Yuliang Yuan, Zhilong Yang, Wenchuan Lai, Jiawei Zhang, Xuli Chen, Hongwen Huang. Rational design and preparation of core-shell nanomaterials to boost their catalytic performance[J]. Energy Lab, 2023, 1(2): 220021. doi: 10.54227/elab.20220021
Citation: Yuliang Yuan, Zhilong Yang, Wenchuan Lai, Jiawei Zhang, Xuli Chen, Hongwen Huang. Rational design and preparation of core-shell nanomaterials to boost their catalytic performance[J]. Energy Lab, 2023, 1(2): 220021. doi: 10.54227/elab.20220021

REVIEW ARTICLE

Rational design and preparation of core-shell nanomaterials to boost their catalytic performance

More Information
  • Corresponding authors: chenxuli@hnu.edu.cn; huanghw@hnu.edu.cn
  • §These authors contributed equally to this work

  • From the morphological point of view, catalysts can be classified into zero-dimensional (nanoparticle or quantum dot), one-dimensional (nanowire), two-dimensional (nanosheet), three-dimensional, and a combination of them. Among the varieties of morphology, core-shell structural catalysts with three-dimensional configuration stand out due to their unique construction and rich forms of interaction between the core and the shell, as well as their abundant ways of interaction with the catalytic intermediates. Constructing high-performance core-shell structural catalysts relies on the comprehensive understanding of the catalytic process and precise control over the catalyst structure. Here in this review, we attempt to sort out common synthetic methods for catalysts with core-shell structures from basic techniques to complex multiple processes. We will analyze how the core-shell configuration affects the catalytic performance from the microscopic to mesoscopic scales. We would resolve the structure-property relationship from the aspects of activity, selectivity, and durability, respectively. Finally, we would end this review with perspectives on the future development of core-shell catalysts.


  • 加载中
  • Yuliang Yuan is now an associate professor at Hainan University. He received his bachelor’s degree in materials chemistry from China University of Geosciences (Wuhan) in 2012 and his Ph.D. degree in materials science and engineering from Zhejiang University in 2018. After graduation, he joined Hunan University as a postdoctoral fellow in 2019. Then he studied in University of Wisconsin-Madison as a visiting scholar in 2020. His research interests include the design of materials related to electrochemical energy storage and electrochemical catalysis.
    Xuli Chen is an associate professor at Hunan University. She earned her Ph.D. degree in 2014 at Fudan University and completed her postdoctoral training at Case Western Reserve University in 2016. Her research focuses on the development of advanced nanomaterials and their applications in electrochemistry.
    Hongwen Huang is now a full professor at Hunan University. He received his bachelor’s degree from South China University of Technology in 2009 and Ph.D. degree in materials science and engineering from Zhejiang University in 2015. During 2012–2014, he studied in Georgia Institute of Technology under the supervision of Prof. Younan Xia. After graduation, he joined University of Science and Technology of China as a postdoctoral fellow from 2015 to 2017 and moved to Hunan University in 2017. His research interests include the controlled growth of nanocrystals and their applications in energy-related electrocatalysis.
  • 1. R. F. Wang, H. Wang, F. Luo, S. J. Liao, Electrochem. Energy Rev., 2018, 1, 324
    2. B. Liu, S. J. Liao, Z. X. Liang, Prog. Chem., 2011, 23, 852.
    3. X. Wang, B. He, Z. Hu, Z. Zeng, S. Han, Sci. Technol. Adv. Mater., 2014, 15, 043502
    4. S. T. Hunt, Y. Roman-Leshkov, Acc. Chem. Res., 2018, 51, 1054
    5. S. Das, J. Perez-Ramirez, J. L. Gong, N. Dewangan, K. Hidajat, B. C. Gates, S. Kawi, Chem. Soc. Rev., 2020, 49, 2937
    6. N. V. Long, Y. Yang, C. M. Thi, N. V. Minh, Y. Q. Cao, M. Nogami, Nano Energy, 2013, 2, 636
    7. J. J. Ge, Z. J. Li, X. Hong, Y. D. Li, Chem. -Eur. J., 2019, 25, 5113
    8. B. Hammer, J. K. Norskov, Nature, 1995, 376, 238
    9. J. Greeley, I. E. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen, T. F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J. K. Norskov, Nat. Chem., 2009, 1, 552
    10. S. H. Joo, J. Y. Park, C. K. Tsung, Y. Yamada, P. D. Yang, G. A. Somorjai, Nat. Mater., 2009, 8, 126
    11. D. Gohl, A. Garg, P. Paciok, K. J. J. Mayrhofer, M. Heggen, Y. Shao-Horn, R. E. Dunin-Borkowski, Y. Roman-Leshkov, M. Ledendecker, Nat. Mater., 2020, 19, 287
    12. S. Hu, W. X. Li, Science, 2021, 374, 1360
    13. T. Tang, W. J. Jiang, X. Z. Liu, J. Deng, S. Niu, B. Wang, S. F. Jin, Q. Zhang, L. Gu, J. S. Hu, L. J. Wan, J. Am. Chem. Soc., 2020, 142, 7116
    14. L.-P. Yuan, T. Tang, J.-S. Hu, L.-J. Wan, Acc. Mater. Res., 2021, 2, 907
    15. E. Gioria, L. Duarte-Correa, N. Bashiri, W. Hetaba, R. Schomaecker, A. Thomas, Nanoscale Adv., 2021, 3, 3454
    16. Z. J. Wang, J. Qi, N. L. Yang, R. B. Yu, D. Wang, Mater. Chem. Front., 2021, 5, 1126
    17. M. Zhao, K. Deng, L. He, Y. Liu, G. Li, H. Zhao, Z. Tang, J. Am. Chem. Soc., 2014, 136, 1738
    18. S. Y. Xue, G. Y. Chen, F. Li, Y. H. Zhao, Q. W. Zeng, J. H. Peng, F. L. Shi, W. C. Zhang, Y. Z. Wang, J. B. Wu, R. C. Che, Small, 2021, 17, 2100559
    19. J. H. Hodak, A. Henglein, M. Giersig, G. V. Hartland, J. Phys. Chem. B, 2000, 104, 11708
    20. R. Harpeness, A. Gedanken, Langmuir, 2004, 20, 3431
    21. N. Ghows, M. H. Entezari, Ultrason. Sonochem., 2011, 18, 629
    22. R. Ghosh Chaudhuri, S. Paria, Chem. Rev., 2012, 112, 2373
    23. W. Stber, A. Fink, E. Bohn, J. Colloid Interface Sci., 1968, 26, 62
    24. N. Avci, P. F. Smet, H. Poelman, N. Van de Velde, K. De Buysser, I. Van Driessche, D. Poelman, J. Sol-Gel Sci. Technol., 2009, 52, 424
    25. B. Dong, C. R. Li, X. J. Wang, J. Sol-Gel Sci. Technol., 2007, 44, 161
    26. H. Xiao, Z. Ai, L. Zhang, J. Phys. Chem. C, 2009, 113, 16625
    27. M. Alifanti, B. Baps, N. Blangenois, J. Naud, P. Grange, B. Delmon, Chem. Mater., 2003, 15, 395
    28. Y. F. Lim, C. S. Chua, C. J. Lee, D. Chi, Phys. Chem. Chem. Phys., 2014, 16, 25928
    29. L. M. Liz-Marzán, M. Giersig, P. Mulvaney, Langmuir, 1996, 12, 4329
    30. G. Büchel, K. K. Unger, A. Matsumoto, K. Tsutsumi, Adv. Mater., 1998, 10, 1036
    31. Y. Deng, D. Qi, C. Deng, X. Zhang, D. Zhao, J. Am. Chem. Soc., 2008, 130, 28
    32. Q. He, Z. Zhang, J. Xiong, Y. Xiong, H. Xiao, Opt. Mater., 2008, 31, 380
    33. W. Li, J. Yang, Z. Wu, J. Wang, B. Li, S. Feng, Y. Deng, F. Zhang, D. Zhao, J. Am. Chem. Soc., 2012, 134, 11864
    34. K. Tedsree, T. Li, S. Jones, C. W. Chan, K. M. Yu, P. A. Bagot, E. A. Marquis, G. D. Smith, S. C. Tsang, Nat. Nanotechnol., 2011, 6, 302
    35. X. Wang, S. I. Choi, L. T. Roling, M. Luo, C. Ma, L. Zhang, M. Chi, J. Liu, Z. Xie, J. A. Herron, M. Mavrikakis, Y. Xia, Nat. Commun., 2015, 6, 7594
    36. D. Liu, S. Q. Lu, Y. R. Xue, Z. Guan, J. J. Fang, W. Zhu, Z. B. Zhuang, Nano Energy, 2019, 59, 26
    37. K. A. Kuttiyiel, Y. Choi, K. Sasaki, D. Su, S. M. Hwang, S. D. Yim, T. H. Yang, G. G. Park, R. R. Adzic, Nano Energy, 2016, 29, 261
    38. S. J. Seo, H. K. Chung, J. B. Yoo, H. Chae, S. W. Seo, S. M. Cho, J. Vac. Sci. Technol. A, 2014, 32, 01A1298
    39. C. Y. He, X. M. Bu, S. W. Yang, P. He, G. Q. Ding, X. M. Xie, Appl. Surf. Sci., 2018, 436, 373
    40. D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D. A. Muller, F. J. DiSalvo, H. D. Abruna, Nat. Mater., 2013, 12, 81
    41. K. J. Mayrhofer, V. Juhart, K. Hartl, M. Hanzlik, M. Arenz, Angew. Chem. Int. Ed., 2009, 48, 3529
    42. M. Oezaslan, F. Hasché, P. Strasser, J. Phys. Chem. Lett., 2013, 4, 3273
    43. X. Tian, X. Zhao, Y. Q. Su, L. Wang, H. Wang, D. Dang, B. Chi, H. Liu, E. J. M. Hensen, X. W. D. Lou, B. Y. Xia, Science, 2019, 366, 850
    44. P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M. F. Toney, A. Nilsson, Nat. Chem., 2010, 2, 454
    45. D. Li, X. Zhang, M. Ramzan, K. Gu, Y. Chen, J. Zhang, B. Zou, H. Zhong, Chem. Mater., 2020, 32, 6650
    46. X. Li, M. Su, Y. C. Wang, M. Xu, M. Tong, S. J. Haigh, J. Zhang, Inorg. Chem., 2022, 61, 3989
    47. N. Nagelj, A. Brumberg, S. Peifer, R. D. Schaller, J. H. Olshansky, J. Phys. Chem. Lett., 2022, 13, 3209
    48. Y. Yan, Z. Zhou, X. Zhao, J. Zhou, J. Colloid Interface Sci., 2014, 435, 91
    49. J. Tian, T. Yan, Z. Qiao, L. Wang, W. Li, J. You, B. Huang, Appl. Catal. B: Environ., 2017, 209, 566
    50. G. A. Kamat, C. Yan, W. T. Osowiecki, I. A. Moreno-Hernandez, M. Ledendecker, A. P. Alivisatos, J. Phys. Chem. Lett., 2020, 11, 5318
    51. D. Liu, W. Li, X. Feng, Y. Zhang, Chem. Sci., 2015, 6, 7015
    52. N. Teo, C. Jin, A. Kulkarni, S. C. Jana, J. Colloid Interface Sci., 2020, 561, 772
    53. D. Liu, J. Yan, K. Wang, Y. Wang, G. Luo, Nano Res., 2021, 15, 1199
    54. A. J. Medford, A. Vojvodic, J. S. Hummelshj, J. Voss, F. Abild-Pedersen, F. Studt, T. Bligaard, A. Nilsson, J. K. Nrskov, J. Catal., 2015, 328, 36
    55. A. L. Strickler, A. Jackson, T. F. Jaramillo, ACS Energy Lett., 2017, 2, 244
    56. J. E. S. van der Hoeven, J. Jelic, L. A. Olthof, G. Totarella, R. J. A. van Dijk-Moes, J. M. Krafft, C. Louis, F. Studt, A. van Blaaderen, P. E. de Jongh, Nat. Mater., 2021, 20, 1216
    57. H. B. Zhang, Z. J. Ma, J. J. Duan, H. M. Liu, G. G. Liu, T. Wang, K. Chang, M. Li, L. Shi, X. G. Meng, K. C. Wu, J. H. Ye, ACS Nano, 2016, 10, 684
    58. H. Xie, S. Q. Chen, J. S. Liang, T. Y. Wang, Z. F. Hou, H. L. Wang, G. L. Chai, Q. Li, Adv. Funct. Mater., 2021, 31, 2100883
    59. Y. Xing, X. Kong, X. Guo, Y. Liu, Q. Li, Y. Zhang, Y. Sheng, X. Yang, Z. Geng, J. Zeng, Adv. Sci., 2020, 7, 1902989
    60. D. Yu, L. Gao, T. Sun, J. Guo, Y. Yuan, J. Zhang, M. Li, X. Li, M. Liu, C. Ma, Q. Liu, A. Pan, J. Yang, H. Huang, Nano Lett., 2021, 21, 1003
    61. S. Aguado, S. El-Jamal, F. Meunier, J. Canivet, D. Farrusseng, Chem. Commun., 2016, 52, 7161
    62. Y. Long, S. Song, J. Li, L. Wu, Q. Wang, Y. Liu, R. Jin, H. Zhang, ACS Catal., 2018, 8, 8506
    63. Z. Shang, X. Liang, Nano Lett., 2017, 17, 104
    64. M. Cai, Y. Li, Q. Liu, Z. Xue, H. Wang, Y. Fan, K. Zhu, Z. Ke, C.-Y. Su, G. Li, Adv. Sci., 2019, 6, 1802365
    65. Y. Xu, X. Li, J. Gao, J. Wang, G. Ma, X. Wen, Y. Yang, Y. Li, M. Ding, Science, 2021, 371, 610
    66. X. Y. Zhang, W. J. Li, X. F. Wu, Y. W. Liu, J. Chen, M. Zhu, H. Y. Yuan, S. Dai, H. F. Wang, Z. Jiang, P. F. Liu, H. G. Yang, Energy Environ. Sci., 2022, 15, 234
    67. S. S. Zhang, S. L. Zhao, D. X. Qu, X. J. Liu, Y. P. Wu, Y. H. Chen, W. Huang, Small, 2021, 17, 2102293
    68. Y. Zhao, H. Zhou, X. Zhu, Y. Qu, C. Xiong, Z. Xue, Q. Zhang, X. Liu, F. Zhou, X. Mou, W. Wang, M. Chen, Y. Xiong, X. Lin, Y. Lin, W. Chen, H.-J. Wang, Z. Jiang, L. Zheng, T. Yao, J. Dong, S. Wei, W. Huang, L. Gu, J. Luo, Y. Li, Y. Wu, Nat. Catal., 2021, 4, 134
    69. L. Adijanto, D. A. Bennett, C. Chen, A. S. Yu, M. Cargnello, P. Fornasiero, R. J. Gorte, J. M. Vohs, Nano Lett., 2013, 13, 2252
    70. M. Karuppannan, Y. Kim, S. Gok, E. Lee, J. Y. Hwang, J. H. Jang, Y. H. Cho, T. Lim, Y. E. Sung, O. J. Kwon, Energy Environ. Sci., 2019, 12, 2820
    71. T. O. He, W. C. Wang, X. L. Yang, F. L. Shi, Z. Y. Ye, Y. Z. Zheng, F. Li, J. B. Wu, Y. D. Yin, M. S. Jin, ACS Nano, 2021, 15, 7348
    72. L. Gloag, T. M. Benedetti, S. Cheong, R. F. Webster, C. E. Marjo, J. J. Gooding, R. D. Tilley, Nanoscale, 2018, 10, 15173
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Information

Article Metrics

Article views(2515) PDF downloads(316) Citation(0)

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint