Citation: | Minyang Dai, Yan Zhang, Wenpeng Ni, Shiguo Zhang. A perspective on electrochemical conversion of CO2 to multicarbon chemicals in ionic liquids-based electrolytes[J]. Energy Lab, 2023, 1(3): 230006. doi: 10.54227/elab.20230006 |
Carbon dioxide electroreduction (CRR) is a promising technology for both intermittent energy storage and emissions mitigation, but it faces challenges such as relatively high overpotential and poor selectivity. Introducing ionic liquids (ILs) into the CRR system has shown impressive activity for CO production, even in electrocatalysts that are primarily active for hydrogen evolution in aqueous electrolytes. However, converting CO2 to high-value C2+ chemicals in IL electrolytes suffers from limitations in *CO coverage, proton accessibility, and specific stabilization effects on *COOH. In this perspective, we emphasize the modification of the steady-state adsorption of *CO and other intermediates to enhance the CO2-to-C2+ conversion. More efforts need to be devoted to electrolyte modulation, involving the functional ILs design, the proton sources, and inorganic additive screening. It is also necessary to design effective electrocatalysts via developing a descriptor for C2+ selectivity, exploring the dynamic evolution of catalyst upon exposure to ILs, and constructing novel catalyst/ILs hybrids. Furthermore, developing a molecular understanding of the electrode/ILs interface and the bulk phase of IL-containing electrolytes could provide guildelines for designing an efficient electrochemical system for C2+ generation.
1. | G. Wang, J. Chen, Y. Ding, P. Cai, L. Yi, Y. Li, C. Tu, Y. Hou, Z. Wen, L. Dai, Chem. Soc. Rev., 2021, 50, 4993 |
2. | M. G. Kibria, J. P. Edwards, C. M. Gabardo, C. T. Dinh, A. Seifitokaldani, D. Sinton, E. H. Sargent, Adv. Mater., 2019, 31, e1807166 |
3. | A. R. Woldu, Z. Huang, P. Zhao, L. Hu, D. Astruc, Coord. Chem. Rev., 2022, 454, 214340 |
4. | Y. Xue, Y. Guo, H. Cui, Z. Zhou, Small Methods, 2021, 5, 2100736 |
5. | B. Deng, M. Huang, X. Zhao, S. Mou, F. Dong, ACS Catal., 2022, 12, 331 |
6. | M. Moura de Salles Pupo, R. Kortlever, ChemPhysChem, 2019, 20, 2926 |
7. | D. Gao, R. M. Arán-Ais, H. S. Jeon, B. Roldan Cuenya, Nat. Catal., 2019, 2, 198 |
8. | Y. Huang, C. W. Ong, B. S. Yeo, ChemSusChem, 2018, 11, 3299 |
9. | D. Gao, I. T. McCrum, S. Deo, Y.-W. Choi, F. Scholten, W. Wan, J. G. Chen, M. J. Janik, B. Roldan Cuenya, ACS Catal., 2018, 8, 10012 |
10. | H.-K. Lim, Y. Kwon, H. S. Kim, J. Jeon, Y.-H. Kim, J.-A. Lim, B.-S. Kim, J. Choi, H. Kim, ACS Catal., 2018, 8, 2420 |
11. | S. Ringe, E. L. Clark, J. Resasco, A. Walton, B. Seger, A. T. Bell, K. Chan, Energy Environ. Sci., 2019, 12, 3001 |
12. | M. Konig, J. Vaes, E. Klemm, D. Pant, iScience, 2019, 19, 135 |
13. | Z. Lei, B. Chen, Y.-M. Koo, D. R. Macfarlane, Chem. Rev., 2017, 117, 6633 |
14. | G.-R. Zhang, B. J. M. Etzold, J. Energy Chem., 2016, 25, 199 |
15. | G. Iijima, T. Kitagawa, A. Katayama, T. Inomata, H. Yamaguchi, K. Suzuki, K. Hirata, Y. Hijikata, M. Ito, H. Masuda, ACS Catal., 2018, 8, 1990 |
16. | Y. Sha, J. Zhang, X. Cheng, M. Xu, Z. Su, Y. Wang, J. Hu, B. Han, L. Zheng, Angew. Chem. Int. Ed., 2022, 61, e202200039 |
17. | Y. Wu, C. Chen, X. Yan, X. Sun, Q. Zhu, P. Li, Y. Li, S. Liu, J. Ma, Y. Huang, B. Han, Angew. Chem. Int. Ed., 2021, 60, 20803 |
18. | P. Li, J. Bi, J. Liu, Q. Zhu, C. Chen, X. Sun, J. Zhang, B. Han, Nat. Commun., 2022, 13, 1965 |
19. | J. Medina-Ramos, R. C. Pupillo, T. P. Keane, J. L. DiMeglio, J. Rosenthal, J. Am. Chem. Soc., 2015, 137, 5021 |
20. | M. Asadi, B. Kumar, A. Behranginia, B. A. Rosen, A. Baskin, N. Repnin, D. Pisasale, P. Phillips, W. Zhu, R. Haasch, R. F. Klie, P. Král, J. Abiade, A. Salehi-Khojin, Nat. Commun., 2014, 5, 4470 |
21. | B. Kumar, M. Asadi, D. Pisasale, S. Sinha-Ray, B. A. Rosen, R. Haasch, J. Abiade, A. L. Yarin, A. Salehi-Khojin, Nat. Commun., 2013, 4, 2819 |
22. | X. Sun, L. Lu, Q. Zhu, C. Wu, D. Yang, C. Chen, B. Han, Angew. Chem. Int. Ed., 2018, 57, 2427 |
23. | J. L. DiMeglio, J. Rosenthal, J. Am. Chem. Soc., 2013, 135, 8798 |
24. | Y. Hori, I. Takahashi, O. Koga, N. Hoshi, J. Phys. Chem. B, 2002, 106, 15 |
25. | J. Yu, J. Wang, Y. Ma, J. Zhou, Y. Wang, P. Lu, J. Yin, R. Ye, Z. Zhu, Z. Fan, Adv. Funct. Mater., 2021, 31, 2102151 |
26. | Y. Cui, B. He, X. Liu, J. Sun, Ind. Eng. Chem. Res., 2020, 59, 20235 |
27. | A. V. Rudnev, Y. C. Fu, I. Gjuroski, F. Stricker, J. Furrer, N. Kovacs, S. Vesztergom, P. Broekmann, ChemPhysChem, 2017, 18, 3153 |
28. | B. A. Rosen, J. L. Haan, P. Mukherjee, B. Braunschweig, W. Zhu, A. Salehi-Khojin, D. D. Dlott, R. I. Masel, J. Phys. Chem. C, 2012, 116, 15307 |
29. | Y. Wang, M. Hatakeyama, K. Ogata, M. Wakabayashi, F. Jin, S. Nakamura, Phys. Chem. Chem. Phys., 2015, 17, 23521 |
30. | W. Ge, Y. Chen, Y. Fan, Y. Zhu, H. Liu, L. Song, Z. Liu, C. Lian, H. Jiang, C. Li, J. Am. Chem. Soc., 2022, 144, 6613 |
31. | J. T. Feaster, A. L. Jongerius, X. Liu, M. Urushihara, S. A. Nitopi, C. Hahn, K. Chan, J. K. Norskov, T. F. Jaramillo, Langmuir, 2017, 33, 9464 |
32. | D. V. Vasilyev, S. Shyshkanov, E. Shirzadi, S. A. Katsyuba, M. K. Nazeeruddin, P. J. Dyson, ACS Appl. Energy Mater., 2020, 3, 4690 |
33. | D. Vasilyev, E. Shirzadi, A. V. Rudnev, P. Broekmann, P. J. Dyson, ACS Appl. Energy Mater., 2018, 1, 5124 |
34. | E. E. L. Tanner, C. Batchelor-McAuley, R. G. Compton, J. Phys. Chem. C, 2016, 120, 26442 |
35. | S.-F. Zhao, M. Horne, A. M. Bond, J. Zhang, J. Phys. Chem. C, 2016, 120, 23989 |
36. | J. Resasco, L. D. Chen, E. Clark, C. Tsai, C. Hahn, T. F. Jaramillo, K. Chan, A. T. Bell, J. Am. Chem. Soc., 2017, 139, 11277 |
37. | L. Gao, L. Qin, H. Wu, X. Li, K. Qi, Q. Yi, J. Zhang, L. Shi, Fuel, 2022, 322, 124103 |
38. | D. J. Tao, F. F. Chen, Z. Q. Tian, K. Huang, S. M. Mahurin, D. E. Jiang, S. Dai, Angew. Chem. Int. Ed., 2017, 56, 6843 |
39. | A. Marjolin, J. A. Keith, ACS Catal., 2015, 5, 1123 |
40. | B. A. Rosen, W. Zhu, G. Kaul, A. Salehi-Khojin, R. I. Masel, J. Electrochem. Soc., 2013, 160, H138 |
41. | H. Wu, J. Song, C. Xie, Y. Hu, B. Han, Green Chem., 2018, 20, 1765 |
42. | A. Atifi, D. W. Boyce, J. L. DiMeglio, J. Rosenthal, ACS Catal., 2018, 8, 2857 |
43. | A. T. Chu, Y. Surendranath, J. Am. Chem. Soc., 2022, 144, 5359 |
44. | Z. Han, D. Han, Z. Chen, J. Gao, G. Jiang, X. Wang, S. Lyu, Y. Guo, C. Geng, L. Yin, Z. Weng, Q. H. Yang, Nat. Commun., 2022, 13, 3158 |
45. | M. R. Singh, Y. Kwon, Y. Lum, J. W. Ager, 3rd, A. T. Bell, J. Am. Chem. Soc., 2016, 138, 13006 |
46. | C. M. Gunathunge, V. J. Ovalle, M. M. Waegele, Phys. Chem. Chem. Phys., 2017, 19, 30166 |
47. | D. Gao, F. Scholten, B. Roldan Cuenya, ACS Catal., 2017, 7, 5112 |
48. | T. N. Huan, P. Simon, G. Rousse, I. Genois, V. Artero, M. Fontecave, Chem. Sci., 2017, 8, 742 |
49. | Q. Zhu, D. Yang, H. Liu, X. Sun, C. Chen, J. Bi, J. Liu, H. Wu, B. Han, Angew. Chem. Int. Ed., 2020, 8896 |
50. | X. Kang, X. Sun, Q. Zhu, X. Ma, H. Liu, J. Ma, Q. Qian, B. Han, Green Chem., 2016, 18, 1869 |
51. | D. Yang, Q. Zhu, C. Chen, H. Liu, Z. Liu, Z. Zhao, X. Zhang, S. Liu, B. Han, Nat. Commun., 2019, 10, 677 |
52. | L. Lu, X. Sun, J. Ma, D. Yang, H. Wu, B. Zhang, J. Zhang, B. Han, Angew. Chem. Int. Ed., 2018, 57, 14149 |
53. | X. Sun, Q. Zhu, X. Kang, H. Liu, Q. Qian, J. Ma, Z. Zhang, G. Yang, B. Han, Green Chem., 2017, 19, 2086 |
54. | A. A. Peterson, J. K. Nørskov, J. Phys. Chem. Lett., 2012, 3, 251 |
55. | J. Hussain, H. Jónsson, E. Skúlason, ACS Catal., 2018, 8, 5240 |
56. | N. Zhang, B. Yang, K. Liu, H. Li, G. Chen, X. Qiu, W. Li, J. Hu, J. Fu, Y. Jiang, M. Liu, J. Ye, Small Methods, 2021, 5, 2100987 |
57. | A. Bagger, W. Ju, A. S. Varela, P. Strasser, J. Rossmeisl, Chemphyschem, 2017, 18, 3266 |
58. | Z. Zhao, Z. Chen, X. Zhang, G. Lu, J. Phys. Chem. C, 2016, 120, 28125 |
59. | M. Yang, Z. Wang, D. Jiao, Y. Tian, Y. Shang, L. Yin, Q. Cai, J. Zhao, J. Energy Chem., 2022, 69, 456 |
60. | P. Chen, P. Zhang, X. Kang, L. Zheng, G. Mo, R. Wu, J. Tai, B. Han, J. Am. Chem. Soc., 2022, 144, 14769 |
61. | X.-Q. Li, G.-Y. Duan, J.-W. Chen, L.-J. Han, S.-J. Zhang, B.-H. Xu, Appl. Catal. B Environ., 2021, 297, 120471 |
62. | H. K. Lim, H. Kim, Molecules, 2017, 22, 536 |
63. | B. Braunschweig, P. Mukherjee, J. L. Haan, D. D. Dlott, J. Electroanal. Chem., 2017, 800, 144 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Percentage of published articles on various CRR products in IL-containing systems.
Reaction pathways for CRR towards different products. (Black, C; red, O; grey, H; green, catalyst).
a Covalent interaction between [EMIm] and intermediate *COOH.[29] Copyright 2015, RSC Publisher. b Stabilization of CO2•− by field-dipole interaction. c Configuration of CTAB at the electrified electrode−electrolyte interface.[30] Copyright 2022, American Chemical Society. d Charge density isosurfaces for transition, and final states of the Volmer reaction on bare [EMIM]+ -covered (bottom row) Ag(111). Magenta part represents an isosurface with a ρ value of 0.001 e b−3 and blue corresponds to a ρ value of -0.001 e b−3. The yellow one is the H atom being transferred along the reaction path.[31] Copyright 2017, American Chemical Society.
a Field effect on various intermediates for CRR.[36] Copyright 2017, American Chemical Society. b Optimized structures of [Pen]-CO and [Tf2N]-CO.[38] Copyright 2017, Wiley-VCH. c Scheme for the synergistic effect between Cu and AFIL on the possible pathway during the CRR to C2.[37] Copyright 2022, Elsevier Ltd. d Molecular Pourbaix diagrams for aromatic N-heterocycles.[39] Copyright 2015, American Chemical Society.
Binding energies of a *CO and *H and b *CH2OH and *CH3O of various metals.[57] Copyright 2017, Wiley-VCH. c The linear scaling relations between generalized coordination number (GCN) and binding energy of intermediates.[58] Copyright 2016, American Chemical Society. d The variation of CO2 adsorption energy with d-band center.[59] Copyright 2022, Elsevier B.V. and Science Press.
a The model and b Faradaic efficiency of Cu and BMMImNO3@Cu.[61] Copyright 2021, Elsevier B.V. c The model and d Faradaic efficiency of Cu@PIL-X-1.2 with different anions.[16] Copyright 2022, Elsevier Ltd.