Citation: | Qingling Hong, Boqiang Miao, Tianjiao Wang, Fumin Li, Yu Chen. Intermetallic PtTe metallene for formic acid oxidation assisted electrocatalytic nitrate reduction[J]. Energy Lab, 2023, 1(2): 220022. doi: 10.54227/elab.20220022 |
Development of highly efficient electrocatalysts for selective electroreduction of nitrate is of great significance. In this work, the ultrathin intermetallic platinum-tellurium metallene (PtTe-ML) with atomic thickness is synthesized by simple liquid-phase chemical reduction. The introduction of Te atoms can sharply weaken the catalytic activity of Pt for the hydrogen evolution reaction. And, PtTe-ML exhibits superior catalytic activity for the nitrate reduction reaction (NO3−-ERR) than Pt black. In 0.5 M H2SO4 solution, PtTe-ML achieves an effective ammonia (NH3) production rate of 2.32 mg h−1 mgcat−1 and a Faradic efficiency of 95.5% at −0.04 V potential for NO3−-ERR. Meanwhile, the entry of Te atom isolates the continuous Pt active site and increases the proportion of the direct dehydrogenation pathway of the formic acid oxidation reaction (FAOR). Therefore, PtTe-ML also exhibits excellent FAOR activity due to the optimization of FAOR pathway. Then, anodic FAOR with low anodic oxidation potential is used to replace the oxygen evolution reaction with slow kinetic, so that the total electrolytic voltage of conventional electrochemical NH3 production can be effectively reduced. Consequently, the bifunctional PtTe-ML electrocatalyst requires only 0.4 V total voltage for FAOR assisted NH3 electroproduction. This work demonstrates a reaction coupling strategy to significantly improve the utilization rate of electric energy in electrochemical synthesis.
1. | T. Ren, K. Ren, M. Wang, M. Liu, Z. Wang, H. Wang, X. Li, L. Wang and Y. Xu, Chem. Eng. J., 2021, 426, 130759 |
2. | J. Yu, B. Chang, W. Yu, X. Li, D. Wang, Z. Xu, X. Zhang, H. Liu and W. Zhou, Carbon Energy, 2022, 4, 237 |
3. | P. H. van Langevelde, I. Katsounaros and M. T. M. Koper, Joule, 2021, 5, 290 |
4. | J. Yao and J. Yan, Sci. China. Chem., 2020, 63, 1737 |
5. | S. Mukherjee, D. A. Cullen, S. Karakalos, K. Liu, H. Zhang, S. Zhao, H. Xu, K. L. More, G. Wang and G. Wu, Nano Energy, 2018, 48, 217 |
6. | Q. Yao, J. Chen, S. Xiao, Y. Zhang and X. Zhou, ACS Appl. Mater. Interfaces, 2021, 13, 30458 |
7. | Y. Sun, W. Wu, L. Yu, S. Xu, Y. Zhang, L. Yu, B. Xia, S. Ding, M. Li, L. Jiang, J. Duan, J. Zhu and S. Chen, Carbon Energy, 2022, 1, 1 |
8. | Y. Zeng, C. Priest, G. Wang and G. Wu, Small Methods, 2020, 4, 2000672 |
9. | S. Garcia-Segura, M. Lanzarini-Lopes, K. Hristovski and P. Westerhoff, Appl. Catal. B Environ., 2018, 236, 546 |
10. | Y. Yao, S. Zhu, H. Wang, H. Li and M. Shao, Angew. Chem. Int. Ed., 2020, 59, 10479 |
11. | X. Yang, S. Sun, L. Meng, K. Li, S. Mukherjee, X. Chen, J. Lv, S. Liang, H.-Y. Zang, L.-K. Yan and G. Wu, Appl. Catal. B Environ., 2021, 285, 119794 |
12. | G. A. Attard, J. Souza-Garcia, R. Martinez-Hincapie and J. M. Feliu, J. Catal., 2019, 378, 238 |
13. | M. Duca, N. Sacre, A. Wang, S. Garbarino and D. Guay, Appl. Catal. B Environ., 2018, 221, 86 |
14. | Z. Mumtarin, M. M. Rahman, H. M. Marwani and M. A. Hasnat, Electrochim. Acta, 2020, 346, 135994 |
15. | R. Chauhan and V. C. Srivastava, Chem. Eng. J., 2020, 386, 122065 |
16. | Z. X. Ge, T. J. Wang, Y. Ding, S. B. Yin, F. M. Li, P. Chen and Y. Chen, Adv. Energy Mater., 2022, 12, 2103916 |
17. | J.-Y. Zhu, Q. Xue, Y.-Y. Xue, Y. Ding, F.-M. Li, P. Jin, P. Chen and Y. Chen, ACS Appl. Mater. Interfaces, 2020, 12, 14064 |
18. | J. Li, G. Zhan, J. Yang, F. Quan, C. Mao, Y. Liu, B. Wang, F. Lei, L. Li, A. W. M. Chan, L. Xu, Y. Shi, Y. Du, W. Hao, P. K. Wong, J. Wang, S.-X. Dou, L. Zhang and J. C. Yu, J. Am. Chem. Soc., 2020, 142, 7036 |
19. | J. Liu, T. Cheng, L. Jiang, A. Kong and Y. Shan, ACS Appl. Mater. Interfaces, 2020, 12, 33186 |
20. | S. Luo, W. Chen, Y. Cheng, X. Song, Q. Wu, L. Li, X. Wu, T. Wu, M. Li, Q. Yang, K. Deng and Z. Quan, Adv. Mater., 2019, 31, 1903683 |
21. | T. Zhu, Q. Chen, P. Liao, W. Duan, S. Liang, Z. Yan and C. Feng, Small, 2020, 16, 2004526 |
22. | J. Gao, B. Jiang, C. Ni, Y. Qi, Y. Zhang, N. Oturan and M. A. Oturan, Appl. Catal. B Environ., 2019, 254, 391 |
23. | I. Katsounaros and G. Kyriacou, Electrochim. Acta, 2008, 53, 5477 |
24. | M. Bat-Erdene, A. S. R. Bati, J. Qin, H. Zhao, Y. L. Zhong, J. G. Shapter and M. Batmunkh, Adv. Funct. Mater., 2022, 32, 2107280 |
25. | H. Yang, F. He, J. Shen, Z. Chen, Y. Yao, L. He and Y. Yu, Energy Lab, 2022, 1, 220007 |
26. | L. Zeng, W. Chen, Q. Zhang, S. Xu, W. Zhang, F. Lv, Q. Huang, S. Wang, K. Yin, M. Li, Y. Yang, L. Gu and S. Guo, ACS Catal., 2022, 12, 11391 |
27. | H. Yu, T. Zhou, Z. Wang, Y. Xu, X. Li, L. Wang and H. Wang, Angew. Chem. Int. Ed. Engl., 2021, 60, 12027 |
28. | P. Mirzaei, S. Bastide, A. Aghajani, J. Bourgon, E. Leroy, J. Zhang, Y. Snoussi, A. Bensghaier, O. Hamouma, M. M. Chehimi and C. Cachet-Vivier, Langmuir, 2019, 35, 14428 |
29. | Y. Xu, K. Ren, T. Ren, M. Wang, M. Liu, Z. Wang, X. Li, L. Wang and H. Wang, Chem. Commun., 2021, 57, 7525 |
30. | M. Armbrüster, K. Kovnir, M. Behrens, D. Teschner, Y. Grin and R. Schlögl, J. Am. Chem. Soc., 2010, 132, 14745 |
31. | Y. S. Kang, D. Choi, J. Cho, H.-Y. Park, K.-S. Lee, M. Ahn, I. Jang, T. Park, H. C. Ham and S. J. Yoo, ACS Appl. Energy Mater., 2020, 3, 4226 |
32. | J. Yu, A. F. Kolln, D. Jing, J. Oh, H. Liu, Z. Qi, L. Zhou, W. Li and W. Huang, ACS Appl. Mater. Interfaces, 2021, 13, 52073 |
33. | F. Li, Q. Xue, G. Ma, S. Li, M. Hu, H. Yao, X. Wang and Y. Chen, J. Power Sources, 2020, 450, 227615 |
34. | L. An, H. Yan, B. Li, J. Ma, H. Wei and D. Xia, Nano Energy, 2015, 15, 24 |
35. | S. Liu, S. Yin, L. Cui, H. Yu, K. Deng, Z. Wang, Y. Xu, L. Wang and H. Wang, Energy Lab, 2022, 1, 220005 |
36. | T.-J. Wang, H.-Y. Sun, Q. Xue, M.-J. Zhong, F.-M. Li, X. Tian, P. Chen, S.-B. Yin and Y. Chen, Science Bulletin, 2021, 66, 2079 |
37. | L. Tao, M. Sun, Y. Zhou, M. Luo, F. Lv, M. Li, Q. Zhang, L. Gu, B. Huang and S. Guo, J. Am. Chem. Soc., 2022, 144, 10582 |
38. | K. Yin, Y. Chao, F. Lv, L. Tao, W. Zhang, S. Lu, M. Li, Q. Zhang, L. Gu, H. Li and S. Guo, J. Am. Chem. Soc., 2021, 143, 10822 |
39. | T.-J. Wang, Y.-C. Jiang, J.-W. He, F.-M. Li, Y. Ding, P. Chen and Y. Chen, Carbon Energy, 2022, 4, 283 |
40. | T. Shen, S. Chen, C. Zhang, Y. Hu, E. Ma, Y. Yang, J. Hu and D. Wang, Adv. Funct. Mater., 2022, 32, 2107672 |
41. | W. Liang, Y. Wang, L. Zhao, W. Guo, D. Li, W. Qin, H. Wu, Y. Sun and L. Jiang, Adv. Mater., 2021, 33, 2100713 |
42. | H. Wang, W. Wang, Q. Mao, H. Yu, K. Deng, Y. Xu, X. Li, Z. Wang and L. Wang, Chem. Eng. J., 2022, 450, 137995 |
43. | Q. Xue, X.-Y. Bai, Y. Zhao, Y.-N. Li, T.-J. Wang, H.-Y. Sun, F.-M. Li, P. Chen, P. Jin, S.-B. Yin and Y. Chen, J. Energy Chem., 2022, 65, 94 |
44. | L. Bu, Q. Shao, Y. Pi, J. Yao, M. Luo, J. Lang, S. Hwang, H. Xin, B. Huang, J. Guo, D. Su, S. Guo and X. Huang, Chem, 2018, 4, 359 |
45. | K. Kovnir, M. Armbrüs ter, D. Teschner, T. V. Venkov, L. Szentmiklósi, F. C. Jentoft, A. Knop-Gericke, Y. Grin and R. Schlögl, Surf. Sci., 2009, 603, 1784 |
46. | K. Tonnis, Z. Nan, J. Fang, R. Pavlicek, E. S. DeCastro and A. P. Angelopoulos, ACS Appl. Energy Mater., 2020, 3, 7588 |
47. | Z. Peng, H. You and H. Yang, Adv. Funct. Mater., 2010, 20, 3734 |
48. | G.-T. Fu, B.-Y. Xia, R.-G. Ma, Y. Chen, Y.-W. Tang and J.-M. Lee, Nano Energy, 2015, 12, 824 |
49. | J. Geng, Z. Zhu, X. Bai, F. Li and J. Chen, ACS Appl. Energy Mater., 2020, 3, 1010 |
50. | S. H. Ahn, Y. Liu and T. P. Moffat, ACS Catal., 2015, 5, 2124 |
51. | A. Ferre-Vilaplana, J. Victor Perales-Rondon, J. M. Feliu and E. Herrero, ACS Catal., 2015, 5, 645 |
52. | Y. Xu, Y. Wen, T. Ren, H. Yu, K. Deng, Z. Wang, X. Li, L. Wang and H. Wang, Appl. Catal. B Environ., 2023, 320, 121981 |
53. | Y. L. Zhao, Y. Liu, Z. J. Zhang, Z. K. Mo, C. Y. Wang and S. Y. Gao, Nano Energy, 2022, 97, 107124 |
54. | Q. Liu, Q. Liu, L. Xie, Y. Ji, T. Li, B. Zhang, N. Li, B. Tang, Y. Liu, S. Gao, Y. Luo, L. Yu, Q. Kong and X. Sun, ACS Appl. Mater. Interfaces, 2022, 14, 17312 |
55. | M. Liu, Q. Mao, K. Shi, Z. Wang, Y. Xu, X. Li, L. Wang and H. Wang, ACS Appl. Mater. Interfaces, 2022, 14, 13169 |
56. | Y. Xu, M. Wang, K. Ren, T. Ren, M. Liu, Z. Wang, X. Li, L. Wang and H. Wang, J. Mater. Chem. A, 2021, 9, 16411 |
57. | J. Lim, C.-Y. Liu, J. Park, Y.-H. Liu, T. P. Senftle, S. W. Lee and M. C. Hatzell, ACS Catal., 2021, 11, 7568 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Supplemental_information-2023-0022-R1 |
Schematic illustration for PtTe-ML synthesis.
a XRD pattern and b EDX spectrum of PtTe-ML. c Pt 4f and d Te 3d XPS spectra of PtTe-ML. The blue dotted lines in 1c and 1d represent the standard binding energy values of Pt and Te, respectively.
a TEM image and size distribution histogram, b HRTEM image and magnified HRTEM image, c SAED pattern, d STEM image, and e AFM image of PtTe-ML. f STEM image and corresponding EDX mapping and line scanning of PtTe-ML.
a LSV curves of PtTe-ML in Ar-saturated 0.5 M H2SO4 electrolyte with and without 50 mM KNO3 at 50 mV s−1. b The Faradaic efficiency of NO3−-ERR and NH3 yield of PtTe-ML at different potentials. c NH3 yields and Faradaic efficiency of PtTe-ML and commercial Pt black at −0.04 V potential. d The as-obtained Faradaic efficiency and NH3 yield during cyclic stability test of PtTe-ML.
a Atomic structure of the Pt(111) and PtTe(111) surface adsorbed with NO3* and intermediates. b Calculated d-band center values of PtTe(111) and Pt(111) surfaces. c The free energy diagrams of NO3−-ERR on the Pt(111) and PtTe(111) surfaces.
a CV curves of PtTe-ML and commercial Pt balck in Ar-saturated 0.5 M H2SO4 electrolyte at 50 mV s−1. b CV curves of PtTe-ML in Ar-saturated 0.5 M H2SO4 electrolyte in the presence or absence of 0.5 M CH3OH at 50 mV s−1. c LSV curves of PtTe-ML and Pt balck in 0.5 M H2SO4 and 0.5 M HCOOH electrolyte at 50 mV s−1. d Atomic structure of PtTe-ML.
Polarization curves of PtTe-ML||PtTe-ML electrolyzer in 0.5 M H2SO4 + 50 mM KNO3 + 0.5 M HCOOH solution and PtTe-ML||IrO2 electrolyzer in 0.5 M H2SO4.