Citation: | Wenqiang Wu, Kaihang Yue, Kang Zhang, Jingcheng Xu, Xia Bao Yu, Yan Ya, Xianying Wang. Ionic liquid induced controllable synthesis of nickel-hydroxide-encapsulated NiFe layered double hydroxide for efficient oxygen evolution[J]. Energy Lab, 2023, 1(3): 220020. doi: 10.54227/elab.20220020 |
The efficiency of electrochemical water splitting is severely restricted by the slow oxygen evolution reaction (OER) on the anode. Therefore, the design and synthesis of high-performance electrocatalysts for anodic oxygen evolution is crucial for the industrialization of hydrogen production by electrolysis of water. Herein, an efficient core-shell Ni(OH)2@NiFe LDH electrocatalyst was designed with the assistant of ionic liquid for OER. The ionic liquid delayed the crystallization ability of Ni2+ ions and then facilitated the formation of NiFe LDH coated Ni(OH)2 structure. The as-obtained core-shell Ni(OH)2@NiFe LDH exhibited outstanding OER electrocatalytic activity that only required overpotentials of 258 mV to deliver current densities of 100 mA cm−2, and a decent stability of at least 300 h under a large current density of 100 mA cm−2. This study provides a valuable reference for the structure design of NiFe LDH based catalyst.
1. | Y. Yan, J.-Y. Zhang, X.-R. Shi, Y. Zhu, C. Xia, S. Zaman, X. Hu, X. Wang and B. Y. Xia, ACS Nano, 2021, 15, 10286 |
2. | Y. Zhu, K. Yue, C. Xia, S. Zaman, H. Yang, X. Wang, Y. Yan and B. Y. Xia, Nano-Micro Lett., 2021, 13, 137 |
3. | Y. Yan, Y. Xu, B. Zhao, Y. Xu, Y. Gao, G. Chen, W. Wang and B. Y. Xia, J. Mater. Chem. A, 2020, 8, 5070 |
4. | R. Gao and D. Yan, Nano Res., 2018, 11, 1883 |
5. | Z. Guo, W. Ye, X. Fang, J. Wan, Y. Ye, Y. Dong, D. Cao and D. Yan, Inorg. Chem. Front., 2019, 6, 687 |
6. | T. Binninger and M.-L. Doublet, Energy Environ. Sci., 2022, 15, 2519 |
7. | J. Wang, C. Cheng, Q. Yuan, H. Yang, F. Meng, Q. Zhang, L. Gu, J. Cao, L. Li, S.-C. Haw, Q. Shao, L. Zhang, T. Cheng, F. Jiao and X. Huang, Chem, 2022, 8, 1673 |
8. | R. Gao and D. Yan, Adv. Energy Mater., 2020, 10, 1900954 |
9. | L. Zhang, J. Han, R. Wang, X. Qiu, and J. Ji, J. Chem. Eng. Data, 2007, 52, 1401 |
10. | R. Chen, S.-F. Hung, D. Zhou, J. Gao, C. Yang, H. Tao, H. B. Yang, L. Zhang, L. Zhang, Q. Xiong, H. M. Chen and B. Liu, Adv. Mater., 2019, 31, 1903909 |
11. | R. Gao, J. Zhu and D. Yan, Nanoscale, 2021, 13, 13593 |
12. | L. Zhou, C. Zhang, Y. Zhang, Z. Li and M. Shao, Adv. Funct. Mater., 2021, 31, 2009743 |
13. | Z. Cai, P. Wang, J. Zhang, A. Chen, J. Zhang, Y. Yan and X. Wang, Adv. Mater., 2022, 34, 2110696 |
14. | L. Peng, N. Yang, Y. Yang, Q. Wang, X. Xie, D. Sun-Waterhouse, L. Shang, T. Zhang and G. I. N. Waterhouse, Angew. Chem. Int. Ed., 2021, 60, 24612 |
15. | Z. Cai, X. Bu, P. Wang, W. Su, R. Wei, J. C. Ho, J. Yang and X. Wang, J. Mater. Chem. A, 2019, 7, 21722 |
16. | X. Feng, Q. Jiao, W. Chen, Y. Dang, Z. Dai, S. L. Suib, J. Zhang, Y. Zhao, H. Li and C. Feng, Appl. Catal. B, 2021, 286, 119869 |
17. | M. V. Fedorov and A. A. Kornyshev, Chem. Rev., 2014, 114, 2978 |
18. | J. Sun, N. Guo, Z. Shao, K. Huang, Y. Li, F. He and Q. Wang, Adv. Energy Mater., 2018, 8, 1800980 |
19. | B. Murugesan, N. Pandiyan, M. Arumugam, M. Veerasingam, J. Sonamuthu, A. R. Jeyaraman, S. Samayanan and S. Mahalingam, Carbon, 2019, 151, 53 |
20. | J. Dupont and J. D. Scholten, Chem. Soc. Rev., 2010, 39, 1780 |
21. | L. Fan, L. Zhao, Y. Lv, T. Wang, Y. Tian, J. Fu and X. Liu, Inorg. Chem. Front., 2022, 9, 3679 |
22. | J. Hong, T. T. Mengesha, S.-W. Hong, H.-K. Kim and Y.-H. Hwang, J. Korean Phys. Soc., 2020, 76, 264 |
23. | C. Y. Xu and Y. X. Hua, Mater. Sci. Forum, 2011, 633, 1163 |
24. | C. Li, Z. Zhang and R. Liu, Small, 2020, 16, 2003777 |
25. | Y. Yan, G. Cheng, P. Wang, D. He and R. Chen, RSC Adv., 2014, 4, 49303 |
26. | Y. Zhai, X. Ren, Y. Sun, D. Li, B. Wang and S. Liu, Appl. Catal. B, 2023, 323, 122091 |
27. | J. Zhang, A. Wei, J. Liu, J. Zhu, Y. He and Z. Liu, J. Alloys Compd., 2022, 927, 166990 |
28. | T. u. Haq, Y. Haik, I. Hussain, H. u. Rehman and T. A. Al-Ansari, ACS Appl. Mater. Interfaces, 2021, 13, 468 |
29. | X. Ge, C. Gu, Z. Yin, X. Wang, J. Tu and J. Li, Nano Energy, 2016, 20, 185 |
30. | J.-J. Lv, J. Zhao, H. Fang, L.-P. Jiang, L.-L. Li, J. Ma and J.-J. Zhu, Small, 2017, 13, 1700264 |
31. | J. L. Gunjakar, B. Hou, A. I. Inamdar, S. M. Pawar, A. T. A. Ahmed, H. S. Chavan, J. Kim, S. Cho, S. Lee, Y. Jo, S.-J. Hwang, T. G. Kim, S. Cha, H. Kim and H. Im, Small, 2018, 14, 1703481 |
32. | Y. Hou, M. R. Lohe, J. Zhang, S. Liu, X. Zhuang and X. Feng, Energy Environ. Sci., 2016, 9, 478 |
33. | M.-F. Chiang and T.-M. Wu, Appl. Clay Sci., 2011, 51, 330 |
34. | K. Yue, J. Liu, Y. Zhu, C. Xia, P. Wang, J. Zhang, Y. Kong, X. Wang, Y. Yan and B. Y. Xia, Energy Environ. Sci., 2021, 14, 6546 |
35. | K. Yue, J. Liu, C. Xia, K. Zhan, P. Wang, X. Wang, Y. Yan and B. Y. Xia, Mater. Chem. Front., 2021, 5, 7191 |
36. | Y. Zhu, L. Zhang, B. Zhao, H. Chen, X. Liu, R. Zhao, X. Wang, J. Liu, Y. Chen and M. Liu, Adv. Funct. Mater., 2019, 29, 1901783 |
37. | J. Yang, X. Wang, B. Li, L. Ma, L. Shi, Y. Xiong and H. Xu, Adv. Funct. Mater., 2017, 27, 1606497 |
38. | C. Hu and L. Dai, Adv. Mater., 2017, 29, 1604942 |
39. | I.-K. Ahn, S.-Y. Lee, H. G. Kim, G.-B. Lee, J.-H. Lee, M. Kim and Y.-C. Joo, RSC Adv., 2021, 11, 8198 |
40. | J. Liu, J. Wang, B. Zhang, Y. Ruan, H. Wan, X. Ji, K. Xu, D. Zha, L. Miao and J. Jiang, J. Mater. Chem. A, 2018, 6, 2067 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Schematic illustration of the formation and transform the process of Ni(OH)2@NiFe LDH.
a-b SEM images, c TEM image, d HRTEM (inset shows the corresponding SAED pattern), and e HAADF-STEM, f line scanning profiles of Ni, Fe, O, N, B, and F recorded along the line shown in e, and g-l element mapping of the Ni(OH)2@NiFe LDH.
a XRD patterns, b Raman spectra of the Ni(OH)2@NiFe LDH and NiFe LDH. c FT-IR spectra of Ni(OH)2@NiFe LDH, NiFe LDH, and BMIMBF4. XPS spectra for Ni(OH)2@NiFe LDH and NiFe LDH d Ni 2p, e Fe 2p, f O 1s, g N 1s, h B 1s, i F 1s.
a LSV curves, b Tafel slopes, c Nyquist plots (inset: equivalent circuit model), d Cdl values, and e The amount of H2 and O2 catalyzed by the Ni(OH)2@NiFe LDH || NiFe LDH/Ni NCs f Chronoamperometric curves for the OER. g Polarization curves of the AEMWE cell using Ni(OH)2@NiFe LDH || NiFe LDH/Ni NCs on Ni foam (inset: the AEMWE cell photograph). h The durability of the AEMWE cell at different current densities.