Citation: | Tianze Shi, Ruilin Hou, Shaohua Guo. A perspective on low-temperature electrolytes for sodium-ion batteries[J]. Energy Lab, 2023, 1(3): 230003. doi: 10.54227/elab.20230003 |
As an ideal candidate for the next generation of energy storage devices, sodium-ion batteries (SIBs) have received tremendous attention in recent years. However, the more extensive and harsh application environment puts forward higher requirements for the low-temperature SIBs, which is mainly limited by electrolyte-related sluggish ion transport at low temperature. This perspective focuses on the low-temperature electrolytes of SIBs, and provides the in-depth understanding of the failure reasons of organic and aqueous electrolytes in SIBs at low temperature. Then, the research progress in the low-temperature organic/aqueous electrolytes are comprehensively summarized and systematically analyzed. This review is conducted to enable the rational design of low-temperature electrolytes and further promote the development of all-climate SIB technology.
1. | H.-Y. Lu, R.-L. Hou, S.-Y. Chu, H.-S. Zhou, S.-H. Guo, Acta Phys. Chim. Sin., 2023, 39, 2211057 |
2. | J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Chem. Soc. Rev., 2017, 46, 3529 |
3. | Q. Wang, Y. Liao, X. Jin, C. Cheng, S. Chu, C. Sheng, L. Zhang, B. Hu, S. Guo, H. Zhou, Angew. Chem. Int. Ed., 2022, 61, e202206625 |
4. | S. Chu, C. Zhang, H. Xu, S. Guo, P. Wang, H. Zhou, Angew. Chem., 2021, 133, 13478 |
5. | H. Xu, C. Cheng, S. Chu, X. Zhang, J. Wu, L. Zhang, S. Guo, H. Zhou, Adv. Funct. Mater., 2020, 30, 2005164 |
6. | X. Zhu, L. Wang, EcoMat, 2020, 2, e12043 |
7. | Z. Na, W. Feng, W. Chuan, B. Ying, L. Yitong, Energy Storage Science and Technology, 2016, 5, 285. |
8. | Y. You, H.-R. Yao, S. Xin, Y.-X. Yin, T.-T. Zuo, C.-P. Yang, Y.-G. Guo, Y. Cui, L.-J. Wan, J. B. Goodenough, Adv. Mater., 2016, 28, 7243 |
9. | A. Gupta, A. Manthiram, Adv. Energy Mater., 2020, 10, 2001972 |
10. | P. Mei, Y. Zhang, W. Zhang, Nanoscale, 2023, 15, 987 |
11. | A. Hu, F. Li, W. Chen, T. Lei, Y. Li, Y. Fan, M. He, F. Wang, M. Zhou, Y. Hu, Adv. Energy Mater., 2022, 12, 2202432 |
12. | Y.-J. Fang, Z.-X. Chen, X.-P. Ai, H.-X. Yang, Y.-L. Cao, Acta Phys. Chim. Sin., 2017, 33, 211 |
13. | P. Chen, C. Wu, Z. Wang, S. Li, X. Xu, J. Tu, Y.-L. Ding, ACS Appl. Energy Mater., 2022, 5, 2542 |
14. | H. Zhang, J. Song, J. Li, J. Feng, Y. Ma, L. Ma, H. Liu, Y. Qin, X. Zhao, F. Wang, ACS Appl. Mater. Interfaces, 2022, 14, 16300 |
15. | X. Rui, X. Zhang, S. Xu, H. Tan, Y. Jiang, L. Y. Gan, Y. Feng, C. C. Li, Y. Yu, Adv. Funct. Mater., 2021, 31, 2009458 |
16. | Z. Bai, X. Lv, D.-H. Liu, D. Dai, J. Gu, L. Yang, Z. Chen, ChemElectroChem, 2020, 7, 3616 |
17. | H.-H. Fan, H.-H. Li, Z.-W. Wang, W.-L. Li, J.-Z. Guo, C.-Y. Fan, H.-Z. Sun, X.-L. Wu, J.-P. Zhang, ACS Appl. Mater. Interfaces, 2019, 11, 47886 |
18. | Y.-Y. Wang, B.-H. Hou, J.-Z. Guo, Q.-L. Ning, W.-L. Pang, J. Wang, C.-L. Lü, X.-L. Wu, Adv. Energy Mater., 2018, 8, 1703252 |
19. | J.-Y. Hwang, S.-M. Oh, S.-T. Myung, K. Y. Chung, I. Belharouak, Y.-K. Sun, Nat. Commun., 2015, 6, 6865 |
20. | S. Yuan, W. Zhao, Z. Zeng, Y. Dong, F. Jiang, L. Wang, Y. Yang, J. Zhu, X. Ji, P. Ge, J. Mater. Chem. A, 2022, 10, 22645 |
21. | Y. Cao, X. Cao, X. Dong, X. Zhang, J. Xu, N. Wang, Y. Yang, C. Wang, Y. Liu, Y. Xia, Adv. Funct. Mater., 2021, 31, 2102856 |
22. | B. Liu, Q. Zhang, L. Li, L. Zhang, Z. Jin, C. Wang, Z. Su, Chem. Eng. J., 2021, 405, 126689 |
23. | M. Nowak, W. Zając, J. Molenda, Energy, 2022, 239, 122388 |
24. | Q. Shi, R. Qi, X. Feng, J. Wang, Y. Li, Z. Yao, X. Wang, Q. Li, X. Lu, J. Zhang, Y. Zhao, Nat. Commun., 2022, 13, 3205 |
25. | Y. Xia, L. Que, F. Yu, L. Deng, Z. Liang, Y. Jiang, M. Sun, L. Zhao, Z. Wang, Nano-Micro Lett., 2022, 14, 143 |
26. | J. Chen, Y. Peng, Y. Yin, Z. Fang, Y. Cao, Y. Wang, X. Dong, Y. Xia, Angew. Chem. Int. Ed., 2021, 60, 23858 |
27. | Z. Li, Y. Zhang, J. Zhang, Y. Cao, J. Chen, H. Liu, Y. Wang, Angew. Chem. Int. Ed., 2022, 61, e202116930 |
28. | F. Mo, Z. Lian, B. Fu, Y. Song, P. Wang, F. Fang, Y.-N. Zhou, S. Peng, D. Sun, J. Mater. Chem. A, 2019, 7, 9051 |
29. | T. Yamamoto, T. Nohira, R. Hagiwara, A. Fukunaga, S. Sakai, K. Nitta, Electrochim. Acta, 2016, 211, 234 |
30. | W. Liu, P. Liu, D. Mitlin, Adv. Energy Mater., 2020, 10, 2002297 |
31. | H. Lu, X. Chen, Y. Jia, H. Chen, Y. Wang, X. Ai, H. Yang, Y. Cao, Nano Energy, 2019, 64, 103903 |
32. | Z. Chen, K. Wang, P. Pei, Y. Zuo, M. Wei, H. Wang, P. Zhang, N. Shang, Nano Res., 2023, 16, 2311 |
33. | M.-L. Xu, M.-C. Liu, Z.-Z. Yang, C. Wu, J.-F. Qian, Acta Phys. Chim. Sin., 2023, 39, 2210043 |
34. | N. Zhang, T. Deng, S. Zhang, C. Wang, L. Chen, C. Wang, X. Fan, Adv. Mater., 2022, 34, e2107899 |
35. | D. Hubble, D. E. Brown, Y. Zhao, C. Fang, J. Lau, B. D. McCloskey, G. Liu, Energy Environ. Sci., 2022, 15, 550 |
36. | J. Huang, X. Dong, N. Wang, Y. Wang, Curr. Opin. Electrochem., 2022, 33, 100949 |
37. | P. Li, N. Hu, J. Wang, S. Wang, W. Deng, Nanomaterials (Basel), 2022, 12, 3529 |
38. | M.-D. Slater, D. Kim, E. Lee, C.-S. Johnson, Adv. Funct. Mater., 2013, 23, 947 |
39. | D. Xiao, L. Zhang, Z. Li, H. Dou, X. Zhang, Energy Storage Mater., 2022, 44, 10 |
40. | G. Ah-Lung, B. Flamme, F. Ghamouss, M. Maréchal, J. Jacquemin, Chem. Commun., 2020, 56, 9830 |
41. | M.-Y. Sun, F.-D. Yu, Y. Xia, L. Deng, Y.-S. Jiang, L.-F. Que, L. Zhao, Z.-B. Wang, Chem. Eng. J., 2022, 430, 132750 |
42. | B. Wen, Z. Deng, P.-C. Tsai, Z.-W. Lebens-Higgins, L.-F. Piper, S.-P. Ong, Y.-M. Chiang, Nat. Energy, 2020, 5, 578 |
43. | K. Xu, A. von Cresce, U. Lee, Langmuir, 2010, 26, 11538 |
44. | Y. Wang, X. Yang, Z. Zhang, X. Hu, Y. Meng, X. Wang, D. Zhou, H. Liu, B. Li, G. Wang, eScience, 2022, 2, 573 |
45. | J. Zhang, D.-W. Wang, W. Lv, S. Zhang, Q. Liang, D. Zheng, F. Kang, Q.-H. Yang, Energy Environ. Sci., 2017, 10, 370 |
46. | J. Holoubek, Y. Yin, M. Li, M. Yu, Y.-S. Meng, P. Liu, Z. Chen, Angew. Chem. Int. Ed., 2019, 131, 19068 |
47. | D. Lin, K. Li, Q. Wang, L. Lyu, B. Li, L. Zhou, J. Mater. Chem. A, 2019, 7, 19297 |
48. | H. Che, X. Yang, Y. Yu, C. Pan, H. Wang, Y. Deng, L. Li, Z.-F. Ma, Green Energy Environ., 2021, 6, 212 |
49. | Y.-B. Niu, Y.-X. Yin, Y.-G. Guo, Small, 2019, 15, 1900233 |
50. | Y. Jin, Y. Xu, P.-M. Le, T.-D. Vo, Q. Zhou, X. Qi, M.-H. Engelhard, B.-E. Matthews, H. Jia, Z. Nie, ACS Energy Lett., 2020, 5, 3212 |
51. | K. Mukai, T. Inoue, Y. Kato, S. Shirai, ACS Omega, 2017, 2, 864 |
52. | L. Wang, B. Wang, G. Liu, T. Liu, T. Gao, D. Wang, RSC Adv., 2016, 6, 70277 |
53. | Q. Li, D. Lu, J. Zheng, S. Jiao, L. Luo, C.-M. Wang, K. Xu, J.-G. Zhang, W. Xu, ACS Appl. Mater. Interfaces, 2017, 9, 42761 |
54. | J. Chen, Z. Li, N. Sun, J. Xu, Q. Li, X. Yao, J. Ming, Z. Peng, ACS Energy Lett., 2022, 7, 1594 |
55. | T.-R. Jow, M.-B. Marx, J.-L. Allen, J. Electrochem. Soc., 2012, 159, A604 |
56. | F.-A. Soto, P. Yan, M.-H. Engelhard, A. Marzouk, C. Wang, G. Xu, Z. Chen, K. Amine, J. Liu, V.-L. Sprenkle, Adv. Mater., 2017, 29, 1606860 |
57. | L. Raguette, R. Jorn, J. Phy. Chem. C, 2018, 122, 3219 |
58. | Y.-X. Yao, X. Chen, C. Yan, X.-Q. Zhang, W.-L. Cai, J.-Q. Huang, Q. Zhang, Angew. Chem. Int. Ed., 2021, 60, 4090 |
59. | E. Barsoukov, D. Kim, H.-S. Lee, H. Lee, M. Yakovleva, Y. Gao, J.-F. Engel, Solid State Ionics, 2003, 161, 19 |
60. | J. Xu, J. Zhang, T.-P. Pollard, Q. Li, S. Tan, S. Hou, H. Wan, F. Chen, H. He, E. Hu, K. Xu, X.-Q. Yang, O. Borodin, C. Wang, Nature, 2023, 614, 694 |
61. | Y. Cheng, X. Chi, J. Yang, Y. Liu, J. Energy Storage, 2021, 40, 102701 |
62. | X. Liu, X. Zheng, X. Qin, Y. Deng, Y. Dai, T. Zhao, Z. Wang, H. Yang, W. Luo, Nano Energy, 2022, 103, 107746 |
63. | L. Deng, K. Goh, F.-D. Yu, Y. Xia, Y.-S. Jiang, W. Ke, Y. Han, L.-F. Que, J. Zhou, Z.-B. Wang, Energy Storage Mater., 2022, 44, 82 |
64. | X. Song, T. Meng, Y. Deng, A. Gao, J. Nan, D. Shu, F. Yi, Electrochim. Acta, 2018, 281, 370 |
65. | Q. Hu, M. Yu, J. Liao, Z. Wen, C. Chen, J. Mater. Chem. A, 2018, 6, 2365 |
66. | X. Zheng, Z. Gu, J. Fu, H. Wang, X. Ye, L. Huang, X. Liu, X. Wu, W. Luo, Y. Huang, Energy Environ. Sci., 2021, 14, 4936 |
67. | Z. Wang, J. Ni, L. Li, ACS Energy Lett., 2022, 7, 4106 |
68. | H.-J. Liang, Z.-Y. Gu, X.-X. Zhao, J.-Z. Guo, J.-L. Yang, W.-H. Li, B. Li, Z.-M. Liu, Z.-H. Sun, J.-P. Zhang, Sci. Bull., 2022, 67, 1581 |
69. | R. Mogensen, A. Buckel, S. Colbin, R. Younesi, Chem. Mater., 2021, 33, 1130 |
70. | R. Väli, A. Jänes, E. Lust, J. Electrochem. Soc., 2016, 163, A851 |
71. | C. Wang, A.-C. Thenuwara, J. Luo, P.-P. Shetty, M.-T. McDowell, H. Zhu, S. Posada-Perez, H. Xiong, G. Hautier, W. Li, Nat. Commun., 2022, 13, 4934 |
72. | Z. Tang, H. Wang, P.-F. Wu, S.-Y. Zhou, Y.-C. Huang, R. Zhang, D. Sun, Y.-G. Tang, H.-Y. Wang, Angew. Chem. Int. Ed., 2022, 61, e202200475 |
73. | X. Fan, X. Ji, L. Chen, J. Chen, T. Deng, F. Han, J. Yue, N. Piao, R. Wang, X. Zhou, X. Xiao, L. Chen, C. Wang, Nat. Energy, 2019, 4, 882 |
74. | A.-C. Thenuwara, P.-P. Shetty, N. Kondekar, C. Wang, W. Li, M.-T. McDowell, J. Mater. Chem. A, 2021, 9, 10992 |
75. | J. Holoubek, H. Liu, Z. Wu, Y. Yin, X. Xing, G. Cai, S. Yu, H. Zhou, T.-A. Pascal, Z. Chen, P. Liu, Nat Energy, 2021, 6, 303 |
76. | H.-J. Liang, Z.-Y. Gu, X.-X. Zhao, J.-Z. Guo, J.-L. Yang, W.-H. Li, B. Li, Z.-M. Liu, W.-L. Li, X.-L. Wu, Angew. Chem. Int. Ed., 2021, 60, 26837 |
77. | D.-S. Hall, J. Self, J. Dahn, J. Phys. Chem. C, 2015, 119, 22322 |
78. | J. Zhou, Y. Wang, J. Wang, Y. Liu, Y. Li, L. Cheng, Y. Ding, S. Dong, Q. Zhu, M. Tang, Y. Wang, Y. Bi, R. Sun, Z. Wang, H. Wang, Energy Storage Mater., 2022, 50, 47 |
79. | Y.-Q. Zheng, M.-Y. Sun, F.-D. Yu, L. Deng, Y. Xia, Y.-S. Jiang, L.-F. Que, L. Zhao, Z.-B. Wang, Nano Energy, 2022, 102, 107693 |
80. | Z. Wang, X. Zheng, X. Liu, Y. Huang, L. Huang, Y. Chen, M. Han, W. Luo, ACS Appl. Mater. Interfaces, 2022, 14, 40985 |
81. | J. Hwang, K. Matsumoto, R. Hagiwara, Adv. Energy Mater., 2020, 10, 2001880 |
82. | X. Hu, E. Matios, Y. Zhang, C. Wang, J. Luo, W. Li, Angew. Chem. Int. Ed., 2021, 60, 5978 |
83. | S.-A. Mohd Noor, H. Yoon, M. Forsyth, D.-R. MacFarlane, Electrochim. Acta, 2015, 169, 376 |
84. | M. Hilder, P.-C. Howlett, D. Saurel, E. Gonzalo, M. Armand, T. Rojo, D.-R. Macfarlane, M. Forsyth, J. Power Sources, 2017, 349, 45 |
85. | T. Rüther, A.-I. Bhatt, A.-S. Best, K.-R. Harris, A.-F. Hollenkamp, Batteries Supercaps, 2020, 3, 793 |
86. | W. Zhou, M. Zhang, X. Kong, W. Huang, Q. Zhang, Adv. Sci., 2021, 8, 2004490 |
87. | K. Matsumoto, C.-Y. Chen, T. Kiko, J. Hwang, T. Hosokawa, T. Nohira, R. Hagiwara, ECS Trans., 2016, 75, 139 |
88. | H. Zhang, X. Liu, H. Li, I. Hasa, S. Passerini, Angew. Chem. Int. Ed., 2021, 60, 598 |
89. | F. Wan, J. Zhu, S. Huang, Z. Niu, Batteries Supercaps, 2020, 3, 323 |
90. | A. von Wald Cresce, K. Xu, Carbon Energy, 2021, 3, 721 |
91. | Y. Wang, H. Wei, Z. Li, X. Zhang, Z. Wei, K. Sun, H. Li, The Chemical Record, 2022, 22, e202200132 |
92. | Y. Chen, H.-I. Okur, N. Gomopoulos, C. Macias-Romero, P.-S. Cremer, P.-B. Petersen, G. Tocci, D.-M. Wilkins, C. Liang, M. Ceriotti, Sci. Adv., 2016, 2, e1501891 |
93. | M. Matsumoto, S. Saito, I. Ohmine, Nature, 2002, 416, 409 |
94. | E.-B. Moore, V. Molinero, Nature, 2011, 479, 506 |
95. | K. Zhu, Z. Sun, Z. Li, P. Liu, H. Li, L. Jiao, Adv. Energy Mater., 2023, 13, 2203708 |
96. | T. Liang, R. Hou, Q. Dou, H. Zhang, X. Yan, Adv. Funct. Mater., 2020, 31, 2006749 |
97. | M. Amiri, D. Belanger, ChemSusChem, 2021, 14, 2487 |
98. | Q. Dou, S. Lei, D.-W. Wang, Q. Zhang, D. Xiao, H. Guo, A. Wang, H. Yang, Y. Li, S. Shi, Energy Environ. Sci., 2018, 11, 3212 |
99. | F. Wang, L. Suo, Y. Liang, C. Yang, F. Han, T. Gao, W. Sun, C. Wang, Adv. Energy Mater., 2017, 7, 1600922 |
100. | K. Zhu, Z. Sun, T. Jin, X. Chen, Y. Si, H. Li, L. Jiao, Batteries Supercaps, 2022, 5, e202200308 |
101. | Q. Nian, S. Liu, J. Liu, Q. Zhang, J. Shi, C. Liu, R. Wang, Z. Tao, J. Chen, ACS Appl. Energy Mater., 2019, 2, 4370 |
102. | X. Wang, H. Huang, F. Zhou, P. Das, P. Wen, S. Zheng, P. Lu, Y. Yu, Z.-S. Wu, Nano Energy, 2021, 82, 105688 |
103. | K. Zhu, Z. Li, Z. Sun, P. Liu, T. Jin, X. Chen, H. Li, W. Lu, L. Jiao, Small, 2022, 18, e2107662 |
104. | S. Liu, T. Lei, Q. Song, J. Zhu, C. Zhu, ACS Appl. Mater. Interfaces, 2022, 14, 11425 |
105. | D. Reber, R.-S. Kühnel, C. Battaglia, ACS Mater. Lett., 2019, 1, 44 |
106. | M. Qiu, P. Sun, K. Han, Z. Pang, J. Du, J. Li, J. Chen, Z.-L. Wang, W. Mai, Nat. Commun., 2023, 14, 601 |
107. | Y. Lu, F. Zhang, X. Lu, H. Jiang, W. Hu, L. Liu, L. Gai, Nanomaterials (Basel), 2022, 12, 1920 |
108. | Q. Nian, J. Wang, S. Liu, T. Sun, S. Zheng, Y. Zhang, Z. Tao, J. Chen, Angew. Chem. Int. Ed., 2019, 58, 16994 |
109. | K. Zhu, Z. Sun, Z. Li, P. Liu, X. Chen, L. Jiao, Energy Storage Mater., 2022, 53, 523 |
110. | R.-N. Havemeyer, J. Pharm. Sci., 1966, 55, 851 |
111. | Y. Sun, Y. Zhang, Z. Xu, W. Gou, X. Han, M. Liu, C.-M. Li, ChemSusChem, 2022, 15, e202201362 |
112. | H. Bi, X. Wang, H. Liu, Y. He, W. Wang, W. Deng, X. Ma, Y. Wang, W. Rao, Y. Chai, H. Ma, R. Li, J. Chen, Y. Wang, M. Xue, Adv. Mater., 2020, 32, e2000074 |
113. | R. Chua, Y. Cai, P.-Q. Lim, S. Kumar, R. Satish, W. Manalastas, Jr., H. Ren, V. Verma, S. Meng, S.-A. Morris, P. Kidkhunthod, J. Bai, M. Srinivasan, ACS Appl. Mater. Interfaces, 2020, 12, 22862 |
114. | J.-Z. Rong, T.-X. Cai, Y.-Z. Bai, X. Zhao, T. Wu, Y.-K. Wu, W. Zhao, W.-J. Dong, S.-M. Xu, J. Chen, F.-Q. Huang, Cell Rep. Phys. Sci., 2022, 3, 100805 |
115. | Q. Wang, C. Zhao, Z. Yao, J. Wang, F. Wu, S.-G. Kumar, S. Ganapathy, S. Eustace, X. Bai, B. Li, Adv. Mater., 2023, 35, 2210677 |
116. | C. Yang, J. Xia, C. Cui, T.-P. Pollard, J. Vatamanu, A. Faraone, J.-A. Dura, M. Tyagi, A. Kattan, E. Thimsen, J. Xu, W. Song, E. Hu, X. Ji, S. Hou, X. Zhang, M.-S. Ding, S. Hwang, D. Su, Y. Ren, X.-Q. Yang, H. Wang, O. Borodin, C. Wang, Nat. Sustain., 2023, 6, 325 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Electrolyte design strategies for LT-SIBs.
a Ionic conductivity and b viscosity of EC-based electrolytes changes from −40 °C to 30 °C.[61] Copyright 2021, Elsevier. c Capacity retention of pouch cells with EC-based and EC-free electrolytes at various temperatures.[48] Copyright 2021, Elsevier. d Representative solvation structure conducted by MD simulations. e Viscosity and f ionic conductivity of different electrolytes changes from −40 °C to 80 °C. g The binding energy between Na+ and corresponding solvents. h Nyquist plots and EIS fitting for the Na || Na symmetric cells of EC-based electrolyte and WT electrolyte from −20 °C to 60 °C after 3 formation cycles. i Cycling performance of Na3V2(PO4)3 || Na cells with different electrolytes at 0.5 C, −20 °C.[62] Copyright 2022, Elsevier. (1.0-EP: 1.0 M NaPF6 in EC/PC, 1:1 by vol; 1.33-FE: 1.33 M NaPF6 in FEC/EMC, 1:1 by vol; 0.8-FEH: 0.8 M NaPF6 in FEC/EMC/HFE, 3:3:4 by vol).
a Schematic diagram of LT weakly solvating electrolyte comprising NaOTf and DEGDME/DOL mixed solvent. b Heat flow of different electrolytes from 0 °C to −150 °C. c Temperature-dependent ionic conductivity of different electrolytes. Contents of d elements and e inorganic components in the SEI at −80 °C. f Cycling performance of Na3V2(PO4)3 || Na cells at 22 mA g−1 at virous temperatures.[71] Copyright 2022, Springer Nature. g Coordination numbers of 1 M NaPF6 in THF, DME, EC/DEC and PC. h Schematic diagram of ion transport in THF electrolyte and SEI. i Rate performance of HC || Na cells at −5 °C and −20 °C.[72] Copyright 2022, Wiley-VCH.
a Nyquist plots and b resistances obtained from EIS fitted plots for Na3V2(PO4)2F3@C symmetric cells. c Rate performance of Na3V2(PO4)2F3@C || Na cells from −20 °C to 60 °C.[81] Copyright 2020, Wiley-VCH. d Ionic conductivity of different electrolytes changes from −20 °C to 25 °C. e Temperature-dependent galvanostatic cycling of Na || Na symmetric cells with a cycling capacity of 1 mAh cm−2 at 0.5 mA cm−2. f Rate performance of Na3V2(PO4)3 || Na cells with different electrolytes at 25 °C and −20 °C.[82] Copyright 2020, Wiley-VCH.
a Fitting map of the Nyquist plots and equivalent circuit for Ni(OH)2 || NaTi2(PO4)3@C cells at different temperatures. b Cycle test of Ni(OH)2 || NaTi2(PO4)3@C cells at different temperatures at 10 C.[101] Copyright 2019, American Chemical Society. c 17 M NaClO4 electrolyte conducted by MD simulations. d ESW of 17 M NaClO4, 8.4 M NaTFSI and 1.3 M Na2SO4 electrolyte. e Cycle test of Na3V2(PO4)3 symmetric cells at different temperatures at 0.3 mA cm−2.[102] Copyright 2021, Elsevier. f Optical photograph of 3.86 m CaCl2+1 m NaClO4 electrolyte at −50 °C. g The component proportions of water with different hydrogen bond for various electrolytes. h 1H NMR results for different electrolytes. i Ionic conductivity of 3.86 m CaCl2+1 m NaClO4 electrolyte changes from −50 °C to 0 °C. j Charge/discharge curves of Na2CoFe(CN)6 || active carbon cells at −30 °C and 25 °C.[103] Copyright 2022, Wiley-VCH.
a Conformation analysis of DMSO-water mixture conducted by MD simulations. b Raman spectra of DMSO-water mixtures with different molar fractions of DMSO. c Temperature-dependent ionic conductivity of different electrolytes. d Heat flow of hybrid electrolyte. e Rate performance of active carbon || NaTi2(PO4)3@C cell at 0.5 C at −50 °C.[108] Copyright 2019, Wiley-VCH. f Intermolecular interaction among H2O-FA clusters conducted by DFT calculations. g Comparison of the physicochemical properties for different organic cosolvents. h 1H NMR results and i heat flow of FA/water mixtures with different volume ratio of FA. j Ionic conductivity of hybrid electrolyte changes from −50 °C to 25 °C. k Rate performance of active carbon || PNTCDA cell from 1 to 8 C at −50 °C.[109] Copyright 2022, Elsevier.