Citation: | Jiacheng Chen, Xindan Li, Liwei Mi, Weihua Chen. Emerging presodiation strategies for long-life sodium-ion batteries[J]. Energy Lab, 2023, 1(3): 230008. doi: 10.54227/elab.20230008 |
Sodium-ion batteries (SIBs) have attracted increasing attention as electrochemical energy storage in academic research and industrialization due to abundant reserves, low cost, and excellent power performance. Unfortunately, the commercial application is impeded by the low initial coulombic efficiency (ICE) and limited cycle life owing to largely irreversible loss of Na+, so the presodiation techniques have been crucial strategies to compensate capacity loss. For emerging technology, some reviews have summarized the presodiation methods according to mechanisms and their corresponding performance with specific applications in the past few years. However, there has rarely been sorted based on electrode materials systematically though the normal sequence is that electrode materials were selected first and then optimized for improved performance happened. Therefore, this review focus on the presodiation process and the performance from the perspective of electrode materials. In addition, the perspective of how to promote the further development of presodiation was described. We believe this review will provide a novel sight between electrode materials in SIBs and presodiation strategies and contribute to the rapid development and application of SIBs in the future.
1. | B. Dunn, H. Kamath, J.-M. Tarascon, Science, 2011, 334, 928 |
2. | J. Zhang, J. Gai, K. Song, W. Chen, Cell Rep. Phys. Sci., 2022, 3, 100868 |
3. | M. Yang, J. Luo, X. Guo, J. Chen, Y. Cao, W. Chen, Batteries, 2022, 8, 180 |
4. | J. Deng, W.-B. Luo, S.-L. Chou, H.-K. Liu, S.-X. Dou, Adv. Energy Mater., 2018, 8, 1701428 |
5. | H. He, D. Sun, Y. Tang, H. Wang, M. Shao, Energy Stor. Mater., 2019, 23, 233 |
6. | Y. Wan, K. Song, W. Chen, C. Qin, X. Zhang, J. Zhang, H. Dai, Z. Hu, P. Yan, C. Liu, S. Sun, S. L. Chou, C. Shen, Angew. Chem. Int. Ed., 2021, 60, 11481 |
7. | Y. You, A. Manthiram, Adv. Energy Mater., 2018, 8, 1701785 |
8. | K. Zou, Z. Song, X. Gao, H. Liu, Z. Luo, J. Chen, X. Deng, L. Chen, G. Zou, H. Hou, X. Ji, Angew. Chem. Int. Ed., 2021, 60, 17070 |
9. | T. Zhang, R. Wang, B. He, J. Jin, Y. Gong, H. Wang, Electrochem. Commun., 2021, 129, 107090 |
10. | F. Wang, B. Wang, J. Li, B. Wang, Y. Zhou, D. Wang, H. Liu, S. Dou, ACS Nano, 2021, 15, 2197 |
11. | X. Li, X. Sun, X. Hu, F. Fan, S. Cai, C. Zheng, G. D. Stucky, Nano Energy, 2020, 77, 105143 |
12. | M. Carboni, J. Manzi, A. R. Armstrong, J. Billaud, S. Brutti, R. Younesi, ChemElectroChem, 2019, 6, 1745 |
13. | G. Liu, L. Zhao, R. Sun, W. Chen, M. Hu, M. Liu, X. Duan, T. Zhang, Electrochim. Acta, 2018, 259, 20 |
14. | I. Moeez, H.-G. Jung, H.-D. Lim, K. Y. Chung, ACS Appl. Mater. Interfaces, 2019, 11, 41394 |
15. | H. Lohani, A. Kumar, P. Kumari, A. Ahuja, M. Gautam, A. Sengupta, S. Mitra, ACS Appl. Mater. Interfaces, 2022, 14, 37793 |
16. | H. Wang, Y. Xiao, C. Sun, C. Lai, X. Ai, RSC Adv., 2015, 5, 106519 |
17. | J. Zhou, W. Ye, X. Lian, Q. Shi, Y. Liu, X. Yang, L. Liu, D. Wang, J.-H. Choi, J. Sun, R. Yang, M.-S. Wang, M. H. Rummeli, Energy Stor. Mater., 2022, 46, 20 |
18. | M. Liu, J. Zhang, S. Guo, B. Wang, Y. Shen, X. Ai, H. Yang, J. Qian, ACS Appl. Mater. Interfaces, 2020, 12, 17620 |
19. | X. Liu, Y. Tan, T. Liu, W. Wang, C. Li, J. Lu, Y. Sun, Adv. Funct. Mater., 2019, 29, 1903795 |
20. | H. Fang, S. Gao, M. Ren, Y. Huang, F. Cheng, J. Chen, F. Li, Angew. Chem. Int. Ed., 2023, 62, e202214717 |
21. | Y. Pi, Z. Gan, M. Yan, C. Pei, H. Yu, Y. Ge, Q. An, L. Mai, Chem. Eng. J., 2021, 413, 127565 |
22. | Y.-J. Guo, P.-F. Wang, Y.-B. Niu, X.-D. Zhang, Q. Li, X. Yu, M. Fan, W.-P. Chen, Y. Yu, X. Liu, Q. Meng, S. Xin, Y.-X. Yin, Y.-G. Guo, Nat. Commun., 2021, 12, 5267 |
23. | X. Yao, Y. Ke, W. Ren, X. Wang, F. Xiong, W. Yang, M. Qin, Q. Li, L. Mai, Adv. Energy Mater., 2018, 8, 1803260 |
24. | R. Ma, L. Fan, S. Chen, Z. Wei, Y. Yang, H. Yang, Y. Qin, B. Lu, ACS Appl. Mater. Interfaces, 2018, 10, 15751 |
25. | S. Bublil, N. Leifer, R. Nanda, Y. Elias, M. Fayena-Greenstein, D. Aurbach, G. Goobes, J. Solid State Chem., 2021, 298, 122121 |
26. | Q. Lin, J. Zhang, D. Kong, T. Cao, S.-W. Zhang, X. Chen, Y. Tao, W. Lv, F. Kang, Q.-H. Yang, Adv. Energy Mater., 2019, 9, 1803078 |
27. | G. Zheng, Q. Lin, J. Ma, J. Zhang, Y.-B. He, X. Tang, F. Kang, W. Lv, Q.-H. Yang, InfoMat, 2021, 3, 1445 |
28. | Q. Shi, D. Liu, Y. Wang, Y. Zhao, X. Yang, J. Huang, Small, 2019, 15, 1901724 |
29. | J. Ni, S. Fu, Y. Yuan, L. Ma, Y. Jiang, L. Li, J. Lu, Adv. Mater., 2018, 30, 1704337 |
30. | Y. Cao, T. Zhang, X. Zhong, T. Zhai, H. Li, Chem. Commun., 2019, 55, 14761 |
31. | A. Ponrouch, E. Marchante, M. Courty, J.-M. Tarascon, M. R. Palacín, Energy Environ. Sci., 2012, 5, 8572 |
32. | S.-M. Oh, S.-T. Myung, C. S. Yoon, J. Lu, J. Hassoun, B. Scrosati, K. Amine, Y.-K. Sun, Nano Lett., 2014, 14, 1620 |
33. | D. Su, H.-J. Ahn, G. Wang, Chem. Commun., 2013, 49, 3131 |
34. | C.-H. Jo, J.-H. Jo, S.-T. Myung, J. Alloys Compd., 2018, 731, 339 |
35. | G. Longoni, M. Fiore, J.-H. Kim, Y. H. Jung, D. K. Kim, C. M. Mari, R. Ruffo, J. Power Sources, 2016, 332, 42 |
36. | X. Ma, X. Xiong, J. Zeng, P. Zou, Z. Lin, M. Liu, J. Mater. Chem. A, 2020, 8, 6768 |
37. | K. Song, J. Liu, H. Dai, Y. Zhao, S. Sun, J. Zhang, C. Qin, P. Yan, F. Guo, C. Wang, Y. Cao, S. Li, W. Chen, Chem, 2021, 7, 2684 |
38. | C. Li, J. Hou, J. Zhang, X. Li, S. Jiang, G. Zhang, Z. Yao, T. Liu, S. Shen, Z. Liu, X. Xia, J. Xiong, Y. Yang, Sci. China Chem., 2022, 65, 1420 |
39. | Y. Xu, H. Sun, C. Ma, J. Gai, Y. Wan, W. Chen, Chin. J. Chem. Eng., 2021, 39, 261 |
40. | L. Chen, K. Song, J. Shi, J. Zhang, L. Mi, W. Chen, C. Liu, C. Shen, Sci. China Mater., 2021, 64, 105 |
41. | H. Tan, D. Chen, X. Rui, Y. Yu, Adv. Funct. Mater., 2019, 29, 1808745 |
42. | F. Li, X. Yu, K. Tang, X. Peng, Q. Zhao, B. Li, J. Appl. Electrochem., 2023, 53, 9 |
43. | K. Zou, W. Deng, P. Cai, X. Deng, B. Wang, C. Liu, J. Li, H. Hou, G. Zou, X. Ji, Adv. Funct. Mater., 2021, 31, 2005581 |
44. | J. W. Wang, X. H. Liu, S. X. Mao, J. Y. Huang, Nano Lett., 2012, 12, 5897 |
45. | W. Liu, X. Chen, C. Zhang, H. Xu, X. Sun, Y. Zheng, Y. Yu, S. Li, Y. Huang, J. Li, ACS Appl. Mater. Interfaces, 2019, 11, 23207 |
46. | Y. Liu, M. Bai, H. Wang, T. Zhao, X. Tang, F. Liu, Z. Wang, M. Zhang, Y. Ma, J. Power Sources, 2022, 545, 231885 |
47. | M. Liu, Z. Yang, Y. Shen, S. Guo, J. Zhang, X. Ai, H. Yang, J. Qian, J. Mater. Chem. A, 2021, 9, 5639 |
48. | X. Bian, Y. Dong, D. Zhao, X. Ma, M. Qiu, J. Xu, L. Jiao, F. Cheng, N. Zhang, ACS Appl. Mater. Interfaces, 2020, 12, 3554 |
49. | S. Liu, M. Bai, X. Tang, W. Wu, M. Zhang, H. Wang, W. Zhao, Y. Ma, Chem. Eng. J., 2021, 417, 128997 |
50. | D. Yu, L. Cheng, M. Chen, J. Wang, W. Zhou, W. Wei, H. Wang, ACS Appl. Mater. Interfaces, 2019, 11, 45755 |
51. | R.-M. Gao, Z.-J. Zheng, P.-F. Wang, C.-Y. Wang, H. Ye, F.-F. Cao, Energy Stor. Mater., 2020, 30, 9 |
52. | J. U. Choi, J. H. Jo, Y. J. Park, K. S. Lee, S. T. Myung, Adv. Energy Mater., 2020, 10, 2001346 |
53. | J. H. Jo, H. J. Kim, J. U. Choi, N. Voronina, K.-S. Lee, K. Ihm, H.-K. Lee, H.-D. Lim, H. Kim, H.-G. Jung, K. Y. Chung, H. Yashiro, S.-T. Myung, Energy Stor. Mater., 2022, 46, 329 |
54. | X. Zhou, Y. Lai, X. Wu, Z. Chen, F. Zhong, X. Ai, H. Yang, Y. Cao, Chem. Res. Chin. Univ., 2021, 37, 274 |
55. | F. Ding, Q. Meng, P. Yu, H. Wang, Y. Niu, Y. Li, Y. Yang, X. Rong, X. Liu, Y. Lu, L. Chen, Y.-S. Hu, Adv. Funct. Mater., 2021, 31, 2101475 |
56. | L. Xue, X. Shi, B. Lin, Q. Guo, Y. Zhao, H. Xia, J. Power Sources, 2020, 457, 228059 |
57. | K. Park, B.-C. Yu, J. B. Goodenough, Chem. Mater., 2015, 27, 6682 |
58. | B. Zhang, R. Dugas, G. Rousse, P. Rozier, A. M. Abakumov, J.-M. Tarascon, Nat. Commun., 2016, 7, 10308 |
59. | J. Martinez De Ilarduya, L. Otaegui, J. M. López del Amo, M. Armand, G. Singh, J. Power Sources, 2017, 337, 197 |
60. | M. Sathiya, J. Thomas, D. Batuk, V. Pimenta, R. Gopalan, J.-M. Tarascon, Chem. Mater., 2017, 29, 5948 |
61. | E. Marelli, C. Marino, C. Bolli, C. Villevieille, J. Power Sources, 2020, 450, 227617 |
62. | A. J. Fernandez-Ropero, M. Zarrabeitia, G. Baraldi, M. Echeverria, T. Rojo, M. Armand, D. Shanmukaraj, ACS Appl. Mater. Interfaces, 2021, 13, 11814 |
63. | Y.-B. Niu, Y.-J. Guo, Y.-X. Yin, S.-Y. Zhang, T. Wang, P. Wang, S. Xin, Y.-G. Guo, Adv. Mater., 2020, 32, 2001419 |
64. | Y.-J. Guo, Y.-B. Niu, Z. Wei, S.-Y. Zhang, Q. Meng, H. Li, Y.-X. Yin, Y.-G. Guo, ACS Appl. Mater. Interfaces, 2021, 13, 2772 |
65. | Q. Zhang, X.-W. Gao, Y. Shi, W.-B. Luo, Y. Li, Q.-F. Gu, H.-N. Fan, F. Li, H.-K. Liu, Energy Stor. Mater., 2021, 39, 54 |
66. | C.-H. Jo, J. U. Choi, H. Yashiro, S.-T. Myung, J. Mater. Chem. A, 2019, 7, 3903 |
67. | J. H. Jo, J. U. Choi, Y. J. Park, J. Zhu, H. Yashiro, S.-T. Myung, ACS Appl. Mater. Interfaces, 2019, 11, 5957 |
68. | J. H. Jo, J. U. Choi, Y. J. Park, J. K. Ko, H. Yashiro, S.-T. Myung, Energy Stor. Mater., 2020, 32, 281 |
69. | J. Hong, H.-D. Lim, M. Lee, S.-W. Kim, H. Kim, S.-T. Oh, G.-C. Chung, K. Kang, Chem. Mater., 2012, 24, 2692 |
70. | Q. Ni, Y. Bai, F. Wu, C. Wu, Adv Sci., 2017, 4, 1600275 |
71. | Z. Jian, W. Han, X. Lu, H. Yang, Y.-S. Hu, J. Zhou, Z. Zhou, J. Li, W. Chen, D. Chen, L. Chen, Adv. Energy Mater., 2013, 3, 156 |
72. | S. Mirza, Z. Song, H. Zhang, A. Hussain, H. Zhang, X. Li, J. Mater. Chem. A, 2020, 8, 23368 |
73. | J. Wu, C. Lin, Q. Liang, G. Zhou, J. Liu, G. Liang, M. Wang, B. Li, L. Hu, F. Ciucci, Q. Liu, G. Chen, X. Yu, InfoMat, 2022, 4, e12288 |
74. | X. Liu, Y. Tan, W. Wang, P. Wei, Z. W. Seh, Y. Sun, ACS Appl. Mater. Interfaces, 2021, 13, 27057 |
75. | B. Shen, R. Zhan, C. Dai, Y. Li, L. Hu, Y. Niu, J. Jiang, Q. Wang, M. Xu, J. Colloid Interface Sci., 2019, 553, 524 |
76. | M. Lee, J. Hong, J. Lopez, Y. Sun, D. Feng, K. Lim, W. C. Chueh, M. F. Toney, Y. Cui, Z. Bao, Nat. Energy, 2017, 2, 861 |
77. | D. Shanmukaraj, K. Kretschmer, T. Sahu, W. Bao, T. Rojo, G. Wang, M. Armand, ChemSusChem, 2018, 11, 3286 |
78. | Z. Zhang, R. Zhang, R. Rajagopalan, Z. Tang, D. Sun, H. Wang, Y. Tang, Chem. Commun., 2022, 58, 8702 |
79. | R. Zhang, Z. Tang, D. Sun, R. Li, W. Yang, S. Zhou, Z. Xie, Y. Tang, H. Wang, Chem. Commun., 2021, 57, 4243 |
80. | J. Ge, L. Fan, A. M. Rao, J. Zhou, B. Lu, Nat. Sustain., 2022, 5, 225 |
81. | Y. Yang, J. Zhou, L. Wang, Z. Jiao, M. Xiao, Q.-a. Huang, M. Liu, Q. Shao, X. Sun, J. Zhang, Nano Energy, 2022, 99, 107424 |
82. | J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Chem. Soc. Rev., 2017, 46, 3529 |
83. | M. Ye, S. You, J. Xiong, Y. Yang, Y. Zhang, C. C. Li, Mater. Today Energy, 2022, 23, 100898 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
The emerging presodiation strategies on various electrode materials towards stable sodium-ion batteries.
Presodiation of hard carbon anodes. a Presodiation mechanism of the hard carbon.[14] Copyright 2019, American Chemical Society. b Schematic of presodiation and incubation of SEI.[15] Copyright 2022, American Chemical Society. c Schematic of chemical presodiation and the subsequent SEI formation process on hard carbon anodes.[18] Copyright 2020, American Chemical Society. d Schematic of the process and the presodiation mechanism of hard carbon electrodes using a sodium naphthalene solution as the presodiation reagent.[19] Copyright 2019, Wiley. e Schematic presodiation and HOMO and LUMO energy levels of different species and cycle performance of hard carbon with sodium diphenyl ketone.[20] Copyright 2022, Wiley.
Presodiation of soft carbon, reduced graphene oxide and Ti-based anodes. a Schematic of SEI formation during the presodiation process and cycle stability of the sodium dual-ion batteries.[24] Copyright 2018, American Chemical Society. b Graphic illustration of the effect of the different preparation steps on the sodiation mechanism.[25] Copyright 2021, Elsevier. c Schematic of the synthesis process and charge/discharge cycling performance of microwaved reduced graphene oxide cellulose nanofibers.[28] Copyright 2019, Wiley.
Presodiation of conversion-type anodes. a Sodiation/desodiation profiles of pre-treated (red) and pristine (black) cobalt oxide needles electrode, solid and dashed lines refer to first and second cycle respectively and cycling stability and coulombic efficiency of the two electrodes.[35] Copyright 2016, Elsevier. b Schematic illustration of the possible Na+ storage mechanism of the NaFeS2@C electrode and presodiation effect on SEI thickness and component.[39] Copyright 2021, Elsevier. c Electrochemical performance of NaFeS2@C and FeS2@C electrode and charge/discharge curve of the initial cycle and cycle performance of NaFeS2@C and FeS2@C electrodes.[39] Copyright 2021, Elsevier.
Presodiation of alloying anodes. a Diagrammatic drawing and XRD pattern of the metallurgical prealloying process.[45] Copyright 2019, American Chemical Society. b Schematic illustration of the capillary force induced Na infusion towards the Sn@hollow carbon nanofibers structures(Sn@HCNF).[46] Copyright 2022, Elsevier. c The voltage-induced presodiation strategy of the composite anode and corresponding full-cell configuration and charge/discharge voltage profiles and cycling performance.[49] Copyright 2021, Elsevier.
Presodiation of transition metal oxides cathodes. a Redox behaviours of transition metal cations and oxygen anions of the layered O3-NaxTMO2 (TM = transition metal ion(s)) cathode and schematic illustrations of the quenching treatment for self-presodiation cathode compounds.[55] Copyright 2021, Wiley. b Schematic illustration of the synthesis procedure of the P2/P3-Na0.7CoO2 nanosheet arrays on the carbon cloth and the formation mechanism of the P2/P3 heterostructure via the solvothermal sodiation.[56] Copyright 2020, Elsevier. c Crystallographic structures of Na2NiO2 (space group: Cmc21) and full-cell voltage curves and cycle performance of the Sb/C composite anode and the NaCrO2 cathode with and without 10% Na2NiO2 substitution.[57] Copyright 2015, American Chemical Society. d Schematic diagram of preparing the electrode through spraying Na2O2-containing acetonitrile slurry and initial galvanostatic charge/discharge voltage profiles.[64] Copyright 2021, American Chemical Society.
Presodiation of polyanionic compounds. a Schematic showing the short-circuit presodiation process and illustration of presodiation, assembly, and operation of sodium-free-anode sodium metal batteries cells in two different voltage windows.[73] Copyright 2022, John Wiley and Sons. b Schematic illustration of the presodiation process for the Na3V2(PO4)3 cathode and the evolution of the traditional cathode presodiation additives and the as-synthesized Na2S/C cathode presodiation additive in the electrode during the electrochemical process.[74] Copyright 2021, American Chemical Society. c Concept of sodiation agents as additives in sodium cathodes.[77] Copyright 2019, Wiley.
Summary and prospects for the presodiation technology in sodium-ion batteries.