubicki, W. Tress, J. Luo, D. Prochowicz, S. Akin, L. Emsley, J. Zhou, G. Dietler, M. Grätzel and A. Hagfeldt, Joule, 2019, 3, 205 |
90. | H. Wang, Z. Wang, Z. Yang, Y. Xu, Y. Ding, L. Tan, C. Yi, Z. Zhang, K. Meng, G. Chen, Y. Zhao, Y. Luo, X. Zhang, A. Hagfeldt and J. Luo, Adv. Mater., 2020, 32, 2000865 |
91. | Q. Li, Y. Zhao, R. Fu, W. Zhou, Y. Zhao, X. Liu, D. Yu and Q. Zhao, Adv. Mater., 2018, 30, 1803095 |
92. | C. Luo, Y. Zhao, X. Wang, F. Gao and Q. Zhao, Adv. Mater., 2021, 33, 2103231 |
93. | H. Zhang, W. Yu, J. Guo, C. Xu, Z. Ren, K. Liu, G. Yang, M. Qin, J. Huang, Z. Chen, Q. Liang, D. Shen, Z. Wu, Y. Zhang, H. T. Chandran, J. Hao, Y. Zhu, C. Lee, X. Lu, Z. Zheng, J. Huang, G. Li, Adv. Energy Mater., 2022, 12, 2201663 |
94. | Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen, H.-X. Deng, X. Chu, X. Peng, Y. Yuan, X. Zhang and J. You, Science, 2022, 377, 531 |
95. | Y.-H. Lin, N. Sakai, P. Da, J. Wu, H. C. Sansom, A. J. Ramadan, S. Mahesh, J. Liu, R. D. J. Oliver, J. Lim, L. Aspitarte, K. Sharma, P. K. Madhu, A. B. Morales-Vilches, P. K. Nayak, S. Bai, F. Gao, C. R. M. Grovenor, M. B. Johnston, J. G. Labram, J. R. Durrant, J. M. Ball, B. Wenger, B. Stannowski and H. J. Snaith, Science, 2020, 369, 96 |
96. | L. Wang, H. Zhou, J. Hu, B. Huang, M. Sun, B. Dong, G. Zheng, Y. Huang, Y. Chen, L. Li, Z. Xu, N. Li, Z. Liu, Q. Chen, L.-D. Sun and C.-H. Yan, Science, 2019, 363, 265 |
97. | Q. Chang, F. Wang, W. Xu, A. Wang, Y. Liu, J. Wang, Y. Yun, S. Gao, K. Xiao, L. Zhang, L. Wang, J. Wang, W. Huang and T. Qin, Angew. Chem. Int. Ed., 2021, 60, 25567 |
98. | Q. Zhou, C. Cai, Q. Xiong, Z. Zhang, J. Xu, L. Liang, S. Wang, W. Sun, Z. Yuan and P. Gao, Adv. Energy Mater., 2022, 12, 2201243 |
99. | H. Li, J. Shi, J. Deng, Z. Chen, Y. Li, W. Zhao, J. Wu, H. Wu, Y. Luo, D. Li and Q. Meng, Adv. Mater., 2020, 32, 1907396 |
100. | X. Zheng, C. Wu, S. K. Jha, Z. Li, K. Zhu and S. Priya, ACS Energy Lett., 2016, 1, 1014 |
101. | W. Lv, Z. Hu, W. Qiu, D. Yan, M. Li, A. Mei, L. Xu and R. Chen, Adv. Sci., 2022, 9, 2202028 |
102. | Z. Qin, Y. Chen, X. Wang, N. Wei, X. Liu, H. Chen, Y. Miao and Y. Zhao, Adv. Mater., 2022, 34, 2203143 |
103. | Y. R. Shi, K. L. Wang, Y. H. Lou, G. L. Liu, C. H. Chen, J. Chen, L. Zhang and Z. K. Wang, Adv. Mater., 2022, 34, 2205338 |
104. | T. Leijtens, K. Bush, R. Cheacharoen, R. Beal, A. Bowring and M. D. McGehee, J. Mater. Chem. A, 2017, 5, 1148311500 |
105. | Q. Wali, F. J. Iftikhar, M. E. Khan, A. Balilonda, M. Aamir, W. Fan and S. Yang, J. Mater. Chem. C, 2022, 10, 12908 |
106. | F. Xie, C. C. Chen, Y. Wu, X. Li, M. Cai, X. Liu, X. Yang and L. Han, Energ Environ. Sci., 2017, 10, 1942 |
107. | J. He, E. Bi, W. Tang, Y. Wang, Z. Zhou, X. Yang, H. Chen and L. Han, Sol. RRL, 2018, 2, 1800004 |
108. | S. Wang, Z. He, J. Yang, T. Li, X. Pu, J. Han, Q. Cao, B. Gao and X. Li, J. Energy Chem., 2021, 60, 169 |
109. | S. Gharibzadeh, P. Fassl, I. M. Hossain, P. Rohrbeck, M. Frericks, M. Schmidt, T. Duong, M. R. Khan, T. Abzieher, B. A. Nejand, F. Schackmar, O. Almora, T. Feeney, R. Singh, D. Fuchs, U. Lemmer, J. P. Hofmann, S. A. L. Weber and U. W. Paetzold, Energy Environ. Sci., 2021, 14, 5875 |
110. | H. Zhu, S. Wu, J. Yao, R. Chen, M. Pan, W. Chen, J. Zhou, W. Zhang, T. Wang and W. Chen, J. Mater. Chem. A, 2019, 7, 21476 |
111. | F. Galatopoulos, I. T. Papadas, A. Ioakeimidis, P. Eleftheriou and S. A. Choulis, Nanomaterials, 2020, 10, 1961 |
112. | Y. Choi, D. Koo, G. Jeong, U. Kim, H. Kim, F. Huang and H. Park, Energy Environ. Sci., 2022, 15, 3369 |
113. | Y. Wu, F. Xie, H. Chen, X. Yang, H. Su, M. Cai, Z. Zhou, T. Noda and L. Han, Adv. Mater., 2017, 29, 1701073 |
114. | B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D'Haen, L. D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. D. Angelis and H.-G. Boyen, Adv. Energy Mater., 2015, 5, 1500477 |
115. | B. W. Park and S. I. Seok, Adv. Mater., 2019, 31, 1805337 |
116. | M. T. Mbumba, D. M. Malouangou, J. M. Tsiba, M. W. Akram, L. Bai, Y. Yang and M. Guli, J. Mater. Chem. C, 2021, 9, 14047 |
117. | Q. Luo, H. Ma, F. Hao, Q. Hou, J. Ren, L. Wu, Z. Yao, Y. Zhou, N. Wang, K. Jiang, H. Lin and Z. Guo, Adv. Funct. Mater., 2017, 27, 1703068 |
118. | C. C. Boyd, R. C. Shallcross, T. Moot, R. Kerner, L. Bertoluzzi, A. Onno, S. Kavadiya, C. Chosy, E. J. Wolf, J. Werner, J. A. Raiford, C. de Paula, A. F. Palmstrom, Z. J. Yu, J. J. Berry, S. F. Bent, Z. C. Holman, J. M. Luther, E. L. Ratcliff, N. R. Armstrong and M. D. McGehee, Joule, 2020, 4, 1759 |
119. | L. Chen, L. Qiu, H. Wang, Y. Yuan, L. Song, F. Xie, J. Xiong and P. Du, ACS Applied Nano Mater., 2022, 5, 10055 |
120. | S. Liu, R. Chen, X. Tian, Z. Yang, J. Zhou, F. Ren, S. Zhang, Y. Zhang, M. Guo, Y. Shen, Z. Liu and W. Chen, Nano Energy, 2022, 94, 106935 |
121. | X. Zheng, Y. Hou, C. Bao, J. Yin, F. Yuan, Z. Huang, K. Song, J. Liu, J. Troughton, N. Gasparini, C. Zhou, Y. Lin, D.-J. Xue, B. Chen, A. K. Johnston, N. Wei, M. N. Hedhili, M. Wei, A. Y. Alsalloum, P. Maity, B. Turedi, C. Yang, D. Baran, T. D. Anthopoulos, Y. Han, Z.-H. Lu, O. F. Mohammed, F. Gao, E. H. Sargent and O. M. Bakr, Nat. Energy, 2020, 5, 131 |
122. | X. Zheng, T. Jiang, L. Bai, X. Chen, Z. Chen, X. Xu, D. Song, X. Xu, B. Li and Y. Yang, RSC Adv., 2020, 10, 18400 |
123. | X. Wang, K. Rakstys, K. Jack, H. Jin, J. Lai, H. Li, C. S. K. Ranasinghe, J. Saghaei, G. Zhang, P. L. Burn, I. R. Gentle and P. E. Shaw, Nat. Commun., 2021, 12, 52 |
124. | J. Yang, Q. Cao, Z. He, X. Pu, T. Li, B. Gao and X. Li, Nano Energy, 2021, 82, 105731 |
125. | Q. Cao, Y. Li, H. Zhang, J. Yang, J. Han, T. Xu, S. Wang, Z. Wang, B. Gao, J. Zhao, X. Li, X. Ma, S. M. Zakeeruddin, W. E. I. Sha, X. Li and M. Grätzel, Sci. Adv., 2021, 7, eabg0633 |
126. | H. Chen, A. Maxwell, C. Li, S. Teale, B. Chen, T. Zhu, E. Ugur, G. Harrison, L. Grater, J. Wang, Z. Wang, L. Zeng, S. M. Park, L. Chen, P. Serles, R. A. Awni, B. Subedi, X. Zheng, C. Xiao, N. J. Podraza, T. Filleter, C. Liu, Y. Yang, J. M. Luther, S. De Wolf, M. G. Kanatzidis, Y. Yan and E. H. Sargent, Nature, 2023, 613, 676 |
127. | P. Pradid, K. Sanglee, N. Thongprong and S. Chuangchote, Materials, 2021, 14, 5989 |
128. | Y. Zhang, C. Li, E. Bi, T. Wang, P. Zhang, X. Yang and H. Chen, Adv. Energy Mater., 2022, 12, 2202191 |
129. | X. Zhu, M. Du, J. Feng, H. Wang, Z. Xu, L. Wang, S. Zuo, C. Wang, Z. Wang, C. Zhang, X. Ren, S. Priya, D. Yang and S. Liu, Angew. Chem. Int. Ed., 2021, 60, 4238 |
130. | H. Li, J. Zhou, L. Tan, M. Li, C. Jiang, S. Wang, X. Zhao, Y. Liu, Y. Zhang, Y. Ye, W. Tress and C. Yi, Sci. Adv., 2022, 8, eabo7422 |
131. | J. Zhang, J. Long, Z. Huang, J. Yang, X. Li, R. Dai, W. Sheng, L. Tan and Y. Chen, Chem. Eng. J., 2021, 426, 131357 |
132. | W. Chen, B. Han, Q. Hu, M. Gu, Y. Zhu, W. Yang, Y. Zhou, D. Luo, F. Z. Liu, R. Cheng, R. Zhu, S.-P. Feng, A. B. Djurišić, T. P. Russell and Z. He, Sci. Bull., 2021, 66, 991 |
133. | Z. Li, B. Li, X. Wu, S. A. Sheppard, S. Zhang, D. Gao, N. J. Long and Z. Zhu, Science, 2022, 376, 416 |
134. | J. Song, H. Liu, W. Pu, Y. Lu, Z. Si, Z. Zhang, Y. Ge, N. Li, H. Zhou, W. Xiao, L. Wang and M. Sui, Energy Environ. Sci., 2022, 15, 4836 |
135. | S. Wu, R. Chen, S. Zhang, B. H. Babu, Y. Yue, H. Zhu, Z. Yang, C. Chen, W. Chen, Y. Huang, S. Fang, T. Liu, L. Han and W. Chen, Nat. Commun., 2019, 10, 1161 |
136. | X. Li, S. Fu, W. Zhang, S. Ke, W. Song and J. Fang, Sci. Adv., 2020, 6, eabd1580 |
137. | K. Chatzimanolis, K. Rogdakis, D. Tsikritzis, N. Tzoganakis, M. Tountas, M. Krassas, S. Bellani, L. Najafi, B. Martín-García, R. Oropesa-Nuñez, M. Prato, G. Bianca, I. Plutnarova, Z. Sofer, F. Bonaccorso and E. Kymakis, Nanoscale Adv., 2021, 3, 3124 |
138. | J. Yang, Q. Cao, T. Wang, B. Yang, X. Pu, Y. Zhang, H. Chen, I. Tojiboyev, Y. Li, L. Etgar, X. Li and A. Hagfeldt, Energy Environ. Sci., 2022, 15, 2154 |
139. | B. Cai, Y. Xing, Z. Yang, W.-H. Zhang and J. Qiu, Energy Environ. Sci., 2013, 6, 1480 |
140. | Q. Fu, Z. Xu, X. Tang, T. Liu, X. Dong, X. Zhang, N. Zheng, Z. Xie and Y. Liu, ACS Energy Lett., 2021, 6, 1521 |
141. | Q. Fu, H. Liu, S. Li, T. Zhou, M. Chen, Y. Yang, J. Wang, R. Wang, Y. Chen and Y. Liu, Angew. Chem. Int. Ed., 2022, 61, e202210356 |
142. | Q. Fu, X. Tang, H. Liu, R. Wang, T. Liu, Z. Wu, H. Y. Woo, T. Zhou, X. Wan, Y. Chen and Y. Liu, J. Am. Chem. Soc., 2022, 144, 9500 |
143. | Y. Bai, Z. Zhou, Q. Xue, C. Liu, N. Li, H. Tang, J. Zhang, X. Xia, J. Zhang, X. Lu, C. J. Brabec and F. Huang, Adv. Mater., 2022, 34, 2110587 |
144. | Y. Wang, W. Chen, L. Wang, B. Tu, T. Chen, B. Liu, K. Yang, C. W. Koh, X. Zhang, H. Sun, G. Chen, X. Feng, H. Y. Woo, A. B. Djurišić, Z. He and X. Guo, Adv. Mater., 2019, 31, 1902781 |
145. | X. Yang, J. Xi, Y. Sun, Y. Zhang, G. Zhou and W.-Y. Wong, Nano Energy, 2019, 64, 103946 |
146. | J. Zhang, Q. Sun, Q. Chen, Y. Wang, Y. Zhou, B. Song, N. Yuan, J. Ding and Y. Li, Adv. Funct. Mater., 2019, 29, 1900484 |
147. | Y. Wang, Q. Liao, J. Chen, W. Huang, X. Zhuang, Y. Tang, B. Li, X. Yao, X. Feng, X. Zhang, M. Su, Z. He, T. J. Marks, A. Facchetti and X. Guo, J. Am. Chem. Soc., 2020, 142, 16632 |
148. | N. Cai, F. Li, Y. Chen, R. Luo, T. Hu, F. Lin, S. M. Yiu, D. Liu, D. Lei, Z. Zhu and A. K. Y. Jen, Angew. Chem. Int. Ed., 2021, 60, 20437 |
149. | L. Wan, W. Zhang, S. Fu, L. Chen, Y. Wang, Z. Xue, Y. Tao, W. Zhang, W. Song and J. Fang, J. Mater. Chem. A, 2020, 8, 6517 |
150. | Y. Chen, Z. Yang, S. Wang, X. Zheng, Y. Wu, N. Yuan, W.-H. Zhang and S. Liu, Adv. Mater., 2018, 30, 1805660 |
151. | Y. Chen, W. Tang, Y. Wu, X. Yu, J. Yang, Q. Ma, S. Wang, J. Jiang, S. Zhang and W. H. Zhang, Chem. Eng. J., 2021, 425, 131499 |
152. | Y. Chen, Y. Shen, W. Tang, Y. Wu, W. Luo, N. Yuan, J. Ding, S. Zhang and W.-H. Zhang, Adv. Funct. Mater., 2022, 32, 2206703 |
153. | A. M. Rao, P. Zhou, K. A. Wang, G. T. Hager, J. M. Holden, Y. Wang, W. T. Lee, X. X. Bi, P. C. Eklund, D. S. Cornett, M. A. Duncan and I. J. Amster, Science, 1993, 259, 955 |
154. | S. Pont, F. Foglia, A. M. Higgins, J. R. Durrant and J. T. Cabral, Adv. Funct. Mater., 2018, 28, 1802520 |
155. | S. H. Li, Z. Xing, B. S. Wu, Z. C. Chen, Y. R. Yao, H. R. Tian, M. F. Li, D. Q. Yun, L. L. Deng, S. Y. Xie, R. B. Huang and L. S. Zheng, ACS Appl. Mater. Interfaces, 2020, 12, 20733 |
156. | J. H. Heo, S. C. Lee, S. K. Jung, O. P. Kwon and S. H. Im, J. Mater. Chem. A, 2017, 5, 20615 |
157. | S. Zhang, W. Chen, S. Wu, R. Chen, Y. Huang, Z. Yang, J. Li, L. Han and W. Chen, J. Mater. Chem. A, 2019, 7, 18603 |
158. | J. Liu, Y. Guo, M. Zhu, Y. Li and X. Li, J. Power Sources, 2020, 476, 228648 |
159. | S. Seo, S. Jeong, C. Bae, N. G. Park, H. Shin, Adv. Mater., 2018, 30, 1801010 |
160. | C. C. Boyd, R. Cheacharoen, T. Leijtens and M. D. McGehee, Chem. Rev., 2019, 119, 3418 |
161. | C. Zhang, X. Ren, X. He, Y. Zhang, Y. Liu, J. Feng, F. Gao, N. Yuan, J. Ding and S. Liu, J. Energy Chem., 2022, 64, 8 |
162. | N. Yan, Y. Gao, J. Yang, Z. Fang, J. Feng, X. Wu, T. Chen, and S. (Frank) Liu, Angew. Chem. Int. Ed, 2023, 62, e202216668 |
163. | Y. Hou, E. Aydin, M. De Bastiani, C. Xiao, F. H. Isikgor, D.-J. Xue, B. Chen, H. Chen, B. Bahrami, A. H. Chowdhury, A. Johnston, S.-W. Baek, Z. Huang, M. Wei, Y. Dong, J. Troughton, R. Jalmood, A. J. Mirabelli, T. G. Allen, E. Van Kerschaver, M. I. Saidaminov, D. Baran, Q. Qiao, K. Zhu, S. De Wolf and E. H. Sargent, Science, 2020, 367, 1135 |
164. | X. Zhu, S. Yang, Y. Cao, L. Duan, M. Du, J. Feng, Y. Jiao, X. Jiang, Y. Sun, H. Wang, S. Zuo, Y. Liu and S. Liu, Adv. Energy Mater., 2022, 12, 2103491 |
165. | R. Zhao, L. Xie, R. Zhuang, T. Wu, R. Zhao, L. Wang, L. Sun and Y. Hua, ACS Energy Lett., 2021, 6, 4209. |
166. | Z. Zhang, Y. Gao, Z. Li, L. Qiao, Q. Xiong, L. Deng, Z. Zhang, R. Long, Q. Zhou, Y. Du, Z. Lan, Y. Zhao, C. Li, K. Mullen and P. Gao, Adv. Mater., 2021, 33, 2008405 |
167. | Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin and J. You, Nat. Photonics, 2019, 13, 460 |
168. | H. Li, Z. Wang, L. Wang, B. Chang, Z. Liu, L. Pan, Y. Wu and L. Yin, Nano Energy, 2022, 103, 107792 |
169. | Y. Ge, F. Ye, M. Xiao, H. Wang, C. Wang, J. Liang, X. Hu, H. Guan, H. Cui, W. Ke, C. Tao and G. Fang, Adv. Energy Mater., 2022, 12, 2200361 |
170. | C. Yang, H. Wang, Y. Miao, C. Chen, M. Zhai, Q. Bao, X. Ding, X. Yang and M. Cheng, ACS Energy Lett., 2021, 6, 2690 |
171. | M. Wang, H. Sun, L. Meng, M. Wang and L. Li, Adv. Mater., 2022, 34, 2200041 |
172. | S. Tan, T. Huang, I. Yavuz, R. Wang, T. W. Yoon, M. Xu, Q. Xing, K. Park, D. K. Lee, C. H. Chen, R. Zheng, T. Yoon, Y. Zhao, H. C. Wang, D. Meng, J. Xue, Y. J. Song, X. Pan, N. G. Park, J. W. Lee and Y. Yang, Nature, 2022, 605, 268 |
173. | J. Song, H. Xie, E. L. Lim, Y. Li, T. Kong, Y. Zhang, X. Zhou, C. Duan, and D. Bi, Solar RRL, 2022, 6, 2100880 |
174. | Y. Liu, S. Akin, L. Pan, R. Uchida, N. Arora, J. V. Milić, A. Hinderhofer, F. Schreiber, A. R. Uhl, S. M. Zakeeruddin, A. Hagfeldt, M. I. Dar and M. Grätzel, Sci. Adv., 2019, 5, eaaw2543 |
175. | H. Chen, S. Teale, B. Chen, Y. Hou, L. Grater, T. Zhu, K. Bertens, S. M. Park, H. R. Atapattu, Y. Gao, M. Wei, A. K. Johnston, Q. Zhou, K. Xu, D. Yu, C. Han, T. Cui, E. H. Jung, C. Zhou, W. Zhou, A. H. Proppe, S. Hoogland, F. Laquai, T. Filleter, K. R. Graham, Z. Ning and E. H. Sargent, Nat. Photonics, 2022, 16, 352 |
176. | S. Yang, W. Liu, Y. Han, Z. Liu, W. Zhao, C. Duan, Y. Che, H. Gu, Y. Li, S. (F. ) Liu, Adv. Energy Mater., 2020, 10, 2002882 |
177. | J. Chen, J. Y. Seo and N. G. Park, Adv. Energy Mater., 2018, 8, 1702714 |
178. | M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt and M. Grätzel, Energy Environ. Sci., 2016, 9, 1989 |
179. | S. Sidhik, Y. Wang, M. D. Siena, R. Asadpour, A. J. Torma, Tanguy Terlier, K. Ho, Wenbin Li, A. B. Puthirath, Xinting Shuai, A. Agrawal, B. Traore, M. Jones, R. Giridharagopal, P. M. Ajayan, J. Strzalka1, D. S. Ginger, C. Katan, M. Ashraful Alam, J. Even, M. G. Kanatzidis, A. D. Mohite, Science, 2022, 377, 1425 |
180. | Y. W. Jang, S. Lee, K. M. Yeom, K. Jeong, K. Choi, M. Choi and J. H. Noh, Nat. Energy, 2021, 6, 63 |
181. | N. Ahn, D. Y. Son, I. H. Jang, S. M. Kang, M. Choi and N. G. Park, J. Am. Chem. Soc., 2015, 137, 8696 |
182. | J. W. Lee, Z. Dai, C. Lee, H. M. Lee, T. H. Han, N. De Marco, O. Lin, C. S. Choi, B. Dunn, J. Koh, D. D. Carlo, J. H. Ko, H. D. Maynard and Y. Yang, J. Am. Chem. Soc., 2018, 140, 6317 |
183. | T. Bu, J. Li, H. Li, C. Tian, J. Su, G. Tong, L. K. Ono, C. Wang, Z. Lin, N. Chai, X. L. Zhang, J. Chang, J. Lu, J. Zhong, W. Huang, Y. Qi, Y. B. Cheng and F. Huang, Science, 2021, 372, 1327 |
184. | P. Zhao, B. J. Kim, X. Ren, D. G. Lee, G. J. Bang, J. B. Jeon, W. B. Kim and H. S. Jung, Adv. Mater., 2018, 30, 1802763 |
185. | N. Li, X. Niu, L. Li, H. Wang, Z. Huang, Y. Zhang, Y. Chen, X. Zhang, C. Zhu, H. Zai, Y. Bai, S. Ma, H. Liu, X. Liu, Z. Guo, G. Liu, R. Fan, H. Chen, J. Wang, Y. Lun, X. Wang, J. Hong, H. Xie, D. S. Jakob, X. G. Xu, Q. Chen and H. Zhou, Science, 2021, 373, 561 |
186. | W. Hui, L. Chao, H. Lu, F. Xia, Q. Wei, Z. Su, T. Niu, L. Tao, B. Du, D. Li, Y. Wang, H. Dong, S. Zuo, B. Li, W. Shi, X. Ran, P. Li, H. Zhang, Z. Wu, C. Ran, L. Song, G. Xing, X. Gao, J. Zhang, Y. Xia, Y. Chen and W. Huang, Science, 2021, 371, 1359 |
187. | C. Chen, J. Chen, H. Han, L. Chao, J. Hu, T. Niu, H. Dong, S. Yang, Y. Xia, Y. Chen and W. Huang, Nature, 2022, 612, 266 |
188. | L. A. Muscarella and B. Ehrler, Joule, 2022, 6, 2016 |
189. | Y. Chen, Y. Lei, Y. Li, Y. Yu, J. Cai, M.-H. Chiu, R. Rao, Y. Gu, C. Wang, W. Choi, H. Hu, C. Wang, Y. Li, J. Song, J. Zhang, B. Qi, M. Lin, Z. Zhang, A. E. Islam, B. Maruyama, S. Dayeh, L. J. Li, K. Yang, Y. H. Lo and S. Xu, Nature, 2020, 577, 209 |
190. | H. S. Kim and N. G. Park, NPG Asia Mater., 2020, 12, 78 |
191. | H. Jing, R. Sa and G. Xu, Chem. Phys. Lett., 2019, 732, 136642 |
192. | D. Liu, Q. Li, H. Jing and K. Wu, RSC Adv., 2019, 9, 3279 |
193. | C. Zhu, X. Niu, Y. Fu, N. Li, C. Hu, Y. Chen, X. He, G. Na, P. Liu, H. Zai, Y. Ge, Y. Lu, X. Ke, Y. Bai, S. Yang, P. Chen, Y. Li, M. Sui, L. Zhang, H. Zhou and Q. Chen, Nat. Commun., 2019, 10, 815 |
194. | W. J. Yin, J. H. Yang, J. Kang, Y. Yan and S. H. Wei, J. Mater. Chem. A, 2015, 3, 8926 |
195. | G. Liu, L. Kong, J. Gong, W. Yang, H.-k. Mao, Q. Hu, Z. Liu, R. D. Schaller, D. Zhang and T. Xu, Adv. Func. Mater., 2017, 27, 1604208 |
196. | W. Travis, E. N. K. Glover, H. Bronstein, D. O. Scanlon and R. G. Palgrave, Chem. Sci., 2016, 7, 4548 |
197. | D. J. Xue, Y. Hou, S. C. Liu, M. Wei, B. Chen, Z. Huang, Z. Li, B. Sun, A. H. Proppe, Y. Dong, M. I. Saidaminov, S. O. Kelley, J. S. Hu and E. H. Sargent, Nat. Commun., 2020, 11, 1514 |
198. | T. Chen, B. J. Foley, C. Park, C. M. Brown, L. W. Harriger, J. Lee, J. Ruff, M. Yoon, J. J. Choi and S.-H. Lee, Sci. Adv., 2016, 2, e1601650 |
199. | M. Qin, K. Tse, T. K. Lau, Y. Li, C. J. Su, G. Yang, J. Chen, J. Zhu, U. S. Jeng, G. Li, H. Chen and X. Lu, Adv. Mater., 2019, 31, 1901284 |
200. | T. A. S. Doherty, S. Nagane, D. J. Kubicki, Y.-K. Jung, D. N. Johnstone, A. N. Iqbal, D. Guo, K. Frohna, M. Danaie, E. M. Tennyson, S. Macpherson, A. Abfalterer, M. Anaya, Y.-H. Chiang, P. Crout, F. S. Ruggeri, S. Collins, C. P. Grey, A. Walsh, P. A. Midgley and S. D. Stranks, Science, 2021, 374, 1598 |
201. | M. Wong-Stringer, O. S. Game, J. A. Smith, T. J. Routledge, B. A. Alqurashy, B. G. Freestone, A. J. Parnell, N. Vaenas, V. Kumar, M. O. A. Alawad, A. Iraqi, C. Rodenburg and D. G. Lidzey, Adv. Energ. Mater., 2018, 8, 1801234 |
202. | H. Wang, C. Zhu, L. Liu, S. Ma, P. Liu, J. Wu, C. Shi, Q. Du, Y. Hao, S. Xiang, H. Chen, P. Chen, Y. Bai, H. Zhou, Y. Li and Q. Chen, Adv. Mater., 2019, 31, 1904408 |
203. | H. Zhang, Z. Chen, M. Qin, Z. Ren, K. Liu, J. Huang, D. Shen, Z. Wu, Y. Zhang, J. Hao, C. S. Lee, X. Lu, Z. Zheng, W. Yu and G. Li, Adv. Mater., 2021, 33, 2008487 |
204. | R. Wang, X. Li, J. Qi, C. Su, J. Yang, S. Yang, M. Yuan and T. He, Adv. Mater., 2023, 35, 2304149 |
205. | J. Zhao, Y. Deng, H. Wei, X. Zheng, Z. Yu, Y. Shao, J. E. Shield and J. Huang, Sci. Adv., 2017, 3, eaao5616 |
206. | B. Chen, J. Song, X. Dai, Y. Liu, P. N. Rudd, X. Hong and J. Huang, Adv. Mater., 2019, 31, 1902413 |
207. | N. Rolston, K. A. Bush, A. D. Printz, A. Gold-Parker, Y. Ding, M. F. Toney, M. D. McGehee and R. H. Dauskardt, Adv. Energy Mater., 2018, 8, 1802139 |
208. | C. C. Zhang, S. Yuan, Y.-H. Lou, Q. W. Liu, M. Li, H. Okada and Z. K. Wang, Adv. Mater., 2020, 32, 2001479 |
209. | D. Luo, W. Yang, Z. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. Xu, T. Liu, K. Chen, F. Ye, P. Wu, L. Zhao, J. Wu, Y. Tu, Y. Zhang, X. Yang, W. Zhang, R. H. Friend, Q. Gong, H. J. Snaith and R. Zhu, Science, 2018, 360, 1442 |
210. | A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Graetzel and H. Han, Science, 2014, 345, 295 |
211. | Z. Ku, Y. Rong, M. Xu, T. Liu and H. Han, Sci. Rep., 2013, 3, 3132 |
212. | X. Li, M. Tschumi, H. W. Han, S. S. Babkair, R. A. Alzubaydi, A. A. Ansari, S. S. Habib, M. K. Nazeeruddin, S. M. Zakeeruddin and M. Gratzel, Energy Technol., 2015, 3, 551 |
213. | J. Liu, D. Wang, Y. Zhang, K. Chen, B. She, B. Liu, Z. Zhang, Y. Huang, J. Xiong, H. Zhang and J. Zhang, Sol. RRL, 2021, 5, 2100274 |
214. | D. Wang, Z. Zhang, J. Liu, Y. Zhang, K. Chen, B. She, B. Liu, Y. Huang, J. Xiong and J. Zhang, ACS Appl. Mater. Interfaces, 2021, 13, 45435 |
215. | D. J. Wang, Z. L. Zhang, T. H. Huang, B. She, B. C. Liu, Y. W. Chen, L. B. Wang, C. S. Wu, J. Xiong, Y. Huang and J. Zhang, ACS Appl. Mater. Interfaces, 2022, 14, 9161 |
216. | Z. Fu, M. Xu, Y. Sheng, Z. Yan, J. Meng, C. Tong, D. Li, Z. Wan, Y. Ming, A. Mei, Y. Hu, Y. Rong and H. Han, Adv. Funct. Mater., 2019, 29, 1809129 |
217. | A. Mei, Y. Sheng, Y. Ming, Y. Hu, Y. Rong, W. Zhang, S. Luo, G. Na, C. Tian, X. Hou, Y. Xiong, Z. Zhang, S. Liu, S. Uchida, T.-W. Kim, Y. Yuan, L. Zhang, Y. Zhou and H. Han, Joule, 2020, 4, 2646 |
218. | K. Aitola, G. Gava Sonai, M. Markkanen, J. Jaqueline Kaschuk, X. Hou, K. Miettunen and P. D. Lund, Sol. Energy, 2022, 237, 264 |
219. | M. D. Kempe, G. J. Jorgensen, K. M. Terwilliger, T. J. McMahon, C. E. Kennedy and T. T. Borek, Sol. Energy Mater. Sol. Cells, 2007, 91, 315 |
220. | S. Cros, R. de Bettignies, S. Berson, S. Bailly, P. Maisse, N. Lemaitre and S. Guillerez, Sol. Energy Mater. Sol. Cells, 2011, 95, S65 |
221. | G. Griffini and S. Turri, J. Appl. Polym. Sci., 2016, 133, 43080 |
222. | S. Ma, Y. Bai, H. Wang, H. Zai, J. Wu, L. Li, S. Xiang, N. Liu, L. Liu, C. Zhu, G. Liu, X. Niu, H. Chen, H. Zhou, Y. Li and Q. Chen, Adv. Energy Mater., 2020, 10, 1902472 |
223. | J. Zhao, K. O. Brinkmann, T. Hu, N. Pourdavoud, T. Becker, T. Gahlmann, R. Heiderhoff, A. Polywka, P. Görrn, Y. Chen, B. Cheng and T. Riedl, Adv, Energy MAter., 2017, 7, 1602599 |
224. | Bella, G. Griffini, J. P. Correa-Baena, G. Saracco, M. Grätzel, A. Hagfeldt, S. Turri and C. Gerbaldi, Science, 2016, 354, 203 |
225. | L. Shi, M. P. Bucknall, T. L. Young, M. Zhang, L. Hu, J. Bing, D. S. Lee, J. Kim, T. Wu, N. Takamure, D. R. McKenzie, S. Huang, M. A. Green and A. W. Y. Ho-Baillie, Science, 2020, 368, eaba2412 |
226. | H. Kim, J. Lee, B. Kim, H. R. Byun, S. H. Kim, H. M. Oh, S. Baik and M. S. Jeong, Sci. Rep., 2019, 9, 15461 |
227. | Y. I. Lee, N. J. Jeon, B. J. Kim, H. Shim, T.-Y. Yang, S. I. Seok, J. Seo and S. G. Im, Adv. Energy Mater., 2018, 8, 1701928 |
228. | L. Ocaña, C. Montes, S. González-Pérez, B. González-Díaz and E. Llarena, Appl. Sci., 2022, 12, 5228 |
229. | R. Cheacharoen, N. Rolston, D. Harwood, K. A. Bush, R. H. Dauskardt and M. D. McGehee, Energy Environ. Sci., 2018, 11, 144 |
230. | A. Uddin, M. Upama, H. Yi and L. Duan, Coatings, 2019, 9, 65 |
231. | M. C. López-Escalante, L. J. Caballero, F. Martín, M. Gabás, A. Cuevas and J. R. Ramos-Barrado, Sol. Energy Mater. Sol. Cells, 2016, 144, 691 |
232. | L. Xiang, F. Gao, Y. Cao, D. Li, Q. Liu, H. Liu and S. Li, Org. Electron., 2022, 106, 106515 |
233. | S. Chen, Y. Deng, H. Gu, S. Xu, S. Wang, Z. Yu, V. Blum and J. Huang, Nat. Energy, 2020, 5, 1003 |
234. | X. Li, F. Zhang, H. He, J. J. Berry, K. Zhu and T. Xu, Nature, 2020, 578, 555 |
235. | X. Xiao, M. Wang, S. Chen, Y. Zhang, H. Gu, Y. Deng, G. Yang, C. Fei, B. Chen, Y. Lin, M. D. Dickey and J. Huang, Sci. Adv., 2021, 7, eabi8249 |
236. | S. Ma, G. Yuan, Y. Zhang, N. Yang, Y. Li and Q. Chen, Energy Environ. Sci., 2022, 15, 13 |
237. | C. Y. Chang, K. T. Lee, W. K. Huang, H. Y. Siao and Y. C. Chang, Chem. Mater., 2015, 27, 5122 |
238. | Q. Dong, F. Liu, M. K. Wong, H. W. Tam, A. B. Djurišić, A. Ng, C. Surya, W. K. Chan and A. M. C. Ng, ChemSusChem, 2016, 9, 2597 |
239. | Y. Han, S. Meyer, Y. Dkhissi, K. Weber, J. M. Pringle, U. Bach, L. Spiccia and Y.-B. Cheng, J. Mater. Chem. A, 2015, 3, 8139 |
240. | Q. Emery, M. Remec, G. Paramasivam, S. Janke, J. Dagar, C. Ulbrich, R. Schlatmann, B. Stannowski, E. Unger and M. Khenkin, ACS Appl. Mater. Interfaces, 2022, 14, 5159 |
241. | L. Moro, T. A. Krajewski, N. M. Rutherford, O. Philips, R. J. Visser, Proc. SPIE, 2004, 5214, 83 |
242. | https://global.samsungdisplay.com/29678/ |
243. | Y. Lv, B. Cai, R. Yuan, Y. Wu, Q. Qiao, W.-H. Zhang, J. Energy Chem., 2023, 82, 66 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
The schematic of the crystal structure of perovskite materials.
PSCs architectures consisting of a TCO electrode, ETL, perovskite, HTL and electrode. a Mesoscopic and b planar n-i-p structure. c Planar and d mesoscopic p-i-n structure.
a Schematic describing the crystal structure change before illumination (local distortion) and after illumination (lattice expansion).[27] Copyright 2018, Science Press. b Maximum power output tracking (MPP) for 3 identically prepared PSCs (device A, B and C) measured under UV-filtered 1-sun equivalent light.[30] Copyright 2017, the Royal Society of Chemistry.
Proposed mechanisms for TiO2 ETLs-induced degradation under different condition: degradation triggered by photocatalytic ability of TiO2 at the ETL/perovskite interface: a TiO2/MAPbI3 and b TiO2/Sb2S3/MAPbI3.[32] Copyright 2014, American Chemical Society. c Under inert condition.[33] Copyright 2020, Cell Press.
Top-surface SEM images of unreacted PbI2 crystals formed in CsFAMA-based perovskite films with different PbI2 solution concentrations: a S-1, b S-2, and c S-3 films. d Their PCE evolution under continuous illumination with a light intensity of 100 mW cm–2.[46] Copyright 2020, Wiley-VCH.
Schematic representation of the reaction steps of O2 with MAPbI3. a Oxygen diffusion, b photoexcitation of MAPbI3 to create electrons and holes, c superoxide formation, and d degradation reaction.[50] Copyright 2017, Nature Publishing Group. e The photo-oxidative degradation process of the MAPbI3 (001) surface.[52] Copyright 2019, the Royal Society of Chemistry.
a Photoluminescence (PL) spectra of MAPb(BrxI1-x)3 with an x = 0.4 thin film over 45 s in 5 s increments under 457 nm, 15 mW cm–2 light at 300 K. b XRD patterns of MAPb(BrxI1-x)3 with an x = 0.2 film (dashed green) and an x = 0.7 film (dashed brown).[56] Copyright 2015, the Royal Society of Chemistry. c Microscopic events enabling halide segregation alongside associated time scales. d Possible mechanisms for vertical and lateral mass transport of oxidized iodine species.[58] Copyright 2021, Cell Press. e Theoretical analysis of the phase separation mechanism CsFA-based PSCs under operational stressors.[60] Copyright 2020, Cell Press.
a Cross-sectional SEM image, b J-V curves for LBSO-based PSCs. c Photostability tests under constant AM 1.5G illumination with a xenon lamp, including UV radiation for unencapsulated devices of FTO/ETLs/MAPbI3/PTAA/Au. d Long-term photostability test under constant AM 1.5G illumination with a metal-halide lamp, including UV radiation for two encapsulated devices of FTO/ ETLs/MAPbI3/NiO/FTO.[64] Copyright 2017, Science Press. e MPP decay profiles of the PSCs fabricated with ZTO ETL in 5 days (under N2 atmosphere).[66] Copyright 2019, Wiley-VCH. f MPP tracking of devices based on SnO2 NCs with and without HP under constant simulated solar illumination (100 mW cm–2) with no UV cutoff filter for
a The schematic diagram of dimensional perovskite regulation based on the stoichiometric ratio of BnI. b Schematic, diagram of ion migration and lattice distortion deformation induced by the electro-strictive strain for the polycrystalline 3D and 1D–3D perovskite films. c Long-term stability of PSCs under continuous light soaking (100 mW cm–2) in N2 at a temperature of ≈ 45–55 °C. Reproduced with permission.[85] Copyright 2021, Wiley-VCH.
a Schematic of the p-i-n perovskite solar cell and the chemical structure of [BMP]+[BF4]−. b PCE evolution of unencapsulated cells under full-spectrum at 60 °C in air.[95] Copyright 2020, Science Press. c Proposed mechanism diagram of cyclically elimination of Pb0 and I0 defects and regeneration of Eu3+-Eu2+ metal ion pair. d The MPP tracking under 1-sun illumination.[96] Copyright 2019, Science Press. e Molecular structures of CPPA. f The scheme of interaction modes between CPPA and perovskites. g The device structure. h Molecular structures of PPO-TEMPO and PPO-TEMPO(TFSI). i Evolution of the PCE over time, as measured by MPP tracking of encapsulated cells under light soaking with AM1.5G simulated illumination at a temperature of 70 ± 5 °C. Copyright 2023, Science Press. [100] j Schematic structure of the FSA-FAPbI3-based device and FSA-induced dipole moment at the SnO2/perovskite interface. k MPP tracking measured with the target and control FAPbI3 PSCs under full solar illumination (AM 1.5G, 100 mW cm–2 in N2 condition at 50–60 °C).[102] Copyright 2022, Wiley-VCH. l Schematic diagram of the action mechanism of sustainable passivation. m Long-term stability of control and target devices stored under full-spectrum illumination in an N2 atmosphere without an external capping layer (≈ 25 °C).[103] Copyright 2022, Wiley-VCH.
a Schematic illustration of defects in perovskite passivated by C343.[120] Copyright 2022, Elsevier. b Illustration of long-chain surface-anchoring alkylamine ligands (AALs) block the holes at the perovskite and C60 interface. Here, AAL refers to oleylamine (OAm). c Thermal stability of pristine and AAL-based devices at 85 °C in a nitrogen atmosphere.[121] Copyright 2020, Nature Publishing Group. d Device structure of PS-PAN-modified PSCs. e The stability of the control and optimized PS-PAN-modified devices under full-spectrum illumination at 75 °C in the nitrogen glove box.[124] Copyright 2021, Elsevier. f +80 °C and g −60 °C of control and target PSCs against thermal cycling was implemented with a ramp rate of 20 °C per minute.[126] Copyright 2023, American Association for the Advancement of Science.
a Schematic diagram of surface sulfidationtreatment (SST). b Thermal stabilityof unencapsulated PSCs under 85 °C heating in a glove box.[127] Copyright 2022, American Association for the Advancement of Science. c Architecture of the PSCs. The 1-benzyl-3-methylimidazolium iodide (BzMIMI) induced a low-dimensional halide (LDH) thin layer on the perovskite. d Thermal stability of control and imidazolium-halide-treated devices.[128] Copyright 2022, Wiley-VCH.
a Illustration of the invert PSCs device based on SaC-100 modified NiOx. b Thermal stability of devices based NiOx and NiOx/SaC-100 hole transport layer kept in N2 at 85 °C for 30 days.[131] Copyright 2021, Elsevier. c Schematic illustration of inverted PSC with organometallic compound FcTc2 as the interface functionalization material. d Normalized PCE of encapsulated devices measured following the IEC61215:2016 standards (85% RH and 85 °C).[133] Copyright 2022, American Association for the Advancement of Science.
a Schematic diagram of the Bi interlayer prohibiting both inward and outward permeation in inverted PSC. b Normalized PCE of unencapsulated PSCs aged in the dark at 85 °C in an N2 atmosphere.[135] Copyright 2019, Nature Publishing Group. c Device configuration of inverted PSC with BTA anticorrosion layer. d Thermal stability of PSCs with or without BTA aged at 85 °C in a glove box.[136] Copyright 2020, American Association for the Advancement of Science.
a Schematicdiagram of design principles and the chemical structures of MPA-BTI and MPA-BTTI molecule. b Cross-section SEM image of the MPA-BTTI-based PSCs. c Thermal stability of three kinds of devices (PTAA-based device, NiO-based device and MPA-BTTI-based device) stressed at 80 °C in inert environment in the dark.[144] Copyright 2019, Wiley-VCH. d Energy-level diagram and cross-sectional SEM image of the mesoscopic device.[151] Copyright 2021, Elsevier.
a Band energy diagram of inverted PSCs. b Efficiency variations of inverted PSCs with NDI-PM and PCBM electron transport layer on a hot plate at 90 °C for 100 min.[156] Copyright 2017, The Royal Society of Chemistry. c Thermal stability of encapsulated devices with different electron transport layers monitored at 85 °C in the dark in an inert N2 atmosphere.[157] Copyright 2019, The Royal Society of Chemistry. d Schematic and cross-section SEM image of the inverted PSC. e Aging of PSCs under 1 Sun illumination (100 mW cm−2) at 85 °C in ambient air. f Normalized absorption of MAPbI3 and MAPbI3/ALD-AZO films measured under 170 °C thermal stress.[159] Copyright 2018, Wiley-VCH.
a and b XRD patterns of TP6-treated and control perovskite films aged in a plastic box with 45-55% RH, insets are the optical photos of the corresponding perovskite films. [161] Copyright 2022, Elsevier. c Aging test of the pristine and nHA devices stored in ambient air with an RH of approximately 25%. d The dynamic MPP tracking of the pristine and the nHA devices under continues 1-sun light soaking in N2 atmosphere.[171] Copyright 2022, Wiley-VCH.
a Photovoltaic metrics of devices with different modifications. b J–V curves under forward and reverse scanning, c SPO at MPP measured at given constant bias voltage, and d EQE spectrum of 2% Th+BT CsPbI2Br perovskite solar cells. e Stability tests of the control and 2% Th+BT devices under N2 atmosphere at 85 °C. The structures of devices for stability tests are ITO/SnO2/perovskite/P3HT/Ag and the devices stored in dark at open circuit condition.[173] Copyright 2022, Wiley-VCH.
a and b Images of water droplets on the surface of 2D/3D-(PFPEA)2PbI4/Cs0.04FA0.92MA0.04PbI3) and 2D-Cs0.04FA0.92MA0.04PbI3 perovskite films at different water loading times. c Ambient atmosphere aging results of a 3D PSC and a 3D/2D PSC with the 40% RH.[174] Copyright 2019, Science Press. d and e The contact angle for a water droplet on CsPbI2Br perovskite films without and with Cs2PbI2Cl2 NSs. f The air stability of the control (FTO/TiO2/CsPbI2Br/Spiro-OMeTAD/Au), single-side-modified (SSM) and double-side-modified (DSM) PSCs aged in ambient air humidity conditions (≈35%).[176] Copyright 2020, Wiley-VCH. g Illustration of the capped device structure used in the work with a 2D Cs2PbI2Cl2 layer atop the 3D CsPbI3 perovskite active layer. h and i Normalized PCE of uncapped and capped PSCs plotted against the equivalent aging time at 35 °C, defined as aging time (in units of hours) multiplied by the acceleration factor, for PSCs under all temperatures studied in this work.[11] Copyright 2022, Science Press.
a Average PCE evolution of the unencapsulated devices measured over a 500-hour stability test at 85 °C in ambient air (15 ± 5% RH). The shaded regions represent the variation range of the PCE obtained from eight cells.[183] Copyright 2021, Science Press. Comparisons of the normalized PCE between PSCs fabricated from thin films by anisole and chlorobenzene using various process parameters: b DMF: DMSO ratio from 6:4 to 9:1, c antisolvent dripping time from 5 to 25 s and d antisolvent dripping volume from 0.1 to 0.9 mL.[184] Copyright 2018, Wiley-VCH. e PCE distribution of Ref- and LMA-fabricated PSCs under different seasons (the average temperature/humidity in the laboratory for spring, summer, autumn, and winter were ~20 °C/~30% RH, ~35 °C/~65% RH, ~25 °C/~40% RH, and ~15 °C/~15% RH, respectively).[185] Copyright 2021, Science Press.
Photovoltaic device performance. a J–V curves of champion device based on FAPbI3@MAFa and FAPbI3@DMF: DMSO films. b Stability of unencapsulated devices stored in a N2-filled glove box in the dark. Error bars indicate the error or uncertainty in the reported measurements. c Comparison of the thermal stability of two unencapsulated devices under continuous heating at 85 °C in a N2-filled glove box. Error bars indicate the error or uncertainty in the reported measurements. d Operational stability of two unencapsulated devices at maximum power point (0.92 and 0.72 V for FAPbI3@MAFa and FAPbI3@DMF devices, respectively) under a white light-emitting diode lamp in a N2-filled glove box.[183] Copyright 2021, Science Press.
a Calculated optical spectrum of CsPbI3 under different strains.[191] Copyright 2019, Elsevier. b VBM, CBM and bandgap of CsGeI3 as a function of strain. PBE denotes that the DFT calculation was performed using Perdew–Burke–Ernzerhof functional, the accuracy of which could be improved by using a hybrid functional Heyd–Scuseria–Ernzerhof (HSE06) calculations.[192] Copyright 2019, Royal Society of Chemistry. c Calculated band structures of perovskite film under compressive (1%), strain-free (0%) and tensile (1%) strains based on the first-principle DFT approaches.[193] Copyright 2019, Springer Nature.
Schematic describing the residual stress relaxation with soft and stiff structural subunits.[87] Copyright 2019, Wiley-VCH.
a Thermal expansion coefficient of widely-used functional layers in PSCs including substrates, ETLs, perovskites, and HTLs. b Annealing temperatures of different hybrid and inorganic perovskite films during formation. c Schematic showing the formation of tensile and compressive strains.[197] Copyright 2020, Springer Nature. d Protonated amino terminals (R-NH3Br) and lattice structure of APTES and PASCA-Br modified interfaces. e Corresponding device stabilities stored for 1 month.[207] Copyright 2020, Wiley-VCH.
a The calculated net average stress in perovskites within structures consisting of ITO/TiO2/perovskite/PDCBT as a function of PDCBT spin-coating temperature. b Measured strain in perovskite films coated with PDCBT HTLs at different spin-coating temperatures. c Evolution of normalized PCEs under MPP tracking and continuous simulated solar illumination (100 mW cm−2). d Evolution of normalized PCEs of PSCs kept at 85 °C in a nitrogen atmosphere.[169] Copyright 2020, Springer Nature.
a Schematic drawing showing the cross-section of the HTL-free mesoscopic C-PSCs.[209] Copyright 2014, Science. b The changing characters of the device in 840 h after fabrication.[210] Copyright 2013, Nature Publishing Group. c The device was encapsulated and kept in a normal oven filled with ambient air at 80-85 °C for three months. Measurements employed simulated full solar AM1.5 light at room temperature.[211] Copyright 2015, Wiley-VCH. d long-term stability test of the control and biuret-doped devices.[214] Copyright 2021, American Chemical Society. e Long-term stability of unencapsulated MAPbI3 and MAPbI3–20 mol% MACl at 50 ± 5% RH in the dark.[212] Copyright 2021, Wiley-VCH.
Statistical Stability Results with Standard Deviations of IEC61215:2016 and MPPT Tests for Printable MA Containing PSCs with and without 5-AVAI. Performance evolutions of devices under a the damp heat test (85 °C/85% RH,
a Scheme of capping process via ALD deposited SnOx encapsulation layers, which could suppress the outgassing of volatile decomposition products.[160] Copyright 2017, Wiley-VCH. b Scheme of a luminescent photopolymer encapsulated perovskite solar cell.[224] Copyright 2016, Science Press. c Results of the aging test under UV light for perovskite solar cell with/without luminescent photopolymer encapsulation layers.[224] Copyright 2016, Science Press. d Scheme of lamination encapsulation for PSCs with the use of a polymer sealant (PIB).[225] Copyright 2020, Science Press. e Scheme of encapsulation based on cover glass, UV-curable epoxy and spin-coated polymer PVP.[201] Copyright 2018, Wiley-VCH. f Scheme of encapsulation based on cover glass, paraffin and UV-curable adhesive (UVCA).[222] Copyright 2020, Wiley-VCH. g Scheme of parylene-C encapsulated PSCs.[226] Copyright 2019, Nature Publishing Group. h Scheme of ALD deposited Al2O3 and iCVD deposited pV3D3 based muti-layers encapsulated PSCs.[201] Copyright 2018, Wiley-VCH.