Citation: | Qinglin Li, Fuxiang Zhang. Synthesis of organonitrogen compounds via heterogeneous electrocatalytic C-N coupling[J]. Energy Lab, 2024, 2(1): 230012. doi: 10.54227/elab.20230012 |
The traditional energy-intensive heterogeneous thermochemical processes have historically yielded a substantial quantity of high-value chemicals, but it simultaneously results in significant emission of carbon dioxide (CO2) and nitrogen oxide (NOx) species, and a heavy reliance on fossil resources. A promising strategy to address it is to utilize CO2 greenhouse gases and NOx pollutants as feedstocks for production of high-value chemicals under ambient conditions driven by renewable energy sources. To achieve the objectives, it is essential and highly desirable to focus on the development of electrocatalytic technology for construction of C-N bonds beyond the C-O or N-O cleavage and formation. To date, however, the ambiguous reaction mechanism and severe competitive side reactions has greatly constrained the activity and selectivity of the electrocatalytic C-N coupling reactions. This review is devoting to summarizing the recent progress of electrocatalytic C-N coupling processes in synthesizing urea, amides, amines, and related compounds with an emphasis on understanding of the fundamental design principles of electrocatalysts and insightful perspectives of modulating heterogeneous electrocatalytic processes. It is expected to be constructive for the electrosynthesis of a wide range of high-value chemicals containing C-N coupling.
1. | Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Norskov and T. F. Jaramillo, Science, 2017, 355, eaad4998 |
2. | C. Tang, Y. Zheng, M. Jaroniec and S. Z. Qiao, Angew. Chem. Int. Ed., 2021, 60, 19572 |
3. | J. Rogelj, M. den Elzen, N. Hohne, T. Fransen, H. Fekete, H. Winkler, R. Schaeffer, F. Sha, K. Riahi and M. Meinshausen, Nature, 2016, 534, 631 |
4. | I. T. McCrum and M. T. M. Koper, Nat. Energy, 2020, 5, 891 |
5. | A. Kulkarni, S. Siahrostami, A. Patel and J. K. Nørskov, Chem. Rev., 2018, 118, 2302 |
6. | S. Zhang, Q. Fan, R. Xia and T. J. Meyer, Acc. Chem. Res., 2020, 53, 255 |
7. | Q. Li, T. Song, Z. Wang, X. Wang, X. Zhou, Q. Wang and Y. Yang, Small, 2021, 17, 2103305 |
8. | G.-L. Yang, C.-T. Hsieh, Y.-S. Ho, T.-C. Kuo, Y. Kwon, Q. Lu and M.-J. Cheng, ACS Catal., 2022, 12, 11494 |
9. | P. Liao, J. Kang, R. Xiang, S. Wang and G. Li, Angew. Chem. Int. Ed., 2024, 63, e202311752 |
10. | X. Chen, S. Song, H. Li, G. Gozaydin and N. Yan, Acc. Chem. Res., 2021, 54, 1711 |
11. | J. N. Galloway, A. R. Townsend, J. W. Erisman, M. Bekunda, Z. C. Cai, J. R. Freney, L. A. Martinelli, S. P. Seitzinger and M. A. Sutton, Science, 2008, 320, 889 |
12. | M. Atobe, H. Tateno and Y. Matsumura, Chem. Rev., 2018, 118, 4541 |
13. | H. Jiang, X. Wu, H. Zhang, Q. Yan, H. Li, T. Ma and S. Yang, Susmat, 2023, 3, 781 |
14. | J. Li, Y. Zhang, K. Kuruvinashetti and N. Kornienko, Nat. Rev. Chem., 2022, 6, 303 |
15. | X. Zhu, X. Zhou, Y. Jing and Y. Li, Nat. Commun., 2021, 12, 4080 |
16. | Y. Luo, K. Xie, P. Ou, C. Lavallais, T. Peng, Z. Chen, Z. Zhang, N. Wang, X.-Y. Li, I. Grigioni, B. Liu, D. Sinton, J. B. Dunn and E. H. Sargent, Nat. Catal., 2023, 6, 939 |
17. | W. A. Goddard, K. Chenoweth, S. Pudar, A. C. T. van Duin and M.-J. Cheng, Top. Catal., 2008, 50, 2 |
18. | T. Irrgang and R. Kempe, Chem. Rev., 2020, 120, 9583 |
19. | S. Jia, Z. Chen, Y. Jing and Y. Wang, ACS Catal., 2023, 13, 13034 |
20. | M. Sharma, J. Mangas-Sanchez, N. J. Turner and G. Grogan, Adv. Synth. Catal., 2017, 359, 2011 |
21. | J. R. Cabrero-Antonino, R. Adam, V. Papa and M. Beller, Nat. Commun., 2020, 11, 3893 |
22. | B. Zhu, Z. Liang and R. Zou, Small, 2020, 16, 1906133 |
23. | J. Meessen, Chemie Ingenieur Technik, 2014, 86, 2180 |
24. | S. Liu, T. Wang, L. Elbaz and Q. Li, Mater Rep: Energy, 2023, 3, 100178 |
25. | C. Zhu, M. Wang, C. Wen, M. Zhang, Y. Geng, G. Zhu and Z. Su, Adv. Sci., 2022, 9, e2105697 |
26. | Y. Huang, Y. Wang, Y. Liu, A. Ma, J. Gui, C. Zhang, Y. Yu and B. Zhang, Chem. Eng. J., 2023, 453, 139836 |
27. | A. R. Butler and D. Walsh, Trends Analyt. Chem., 1982, 1, 120 |
28. | D. M. Sullivan and J. L. Havlin, Soil Sci. Soc. Am. J., 1991, 55, 109 |
29. | S. Chen, S. Lin, L. X. Ding and H. Wang, Small Methods, 2023, 7, 2300003 |
30. | X. Zhang, X. Zhu, S. Bo, C. Chen, M. Qiu, X. Wei, N. He, C. Xie, W. Chen, J. Zheng, P. Chen, S. P. Jiang, Y. Li, Q. Liu and S. Wang, Nat. Commun., 2022, 13, 5337 |
31. | D. Li, N. Xu, Y. Zhao, C. Zhou, L. P. Zhang, L. Z. Wu and T. Zhang, Small Methods, 2022, 6, e2200561 |
32. | P. S. Francis, S. W. Lewis and K. F. Lim, Trends Analyt. Chem., 2002, 21, 389 |
33. | I. Buffam and K. J. McGlathery, Limnol. Oceanogr., 2003, 48, 723 |
34. | K. Y. Masami Shibata, Nagakazu Furuya, J. Electroanal. Chem., 1995, 387, 143 |
35. | Y. Zhao, R. Shi, X. Bian, C. Zhou, Y. Zhao, S. Zhang, F. Wu, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung and T. Zhang, Adv. Sci., 2019, 6, 1802109 |
36. | A. J. Martín, F. L. P. Veenstra, J. Lüthi, R. Verel and J. Pérez-Ramírez, Chem. Catal., 2021, 1, 1505 |
37. | R. Y. Hodgetts, A. S. Kiryutin, P. Nichols, H.-L. Du, J. M. Bakker, D. R. Macfarlane and A. N. Simonov, ACS Energy Lett., 2020, 5, 736 |
38. | J. Kibsgaard, J. K. Nørskov and I. Chorkendorff, ACS Energy Lett., 2019, 4, 2986 |
39. | Y. Chen, H. Liu, N. Ha, S. Licht, S. Gu and W. Li, Nat. Catal., 2020, 3, 1055 |
40. | D. Sippel, M. Rohde, J. Netzer, C. Trncik, J. Gies, K. Grunau, I. Djurdjevis, L. Decamps and S. L. A. Andrade, Science, 2018, 359, 1484 |
41. | D. B. Kayan and F. Köleli, Appl. Catal. B, 2016, 181, 88 |
42. | C. Zhu, C. Wen, M. Wang, M. Zhang, Y. Geng and Z. Su, Chem. Sci., 2022, 13, 1342 |
43. | M. Yuan, J. Chen, Y. Bai, Z. Liu, J. Zhang, T. Zhao, Q. Wang, S. Li, H. He and G. Zhang, Angew. Chem. Int. Ed., 2021, 60, 10910 |
44. | M. Yuan, J. Chen, Y. Bai, Z. Liu, J. Zhang, T. Zhao, Q. Shi, S. Li, X. Wang and G. Zhang, Chem. Sci., 2021, 12, 6048 |
45. | M. Yuan, J. Chen, H. Zhang, Q. Li, L. Zhou, C. Yang, R. Liu, Z. Liu, S. Zhang and G. Zhang, Energy Environ. Sci., 2022, 15, 2084 |
46. | M. Yuan, H. Zhang, Y. Xu, R. Liu, R. Wang, T. Zhao, J. Zhang, Z. Liu, H. He, C. Yang, S. Zhang and G. Zhang, Chem. Catal., 2022, 2, 309 |
47. | M. Yuan, J. Chen, Y. Xu, R. Liu, T. Zhao, J. Zhang, Z. Ren, Z. Liu, C. Streb, H. He, C. Yang, S. Zhang and G. Zhang, Energy Environ. Sci., 2021, 14, 6605 |
48. | L. Pan, J. Wang, F. Lu, Q. Liu, Y. Gao, Y. Wang, J. Jiang, S. Chao, J. Wang and X. Wang, Angew. Chem. Int. Ed., 2023, 62, e202216835 |
49. | J. Mukherjee, S. Paul, A. Adalder, S. Kapse, R. Thapa, S. Mandal, B. Ghorai, S. Sarkar and U. K. Ghorai, Adv. Funct. Mater., 2022, 32, 2200882 |
50. | C. Chen, X. Zhu, X. Wen, Y. Zhou, L. Zhou, H. Li, L. Tao, Q. Li, S. Du, T. Liu, D. Yan, C. Xie, Y. Zou, Y. Wang, R. Chen, J. Huo, Y. Li, J. Cheng, H. Su, X. Zhao, W. Cheng, Q. Liu, H. Lin, J. Luo, J. Chen, M. Dong, K. Cheng, C. Li and S. Wang, Nat. Chem., 2020, 12, 717 |
51. | X. Zhang, X. Zhu, S. Bo, C. Chen, K. Cheng, J. Zheng, S. Li, X. Tu, W. Chen, C. Xie, X. Wei, D. Wang, Y. Liu, P. Chen, S. P. Jiang, Y. Li, Q. Liu, C. Li and S. Wang, Angew. Chem. Int. Ed., 2023, 135, e202305447 |
52. | M. Jin, S. Wu, A. Du, J. Fan and Q. Sun, ChemCatChem, 2023, 15, e202300836 |
53. | Y. Cao, Y. Meng, R. An, X. Zou, H. Huang, W. Zhong, Z. Shen, Q. Xia, X. Li and Y. Wang, J. Colloid Interface Sci., 2023, 641, 990 |
54. | D. Jiao, Y. Dong, X. Cui, Q. Cai, C. R. Cabrera, J. Zhao and Z. Chen, J. Mater. Chem. A, 2023, 11, 232 |
55. | J. Shao, H. Jing, P. Wei, X. Fu, L. Pang, Y. Song, K. Ye, M. Li, L. Jiang, J. Ma, R. Li, R. Si, Z. Peng, G. Wang and J. Xiao, Nat. Energy, 2023, 8, 1273 |
56. | Y. Huang, R. Yang, C. Wang, N. Meng, Y. Shi, Y. Yu and B. Zhang, ACS Energy Lett., 2021, 7, 284 |
57. | N. Meng, Y. Huang, Y. Liu, Y. Yu and B. Zhang, Cell Rep. Phys. Sci., 2021, 2, 100378 |
58. | N. Cao, Y. Quan, A. Guan, C. Yang, Y. Ji, L. Zhang and G. Zheng, J. Colloid Interface Sci., 2020, 577, 109 |
59. | S. Liu, S. Yin, Z. Wang, Y. Xu, X. Li, L. Wang and H. Wang, Cell Rep. Phys. Sci., 2022, 3, 100869 |
60. | Y. Feng, H. Yang, Y. Zhang, X. Huang, L. Li, T. Cheng and Q. Shao, Nano Lett., 2020, 20, 8282 |
61. | D. Zhang, Y. Xue, X. Zheng, C. Zhang and Y. Li, Natl. Sci. Rev., 2023, 10, nwac209 |
62. | C. Lv, C. Lee, L. Zhong, H. Liu, J. Liu, L. Yang, C. Yan, W. Yu, H. H. Hng, Z. Qi, L. Song, S. Li, K. P. Loh, Q. Yan and G. Yu, ACS Nano, 2022, 16, 8213 |
63. | X. Wei, X. Wen, Y. Liu, C. Chen, C. Xie, D. Wang, M. Qiu, N. He, P. Zhou, W. Chen, J. Cheng, H. Lin, J. Jia, X. Z. Fu and S. Wang, J. Am. Chem. Soc., 2022, 144, 11530 |
64. | J. Leverett, T. Tran-Phu, J. A. Yuwono, P. Kumar, C. Kim, Q. Zhai, C. Han, J. Qu, J. Cairney, A. N. Simonov, R. K. Hocking, L. Dai, R. Daiyan and R. Amal, Adv. Energy Mater., 2022, 12, 202201500 |
65. | X. Wei, Y. Liu, X. Zhu, S. Bo, L. Xiao, C. Chen, T. T. T. Nga, Y. He, M. Qiu, C. Xie, D. Wang, Q. Liu, F. Dong, C. L. Dong, X. Z. Fu and S. Wang, Adv. Mater., 2023, 35, e2300020 |
66. | Q. Zhao, X. Lu, Y. Wang, S. Zhu, Y. Liu, F. Xiao, S. Dou, W. Lai and M. Shao, Angew. Chem. Int. Ed., 2023, 135, e202307123 |
67. | J. Zheng, S. Xu, J. Sun, J. Zhang, L. Sun, X. Pan, L. Li and G. Zhao, Appl. Catal. B, 2023, 338, 123056 |
68. | M. Xu, F. Wu, Y. Zhang, Y. Yao, G. Zhu, X. Li, L. Chen, G. Jia, X. Wu, Y. Huang, P. Gao and W. Ye, Nat. Commun., 2023, 14, 6994 |
69. | C. Liu, H. Tong, P. Wang, R. Huang, P. Huang, G. Zhou and L. Liu, Appl. Catal. B, 2023, 336, 122917 |
70. | M. Sun, G. Wu, J. Jiang, Y. Yang, A. Du, L. Dai, X. Mao and Q. Qin, Angew. Chem. Int. Ed., 2023, 62, e202301957 |
71. | Y. Mao, Y. Jiang, H. Liu, Y. Jiang, M. Li, W. Su and R. He, Chin. Chem. Lett., 2024, 35, 108540 |
72. | C. Lv, L. Zhong, H. Liu, Z. Fang, C. Yan, M. Chen, Y. Kong, C. Lee, D. Liu, S. Li, J. Liu, L. Song, G. Chen, Q. Yan and G. Yu, Nat. Sustain., 2021, 4, 868 |
73. | J. Zhao, Y. Yuan, F. Zhao, W. Han, Q. Yuan, M. Kou, J. Zhao, C. Chen and S. Wang, Appl. Catal. B, 2024, 340, 123265 |
74. | S. Shin, S. Sultan, Z.-X. Chen, H. Lee, H. Choi, T.-U. Wi, C. Park, T. Kim, C. Lee, J. Jeong, H. Shin, T.-H. Kim, H. Ju, H. C. Yoon, H.-K. Song, H.-W. Lee, M.-J. Cheng and Y. Kwon, Energy Environ. Sci., 2023, 16, 2003 |
75. | Y. Zhao, Y. Ding, W. Li, C. Liu, Y. Li, Z. Zhao, Y. Shan, F. Li, L. Sun and F. Li, Nat. Commun., 2023, 14, 4491 |
76. | H. Wang, Y. Jiang, S. Li, F. Gou, X. Liu, Y. Jiang, W. Luo, W. Shen, R. He and M. Li, Appl. Catal. B, 2022, 318, 121819 |
77. | Y. Mao, Y. Jiang, Q. Gou, S. Lv, Z. Song, Y. Jiang, W. Wang, M. Li, L. Zheng, W. Su and R. He, Appl. Catal. B, 2024, 340, 123189 |
78. | X. Liu, P. V. Kumar, Q. Chen, L. Zhao, F. Ye, X. Ma, D. Liu, X. Chen, L. Dai and C. Hu, Appl. Catal. B, 2022, 316, 121618 |
79. | Y. Wang, S. Xia, J. Zhang, Z. Li, R. Cai, C. Yu, Y. Zhang, J. Wu and Y. Wu, ACS Energy Lett., 2023, 8, 3373 |
80. | E. L. Lieu, T. Nguyen, S. Rhyne and J. Kim, Exp. Mol. Med., 2020, 52, 15 |
81. | S. J. Zuend, M. P. Coughlin, M. P. Lalonde and E. N. Jacobsen, Nature, 2009, 461, 968 |
82. | J. Xian, S. Li, H. Su, P. Liao, S. Wang, Y. Zhang, W. Yang, J. Yang, Y. Sun, Y. Jia, Q. Liu, Q. Liu and G. Li, Angew. Chem. Int. Ed., 2023, 62, e202304007 |
83. | J. Xian, S. Li, H. Su, P. Liao, S. Wang, R. Xiang, Y. Zhang, Q. Liu and G. Li, Angew. Chem. Int. Ed., 2023, 62, e202312239 |
84. | J. Wu, L. Xu, Z. Kong, K. Gu, Y. Lu, X. Wu, Y. Zou and S. Wang, Angew. Chem. Int. Ed., 2023, 62, e202311196 |
85. | M. Li, Y. Wu, B.-H. Zhao, C. Cheng, J. Zhao, C. Liu and B. Zhang, Nat. Catal., 2023, 6, 906 |
86. | X. Zhang, H. Jing, S. Chen, B. Liu, L. Yu, J. Xiao and D. Deng, Chem. Catal., 2022, 2, 1807 |
87. | Y. Wu, J. Zhao, C. Wang, T. Li, B. H. Zhao, Z. Song, C. Liu and B. Zhang, Nat. Commun., 2023, 14, 3057 |
88. | Y. Wu, W. Chen, Y. Jiang, Y. Xu, B. Zhou, L. Xu, C. Xie, M. Yang, M. Qiu, D. Wang, Q. Liu, Q. Liu, S. Wang and Y. Zou, Angew. Chem. Int. Ed., 2023, 135, e202305491 |
89. | D. R. Corbin, S. Schwarz and G. C. Sonnichsen, Catal. Today, 1997, 37, 71 |
90. | Y. Wu, Z. Jiang, Z. Lin, Y. Liang and H. Wang, Nat. Sustain., 2021, 4, 725 |
91. | C. Gunanathan, Y. Ben-David and D. Milstein. Science, 2007, 317, 790 |
92. | M. Jouny, J. J. Lv, T. Cheng, B. H. Ko, J. J. Zhu, W. A. Goddard III and F. Jiao, Nat. Chem, 2019, 11, 846 |
93. | J. Li and N. Kornienko, Chem. Sci., 2022, 13, 3957 |
94. | C. Guo, W. Zhou, X. Lan, Y. Wang, T. Li, S. Han, Y. Yu and B. Zhang, J. Am. Chem. Soc., 2022, 144, 16006 |
95. | J. Lan, Z. Wei, Y. R. Lu, D. Chen, S. Zhao, T. S. Chan and Y. Tan, Nat. Commun., 2023, 14, 2870 |
96. | Q. Wang, C. Yang, Y. Yan, H. Yu, A. Guan, M. Kan, Q. Zhang, L. Zhang and G. Zheng, Angew. Chem. Int. Ed., 2022, 62, e202212733 |
97. | J. Gu, S. Liu, W. Ni, W. Ren, S. Haussener and X. Hu, Nat. Catal., 2022, 5, 268 |
98. | Z. Yang, Q. Li, Y. Zhang, Z. Chen, L. Zhang and Y. Yang, ACS Appl. Mater. Interfaces, 2022, 14, 56344 |
99. | J. Shi, T. Yuan, M. Zheng and X. Wang, ACS Catal., 2021, 11, 3040 |
100. | M. Zheng, I. Ghosh, B. König and X. Wang, ChemCatChem, 2018, 11, 703 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Heterogeneous electrocatalysis for C-N coupling towards urea and others organonitrogen compounds via co-reduction CO2 and N2/NO/NO2−/NO3− feedstocks.
Comparison of four urea quantitative methods and the proposed photo/electrocatalytic urea synthesis and quantification protocol.
a Schematic illustration of the charge transfer process in Bi-BiVO4.[43] Copyright 2021, Elsevier. b The schematic electrocatalytic urea production mechanism based on BiFeO3/BiVO4 p–n heterostructure synergistic effects.[44] Copyright 2021, Royal Society of Chemistry. c A schematic illustration of spin-state regulation and d the charge density difference of in Co–PMDA–2-mbIM induced by host–guest interaction.[45] Copyright 2022, Royal Society of Chemistry.
a Schematic illustration of the comparison on electrocatalytic urea synthesis by the single-atom Pd1−TiO2 and dual-atom Pd1Cu1−TiO2 catalyst models.[50] Copyright 2022, Elsevier. b Morphology and structure of ZnMn−N,Cl.[51] Copyright 2023, Elsevier. c The most stable configuration of N2 and CO co-adsorption on Mo3@GDY and the corresponding charge difference diagram.[52] Copyright 2023, Elsevier.
a The performances of electrosynthesis of urea over ZnO NBs and others catalyst. b Schematic illustration for the flow cell.[56] Copyright 2022, American Chemical Society.
a Schematic illustration of synthesis of ZnO-V porous nanosheets.[57] Copyright 2021, Cell Press. b Characterization of the AuCu SANFs.[59] Copyright 2022, Cell Press. c Scheme of the urea synthesis from CO2RR and NO2RR on Te–Pd NCs.[60] Copyright 2022, American Chemical Society. d Reaction mechanism studies for electrocatalytic urea synthesis on Co–NiOx@GDY.[61] Copyright 2022, Oxford University Press.
a Illustration for the preparation and urea synthesis processes. b XRD patterns, In 3d, O 1s XPS spectra, and EPR spectra of VO-InOOH and pristine InOOH.[62] Copyright 2022, American Chemical Society. c SFG signals of intermediate species on pristine CeO2 and Vo-CeO2-750. d Schematic diagram of Vo-mediated reaction pathway changes on CeO2.[63] Copyright 2022, American Chemical Society.
Reaction pathways for a CO2RR to CO, HER in an acidic medium, and NO3RR to NH3 based on the modeled Cu-N-C sites.[64] Copyright 2022, Wiley. b Morphology, Cu K-edge XANES spectra, and Cu R-space EXAFS spectra of L-Cu1–CeO2, H-Cu–CeO2 and reference samples. c Free-energy profiles and optimized geometric structure schematic of C-N coupling process on Cu4–CeO2 sample.[65] Copyright 2023, Wiley. d Illustration of the structure of Cu−SP−OMe during the co-reduction process. Copyright 2023, Wiley.
a The product distributions of CO2RR, NO3RR and urea synthesis on Ni-SAC, Fe-SAC, I-FeNi-DASC, and B-FeNi-DASC at −1.4 V versus RHE.[30] Copyright 2022, Springer Nature. b Differential charge density of Cu1Pd(111), Cu1Pd(111)-*NH2, Pd(111)-*NH2, Cu1Pd(111)-*CO, Pd(111)-*CO. c Energy profiles of each elementary step in single CO2RR catalyzed by Cu1Pd(111) and Pd(111) planes. d Energy profiles of each elementary step in NO3RR with C–N coupling toward urea synthesis catalyzed by Cu1Pd(111), Pd(111), Cu(111) and Ni(111) planes.[68] Copyright 2023, Springer Nature. e Free-energy diagram of different catalysts for urea production.[69] Copyright 2023, Elsevier.
a Illustration for urea synthesis process on the surface of In(OH)3-S. b Schematic illustration of n–p transformation process in semiconductor type. The left image is the n-type In(OH)3, while the right image displays the generation of surface p-type layer on In(OH)3 induced by CO2 capture.[72] Copyright 2021, Springer Nature. c HR-TEM, STEM, and in situ TEM analysis of bare and lithiated Cu2O according to a degree of lithiation.[74] Copyright 2023, Royal Society of Chemistry. d Screening of single-component and hybrid catalysts for Zn/Cu catalysts.[16] Copyright 2023, Springer Nature.
a Schematic of the preparation process of the stacked Cu/ZnO GDEs. b Concept of urea synthesis on stacked tandem GDE. c Electrochemical performance of the stacked Cu/ZnO GDE.[79] Copyright 2023, American Chemical Society.
a The proposed two-pot route to enhance the space-time yield of alanine and corresponding alanine generation pathway on the OD-Ag surface.[85] Copyright 2023, Springer Nature. b the proposed reaction pathway of the eight-step cascade electrosynthesis of methylamine from CO2 and NO3− catalyzed by CoPc-NH2/CNt.[90] Copyright 2021, Springer Nature. c Schematic illustration of preparation processes and HAADF-STEM image for Ru1Cu SAA catalysts. d 1H NMR spectra of standard references and the electrolyte obtained after CORR, NO2−RR, and NO2− + CO/15NO2− + 13CO co-reduction. e The electrochemical performances for Cu NCs, Ru1Cu SAA, and RuCu NPs in a CO-saturated 1 M KOH+ 1 M KNO2 solution.[95] Copyright 2023, Springer Nature.