Pengbo Wang, Yibo Wang, Zhaoping Shi, Hongxiang Wu, Jiahao Yang, Jing Ni, Junjie Ge, Changpeng Liu, Wei Xing. Ruthenium-based metal oxide for acidic oxygen evolution reaction: advances and challenges[J]. Energy Lab, 2023, 1(3): 220018. doi: 10.54227/elab.20220018
Citation: Pengbo Wang, Yibo Wang, Zhaoping Shi, Hongxiang Wu, Jiahao Yang, Jing Ni, Junjie Ge, Changpeng Liu, Wei Xing. Ruthenium-based metal oxide for acidic oxygen evolution reaction: advances and challenges[J]. Energy Lab, 2023, 1(3): 220018. doi: 10.54227/elab.20220018

REVIEW ARTICLE

Ruthenium-based metal oxide for acidic oxygen evolution reaction: advances and challenges

More Information
  • Corresponding authors: gejunjie@ustc.edu.cn; liuchp@ciac.ac.cn; xingwei@ciac.ac.cn
  • § These authors contributed equally to this work.

  • Utilizing proton exchange membrane water electrolyzers (PEMWE) to produce hydrogen is a promising way to provide clean energy, reduce carbon emissions and improve the utilization rate of renewable energy. The slow kinetics of oxygen evolution reaction (OER) at the anode is considered to be the crucial obstacle to its conversion efficiency. Due to the strong acidic and oxidizing environment of OER reaction, it is essential to develop electrocatalyst with high activity and high stability to reduce the high kinetic barrier of OER and improve the reaction rate. Among them, Ru-based catalysts have outstanding catalytic activity and relatively low price, which has aroused great interest in its practical application. Many Ru-based catalysts with superior performance have been developed in recent years. In this review, we mainly focus on the development of Ru-based catalysts towards OER, with OER mechanisms discussed first, followed by discussion in the factors affecting the catalytic performance, and then introduce current research progress of Ru-based catalysts under acidic conditions. We finally conclude the prospect of the development direction of Ru-based catalysts in the future, hopefully guiding further development of Ru-based catalysts towards real world operation.


  • 加载中
  • Pengbo Wang received his BS from Nanjing University of Science and Technology, China, in 2021. Currently, he is a master student at Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, China. under the supervision of Professor Changpeng Liu. Now his research focuses on water electrolysis technology and its microscopic reaction mechanism.
    Yibo Wang received his BS from Zhengzhou University, China, in 2018. Currently, he is an MA candidate in Physical Chemistry under the supervision of Prof. Wei Xing at the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, China. Now his research focuses on water electrolysis technology and its microscopic reaction mechanism.
    Junjie Ge received her Ph.D. in physical chemistry from the Chinese Academy of Sciences in 2010. She worked at the University of South Carolina and Hawaii Natural Energy Institute as a postdoc and joined Changchun Institute of Applied Chemistry in March 2015 as a full professor. Her research interests include fuel cells, nanoscience, catalysis, and electrochemistry. She has published over 30 peer-reviewed papers and several posters, abstracts and presentations. She is also acting as a referee for several top journals in the field related to catalysis, electro-chemistry, and fuel cells.
    Changpeng Liu received his Ph.D. in Physical Chemistry in 2002 and was appointed as a professor at the Changchun Institute of Applied Chemistry in 2012. He has been in charge of and taken part in several relevant fuel cell projects (e.g. 863 programs and 973 programs China). Liu’s research focuses on the technology and performance of catalysts, electrode MEA and stacks.
    Wei Xing is currently director of the Laboratory of Advanced Power Sources in Changchun Institute of Applied Chemistry (CIAC). After receiving his Ph.D. in Physical Chemistry, at CIAC in 1995, he worked at the Hong Kong Productivity Council (HKPC), researching the electrochemical treatment of metal surfaces. In 2001, he joined CIAC as a professor and devoted his work to development of advanced chemical power sources. He has published over 150 papers in peer-reviewed journals and has applied for over 30 patents. His research areas currently involve proton exchange membrane fuel cells from fundamental electro-catalytic processes to relevant fuel cell assembly and testing.
  • 1. B. Hui, H. Chen, C. Zhou, L. Cai, K. Zhang, F. Quan and D. Yang, Biochar, 2022, 4, 39
    2. J. He, X. Zhou, P. Xu and J. Sun, Advanced Energy Materials, 2021, 11, 2102883
    3. S. B. Scott, R. R. Rao, C. Moon, J. E. Sørensen, J. Kibsgaard, Y. Shao-Horn and I. Chorkendorff, Energy Environ. Sci., 2022, 15, 1977
    4. S. B. Scott, J. E. Sørensen, R. R. Rao, C. Moon, J. Kibsgaard, Y. Shao-Horn and I. Chorkendorff, Energy Environ. Sci., 2022, 15, 1988
    5. Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov and T. F. Jaramillo, Science, 2017, 355, 146
    6. S. Hao, H. Sheng, M. Liu, J. Huang, G. Zheng, F. Zhang, X. Liu, Z. Su, J. Hu, Y. Qian, L. Zhou, Y. He, B. Song, L. Lei, X. Zhang and S. Jin, Nat. Nanotechnol., 2021, 16, 1371
    7. Y. Liu, C. Xiao, P. Huang, M. Cheng and Y. Xie, Chem, 2018, 4, 1263
    8. J. Ni, Z. P. Shi. X. Wang, Y. B. Wang, H. X. Wu, C. P. Liu, J. J. Ge, W. Xing, J. Electrochem, 2022, 28, 2214010
    9. N. Zhang, C. Wang, J. Chen, C. Hu, J. Ma, X. Deng, B. Qiu, L. Cai, Y. Xiong and Y. Chai, ACS Nano, 2021, 15, 8537
    10. V. H. Hoa, D. T. Tran, S. Prabhakaran, D. H. Kim, N. Hameed, H. Wang, N. H. Kim and J. H. Lee, Nano Energy, 2021, 88, 106277
    11. Q. Yao, B. Huang, Y. Xu, L. Li, Q. Shao and X. Huang, Nano Energy, 2021, 84, 105909
    12. C. Wang, L. Jin, H. Shang, H. Xu, Y. Shiraishi and Y. Du, Chin. Chem. Lett., 2021, 32, 2108
    13. L. Gao, X. Zhong, J. Chen, Y. Zhang, J. Liu and B. Zhang, Chin. Chem. Lett., 2022,
    14. Y. Deng, L. Yang, Y. Wang, L. Zeng, J. Yu, B. Chen, X. Zhang and W. Zhou, Chin. Chem. Lett., 2021, 32, 511
    15. F.-Y. Chen, Z.-Y. Wu, Z. Adler and H. Wang, Joule, 2021, 5, 1704
    16. V. R. Stamenkovic, D. Strmcnik, P. P. Lopes and N. M. Markovic, Nat. Mater., 2017, 16, 57
    17. N. Z. Dandan Zhao, Lingzheng Bu, Qi Shao, Xiaoqing Huang, J. Electrochem, 2018, 24, 455
    18. M. Chatti, J. L. Gardiner, M. Fournier, B. Johannessen, T. Williams, T. R. Gengenbach, N. Pai, C. Nguyen, D. R. MacFarlane, R. K. Hocking and A. N. Simonov, Nat. Catal., 2019, 2, 457
    19. H. N. Nong, L. J. Falling, A. Bergmann, M. Klingenhof, H. P. Tran, C. Spori, R. Mom, J. Timoshenko, G. Zichittella, A. Knop-Gericke, S. Piccinin, J. Perez-Ramirez, B. R. Cuenya, R. Schlogl, P. Strasser, D. Teschner and T. E. Jones, Nature, 2020, 587, 408
    20. M. F. Lagadec and A. Grimaud, Nat. Mater., 2020, 19, 1140
    21. M. Carmo, D. L. Fritz, J. Mergel and D. Stolten, Int. J. Hydrogen Energy, 2013, 38, 4901
    22. M. Blasco-Ahicart, J. Soriano-Lopez, J. J. Carbo, J. M. Poblet and J. R. Galan-Mascaros, Nat. Chem., 2018, 10, 24
    23. H. Jang, W. Jin, G. Nam, Y. Yoo, J. S. Jeon, J. Park, M. G. Kim and J. Cho, Energy Environ. Sci., 2020, 13, 2167
    24. D. L. Burnett, E. Petrucco, K. M. Rigg, C. M. Zalitis, J. G. Lok, R. J. Kashtiban, M. R. Lees, J. D. B. Sharman and R. I. Walton, Chem. Mater., 2020, 32, 6150
    25. J. S. Kim, B. Kim, H. Kim and K. Kang, Adv. Energy Mater., 2018, 8, 1702774
    26. Q. Shi, C. Zhu, D. Du and Y. Lin, Chem. Soc. Rev., 2019, 48, 3181
    27. Y. Wu, R. Yao, Q. Zhao, J. Li and G. Liu, Chem. Eng. J., 2022, 439, 135699
    28. F. Zeng, C. Mebrahtu, L. Liao, A. K. Beine and R. Palkovits, J. Energy Chem., 2022, 69, 301
    29. L. Li, P. Wang, Q. Shao and X. Huang, Adv. Mater., 2021, 33, 2004243
    30. X.-K. Gu, J. C. A. Camayang, S. Samira and E. Nikolla, J. Catal., 2020, 388, 130
    31. H. Sun, X. Xu, Y. Song, W. Zhou and Z. Shao, Adv. Funct. Mater., 2021, 31, 2009779
    32. M. Tahir, L. Pan, F. Idrees, X. Zhang, L. Wang, J.-J. Zou and Z. L. Wang, Nano Energy, 2017, 37, 136
    33. Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, M. Jaroniec and S. Z. Qiao, J. Am. Chem. Soc., 2016, 138, 16174
    34. Y. Li, Y. Sun, Y. Qin, W. Zhang, L. Wang, M. Luo, H. Yang and S. Guo, Adv. Energy Mater., 2020, 10, 1903120
    35. X. Du, J. Huang, J. Zhang, Y. Yan, C. Wu, Y. Hu, C. Yan, T. Lei, W. Chen, C. Fan and J. Xiong, Angew. Chem. Int. Ed., 2019, 58, 4484
    36. S. Hao, M. Liu, J. Pan, X. Liu, X. Tan, N. Xu, Y. He, L. Lei and X. Zhang, Nat. Commun., 2020, 11, 5368
    37. Y. Lin, Z. Tian, L. Zhang, J. Ma, Z. Jiang, B. J. Deibert, R. Ge and L. Chen, Nat. Commun, 2019, 10, 162
    38. J. Su, R. Ge, K. Jiang, Y. Dong, F. Hao, Z. Tian, G. Chen and L. Chen, Adv. Mater., 2018, 30, 1801351
    39. T. Reier, H. N. Nong, D. Teschner, R. Schlögl and P. Strasser, Adv. Energy Mater., 2017, 7, 1601275
    40. J. Rossmeisl, Z. W. Qu, H. Zhu, G. J. Kroes and J. K. Nørskov, J. Electroanal. Chem., 2007, 607, 83
    41. I. C. Man, H. Y. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Nørskov and J. Rossmeisl, ChemCatChem, 2011, 3, 1159
    42. J. Rossmeisl, A. Logadottir and J. K. Nørskov, Chem. Phys., 2005, 319, 178
    43. Z. P. Shi, X. Wang, J. J. Ge, C. P. Liu and W. Xing, Nanoscale, 2020, 12, 13249
    44. J. Song, C. Wei, Z. F. Huang, C. Liu, L. Zeng, X. Wang and Z. J. Xu, Chem. Soc. Rev., 2020, 49, 2196
    45. C. Lin, J.-L. Li, X. Li, S. Yang, W. Luo, Y. Zhang, S.-H. Kim, D.-H. Kim, S. S. Shinde, Y.-F. Li, Z.-P. Liu, Z. Jiang and J.-H. Lee, Nat. Catal., 2021, 4, 1012
    46. S. Divanis, A. M. Frandsen, T. Kutlusoy and J. Rossmeisl, Phys. Chem. Chem. Phys., 2021, 23, 19141
    47. L. G. V. Briquet, M. Sarwar, J. Mugo, G. Jones and F. Calle-Vallejo, ChemCatChem, 2017, 9, 1261
    48. Y. Lee, J. Suntivich, K. J. May, E. E. Perry and Y. Shao-Horn, J. Phys. Chem. Lett., 2012, 3, 399
    49. N. B. Halck, V. Petrykin, P. Krtil and J. Rossmeisl, Phys. Chem. Chem. Phys., 2014, 16, 13682
    50. R. R. Rao, M. J. Kolb, N. B. Halck, A. F. Pedersen, A. Mehta, H. You, K. A. Stoerzinger, Z. Feng, H. A. Hansen, H. Zhou, L. Giordano, J. Rossmeisl, T. Vegge, I. Chorkendorff, I. E. L. Stephens and Y. Shao-Horn, Energy Environ. Sci, 2017, 10, 2626
    51. B. J. a. A. Damjanovi, J. Electrochem. Soc., 1976, 123, 374
    52. J. O. M. B. T. Otagawa, J. Phys. Chem., 1983, 87, 2960
    53. X. Rong, J. Parolin and A. M. Kolpak, ACS Catal., 2016, 6, 1153
    54. A. Grimaud, O. Diaz-Morales, B. Han, W. T. Hong, Y. L. Lee, L. Giordano, K. A. Stoerzinger, M. T. M. Koper and Y. Shao-Horn, Nat. Chem., 2017, 9, 457
    55. J. S. Yoo, X. Rong, Y. Liu and A. M. Kolpak, ACS Catal., 2018, 8, 4628
    56. Y. Tian, S. Wang, E. Velasco, Y. Yang, L. Cao, L. Zhang, X. Li, Y. Lin, Q. Zhang and L. Chen, iScience, 2020, 23, 100756
    57. K. Macounová, J. Jirkovský, M. V. Makarova, J. Franc and P. Krtil, J. Solid State Electrochem, 2009, 13, 959
    58. R. R. R. Jonathan Hwang, Livia Giordano, Yu Katayama, Yang Yu, Yang Shao-Horn, Science, 2017, 358, 751
    59. M. Okamura, M. Kondo, R. Kuga, Y. Kurashige, T. Yanai, S. Hayami, V. K. Praneeth, M. Yoshida, K. Yoneda, S. Kawata and S. Masaoka, Nature, 2016, 530, 465
    60. Y.-L. Lee, J. Kleis, J. Rossmeisl, Y. Shao-Horn and D. Morgan, Energy Environ. Sci., 2011, 4, 3966
    61. K. J. May, C. E. Carlton, K. A. Stoerzinger, M. Risch, J. Suntivich, Y.-L. Lee, A. Grimaud and Y. Shao-Horn, J. Phys. Chem. Lett., 2012, 3, 3264
    62. S. H. Chang, N. Danilovic, K. C. Chang, R. Subbaraman, A. P. Paulikas, D. D. Fong, M. J. Highland, P. M. Baldo, V. R. Stamenkovic, J. W. Freeland, J. A. Eastman and N. M. Markovic, Nat. Commun., 2014, 5, 4191
    63. S. H. Chang, J. G. Connell, N. Danilovic, R. Subbaraman, K. C. Chang, V. R. Stamenkovic and N. M. Markovic, Faraday Discuss, 2014, 176, 125
    64. K. Wang, Y. Wang, B. Yang, Z. Li, X. Qin, Q. Zhang, L. Lei, M. Qiu, G. Wu and Y. Hou, Energy Environ. Sci., 2022, 15, 2356
    65. M. W.-M. a. J. HEITBAUM, J. Electroanal. Chem. Interfacial Electrochem, 1987, 237, 251
    66. K. A. Stoerzinger, O. Diaz-Morales, M. Kolb, R. R. Rao, R. Frydendal, L. Qiao, X. R. Wang, N. B. Halck, J. Rossmeisl, H. A. Hansen, T. Vegge, I. E. L. Stephens, M. T. M. Koper and Y. Shao-Horn, ACS Energy Lett., 2017, 2, 876
    67. J. Shan, T. Ling, K. Davey, Y. Zheng and S. Z. Qiao, Adv. Mater., 2019, 31, 1900510
    68. F. Calle-Vallejo, M. T. Koper and A. S. Bandarenka, Chem. Soc. Rev., 2013, 42, 5210
    69. T. Reier, Z. Pawolek, S. Cherevko, M. Bruns, T. Jones, D. Teschner, S. Selve, A. Bergmann, H. N. Nong, R. Schlogl, K. J. Mayrhofer and P. Strasser, J. Am. Chem. Soc., 2015, 137, 13031
    70. J. Feng, F. Lv, W. Zhang, P. Li, K. Wang, C. Yang, B. Wang, Y. Yang, J. Zhou, F. Lin, G. C. Wang and S. Guo, Adv. Mater., 2017, 29, 1703798
    71. S. Chen, H. Huang, P. Jiang, K. Yang, J. Diao, S. Gong, S. Liu, M. Huang, H. Wang and Q. Chen, ACS Catal., 2019, 10, 1152
    72. H. Huang, H. Kim, A. Lee, S. Kim, W.-G. Lim, C.-Y. Park, S. Kim, S.-K. Kim and J. Lee, Nano Energy, 2021, 88, 106276
    73. W. Z. Chunlei Peng, Zhaoxia Li, Zhaoyu Kuang, Guofeng Cheng, Jeffery T. Miller, Shuhui Sun, Hangrong Chen, Chem. Eng. J., 2021, 425, 131707
    74. L. An, F. Yang, C. Fu, X. Cai, S. Shen, G. Xia, J. Li, Y. Du, L. Luo and J. Zhang, Adv. Funct. Mater., 2022, 32, 2200131
    75. Y. Wang, T. Zhou, K. Jiang, P. Da, Z. Peng, J. Tang, B. Kong, W.-B. Cai, Z. Yang and G. Zheng, Adv. Energy Mater., 2014, 4, 1400696
    76. J. T. Mefford, X. Rong, A. M. Abakumov, W. G. Hardin, S. Dai, A. M. Kolpak, K. P. Johnston and K. J. Stevenson, Nat. Commun., 2016, 7, 11053
    77. W. Li, H. Zhang, M. Hong, L. Zhang, X. Feng, M. Shi, W. Hu, S. Mu, Chem. Eng. J., 2022, 431, 134072
    78. H. Sun and W. Jung, J. Mater. Chem. A, 2021, 9, 15506
    79. Y. Qin, T. Yu, S. Deng, X. Y. Zhou, D. Lin, Q. Zhang, Z. Jin, D. Zhang, Y. B. He, H. J. Qiu, L. He, F. Kang, K. Li and T. Y. Zhang, Nat. Commun., 2022, 13, 3784
    80. D. A. Kuznetsov, M. A. Naeem, P. V. Kumar, P. M. Abdala, A. Fedorov and C. R. Muller, J. Am. Chem. Soc., 2020, 142, 7883
    81. S. Anantharaj and S. Noda, Small, 2020, 16, 1905779
    82. G. Wu, X. Zheng, P. Cui, H. Jiang, X. Wang, Y. Qu, W. Chen, Y. Lin, H. Li, X. Han, Y. Hu, P. Liu, Q. Zhang, J. Ge, Y. Yao, R. Sun, Y. Wu, L. Gu, X. Hong and Y. Li, Nat. Commun., 2019, 10, 4855
    83. L. Zhang, H. Jang, H. Liu, M. G. Kim, D. Yang, S. Liu, X. Liu and J. Cho, Angew. Chem. Int. Ed., 2021, 60, 18821
    84. X. Liu, L. Zhang, Y. Zheng, Z. Guo, Y. Zhu, H. Chen, F. Li, P. Liu, B. Yu, X. Wang, J. Liu, Y. Chen and M. Liu, Adv. Sci., 2019, 6, 1801898
    85. H. Cheng, N. Yang, G. Liu, Y. Ge, J. Huang, Q. Yun, Y. Du, C. J. Sun, B. Chen, J. Liu and H. Zhang, Adv. Mater., 2020, 32, 1902964
    86. G. G. S. Tam D. Nguyen, Zhichuan J. Xu, Electrocatalysis, 2016, 7, 420
    87. C. L. Hongchao Ma, Jianhui Liao, Yi Su, Xingzhong Xue, Wei Xing, J. Mol. Catal. A: Chem., 2006, 247, 7
    88. K. Xiao, R.-T. Lin, J.-X. Wei, N. Li, H. Li, T. Ma and Z.-Q. Liu, Nano Res., 2022, 15, 4980
    89. J. Li, C. Zhang, C. Zhang, H. Ma, Y. Yang, Z. Guo, Y. Wang and H. Ma, Chem. Eng. J., 2022, 430, 132953
    90. J. Yang, B. Chen, X. Liu, W. Liu, Z. Li, J. Dong, W. Chen, W. Yan, T. Yao, X. Duan, Y. Wu and Y. Li, Angew. Chem. Int. Ed., 2018, 57, 9495
    91. L. Cao, Q. Luo, J. Chen, L. Wang, Y. Lin, H. Wang, X. Liu, X. Shen, W. Zhang, W. Liu, Z. Qi, Z. Jiang, J. Yang and T. Yao, Nat. Commun., 2019, 10, 4849
    92. S. H. Yancai Yao, W. X. Chen, Z. Q. Huang, W. C. Wei, T. Yao, R. R. Liu, K. T. Zang, X. Q. Wang, G. Wu, W. J. Yuan, T. W. Yuan, B. Q. Zhu, W. Liu, Z. J. Li, D. S. He, Z. G. Xue, Y. Wang, X. S. Zheng, J. C. Dong, C. R. Chang, Y. X. Chen, X. Hong, J. Luo, S. Q. Wei, W. X. Li, P. Strasser, Y. Wu & Y. D. Li, Nat. Catal., 2019, 2, 304
    93. Y. L. Sourav Laha, Filip Podjaski, Daniel Weber, Viola Duppel, Leslie M. Schoop, Florian Pielnhofer, Christoph Scheurer, Kathrin Müller, Ulrich Starke, Karsten Reuter, and Bettina V. Lotsch, Adv. Energy Mater., 2019, 9, 1803795
    94. L. L. Feng, G. Yu, Y. Wu, G. D. Li, H. Li, Y. Sun, T. Asefa, W. Chen and X. Zou, J. Am. Chem. Soc., 2015, 137, 14023
    95. T. Reier, M. Oezaslan and P. Strasser, ACS Catal., 2012, 2, 1765
    96. J. Y. Kim, J. Choi, H. Y. Kim, E. Hwang, H.-J. Kim, S. H. Ahn and S.-K. Kim, Appl. Surf. Sci., 2015, 359, 227
    97. A. R. Poerwoprajitno, L. Gloag, T. M. Benedetti, S. Cheong, J. Watt, D. L. Huber, J. J. Gooding and R. D. Tilley, Small, 2019, 15, 1804577
    98. H. Cui, H.-X. Liao, Z.-L. Wang, J.-P. Xie, P.-F. Tan, D.-W. Chu and P. Jun, Rare Metals, 2022, 41, 2606
    99. J. Xu, Z. Lian, B. Wei, Y. Li, O. Bondarchuk, N. Zhang, Z. Yu, A. Araujo, I. Amorim, Z. Wang, B. Li and L. Liu, ACS Catal., 2020, 10, 3571
    100. J. Xu, J. Li, Z. Lian, A. Araujo, Y. Li, B. Wei, Z. Yu, O. Bondarchuk, I. Amorim, V. Tileli, B. Li and L. Liu, ACS Catal., 2021, 11, 3402
    101. Z. L. Zhao, Q. Wang, X. Huang, Q. Feng, S. Gu, Z. Zhang, H. Xu, L. Zeng, M. Gu and H. Li, Energy Environ. Sci., 2020, 13, 5143
    102. M. R. Joohyuk Park, Gyutae Nam, Minjoon Park, Tae Joo Shin, Suhyeon Park, Min Gyu Kim, Yang Shao-Horn and Jaephil Cho, Energy Environ. Sci., 2017, 10, 129
    103. X. Miao, L. Zhang, L. Wu, Z. Hu, L. Shi and S. Zhou, Nat. Commun., 2019, 10, 3809
    104. Q. Feng, J. Zou, Y. Wang, Z. Zhao, M. C. Williams, H. Li and H. Wang, ACS Appl. Mater. Interfaces, 2020, 12, 4520
    105. G. Zhou, P. Wang, B. Hu, X. Shen, C. Liu, W. Tao, P. Huang and L. Liu, Nat. Commun., 2022, 13, 4106
    106. P. Gayen, S. Saha and V. Ramani, Acc. Chem. Res., 2022, 55, 2191
    107. M. Retuerto, L. Pascual, F. Calle-Vallejo, P. Ferrer, D. Gianolio, A. G. Pereira, A. Garcia, J. Torrero, M. T. Fernandez-Diaz, P. Bencok, M. A. Pena, J. L. G. Fierro and S. Rojas, Nat. Commun., 2019, 10, 2041
    108. J. Kim, P. C. Shih, Y. Qin, Z. Al-Bardan, C. J. Sun and H. Yang, Angew. Chem. Int. Ed., 2018, 57, 13877
    109. M. A. Hubert, A. M. Patel, A. Gallo, Y. Liu, E. Valle, M. Ben-Naim, J. Sanchez, D. Sokaras, R. Sinclair, J. K. Nørskov, L. A. King, M. Bajdich and T. F. Jaramillo, ACS Catal., 2020, 10, 12182
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(4)

Information

Article Metrics

Article views(1007) PDF downloads(168) Citation(0)

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint