Citation: | Fan Yang, Yi Lin, Xiaotong Wang, Cong Liu, Linfeng Zhong, Dongmei Han, Dingshan Yu. Research advances on conjugated microporous polymer-derived photocatalysts toward solar-to-hydrogen production[J]. Energy Lab, 2024, 2(3): 240013. doi: 10.54227/elab.20240013 |
Photocatalytic hydrogen evolution (PHE) is a sustainable energy technology that directly produces green and renewable hydrogen fuel from water under the drive of solar energy, achieving the conversion from solar energy to hydrogen energy, while the critical mission toward highly efficient PHE is to develop efficient and durable semiconductor catalysts. In this context, the newly-emerged conjugated microporous polymers (CMPs) have been considered as prospective candidates for efficient PHE due to their low density, good light absorption, high surface area, permanent microporous, and wide availability of synthesis methods. In particular, their molecular customizability and modifiability enable the effective encoding of desirable light-harvesting moieties and photo-catalytically active units into the conjugated polymer backbone for high-performance PHE. Herein, this review provides a brief summary on the latest advancements based on CMP-derived photocatalysts for PHE. First, the synthesis methods, reaction routes, and photoactive units of CMP photocatalysts are elucidated. Subsequently, the feasible methods regarding how to improve the PHE performance of CMPs by expanding light absorption, improving the separation and transport of photogenerated carriers, and promoting surface reactions are put forward. Finally, potential challenges and future prospects for CMP-derived photocatalysts are also discussed.
1. | Z. Zou, J. Ye, K. Sayama, H. Arakawa, Nature., 2001, 414, 625 |
2. | Y. Yang, G. Liu, J. T. S. Irvine, H. M. Cheng, Adv. Mater., 2016, 28, 5850 |
3. | X. Ruan, X. Cui, Y. Cui, X. Fan, Z. Li, T. Xie, K. Ba, G. Jia, H. Zhang, L. Zhang, W. Zhang, X. Zhao, J. Leng, S. Jin, D. J. Singh, W. Zheng, Adv. Energy Mater., 2022, 12, 2200298 |
4. | P. Dhiman, G. Rana, A. Kumar, G. Sharma, D. V. N. Vo, M. Naushad, Environ. Chem. Lett., 2022, 20, 1047 |
5. | C. Zhu, L. Lu, J. Xu, S. Song, Q. Fang, R. Liu, Y. Shen, J. Zhao, W. Dong, Y. Shen, Chem. Eng. J., 2023, 451, 138537 |
6. | N. Li, W. Yan, Y. Niu, S. Qu, P. Zuo, H. Bai, N. Zhao, ACS Appl. Mater. Interfaces., 2021, 13, 9838 |
7. | Y. Liu, H. Tan, Y. Wei, M. Liu, J. Hong, W. Gao, S. Zhao, S. Zhang, S. Guo, ACS Nano., 2023, 17, 5994 |
8. | D. Dai, X. Liang, B. Zhang, Y. Wang, Q. Wu, X. Bao, Z. Wang, Z. Zheng, H. Cheng, Y. Dai, B. Huang, P. Wang, Adv. Sci., 2022, 9, 2105299 |
9. | Q. Wang, T. Hisatom, Y. Suzuki, Z. Pan, J. Seo, M. Katayama, T. Minegishi, H. Nishiyama, T. Takata, K. Seki, A. Kudo, T. Yamada, K. Domen, J. Am. Chem. Soc., 2017, 139, 1675 |
10. | Z. Li, J. Zi, X. Luan, Y. Zhong, M. Qu, Y. Wang, Z. Lian, Adv. Funct. Mater., 2023, 33, 2303069 |
11. | Y. Tang, X. Jia X, Y. Guo, Z. Geng, C. Wang, L. Liu, J. Zhang, W. Guo, X. Tan, T. Yu, J. Ye, Adv. Energy Mater., 2023, 13, 2203827 |
12. | X. Zheng, Y. Song, Y. Liu, Y. Yang, D. Wu, Y. Yang, S. Feng, J. Li, W. Liu, Y. Shen, X. Tian, Coord. Chem. Rev., 2023, 475, 214898 |
13. | J. Zhu, Q. Bi, Tao Y, W. Guo, J. Fan, Y. Min, G. Li, Adv. Funct. Mater., 2023, 33, 2213131 |
14. | M. Torras, P. Molet, L. Soler, J. Llorca, A. Roig, A. Mihi, Adv. Energy Mater., 2022, 12, 2103733 |
15. | Z. Wang, R. Yu, X. Wang, W. Wu, Z. Wang, Adv. Mater., 2016, 28, 6880 |
16. | Y. Chen, W. Zhong, F. Chen, P. Wang, J. Fan, H. Yu, J. Mater. Sci. Technol., 2022, 121, 19 |
17. | C. Dai, B. Liu , Energy Environ. Sci., 2020, 13, 24 |
18. | M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. R.-Reinoso, J. Rouquerol, K. S. W. Sing, Pure Appl. Chem., 2015, 87, 1051 |
19. | J. S. M. Lee, A. I. Cooper, Chem Rev., 2020, 120, 2171 |
20. | H. Zhang, L. Zhong, J. Xie, F. Yang, X. Liu, X. Lu, Adv. Mater, 2021, 33, 2101857 |
21. | R. S. Sprick, J.-X. Jiang, B. Bonillo, S. Ren, T. Ratvijitvech, P. Guiglion, M. A. Zwijnenburg, D. J. Adams, A. I. Cooper, J. Am. Chem. Soc., 2015, 137, 3265 |
22. | N. Chaoui, M. Trunk, R. Dawson, J. Schmidt, A. Thomas, Chem. Soc. Rev., 2017, 46, 3302 |
23. | R. S. Sprick, B. Bonillo, M. Sachs, R. Clowes, J. R. Durrant, D. J. Adams, A. I. Cooper, Chem. Commun., 2016, 52, 10008 |
24. | Z. Xie, W. Wang, X. Ke, X. Cai, X. Chen, S. Wang, W. Lin, X. Wang, Appl. Catal. B Environ. Energy, 2023, 325, 122312 |
25. | Y. Liu, B. Li, Z. Xiang, Small, 2021, 17, 2007576 |
26. | A. Naseri, M. Samadi, A. Pourjavadi, A. Z. Moshfegh, S. Ramakrishna, J. Mater. Chem. A., 2017, 5, 23406 |
27. | G. Zhang, Z.-A. Lan, X. Wang, Angew. Chem. Int. Ed., 2016, 55, 15712 |
28. | X. Guan, Y. Qian, X. Zhang, H.-L. Jiang., Angew. Chem. Int. Ed., 2023, 62, e202306135 |
29. | J. X. Jiang, F. Su, A. Trewin, C. D. Wood, N. L. Campbell, H. Niu, C. Dickinson, A. Y. Ganin, M. J. Rosseinsky, Y. Z. Khimyak, A. I. Cooper, Angew. Chem. Int. Ed., 2007, 46, 8574 |
30. | F. E. Osterloh, ACS Energy Lett., 2017, 2, 445 |
31. | S. Liu, C. Zhang, Y. Sun, Q. Chen, L. He, K. Zhang, J. Zhang, B. Liu, L.-F. Chen, Coord. Chem. Rev., 2020, 413, 213266 |
32. | X. Yang, D. Wang, ACS Appl. Energy Mater., 2018, 1, 6657 |
33. | H. Zhang, J. Liu, L. Jiang, Nanotechnol., 2022, 33, 322001 |
34. | M. Z. Rahman, M. G. Kibria, C. B. Mullins, Chem. Soc. Rev., 2020, 49, 1887 |
35. | Z. Wang, C. Li, K. Domen, Chem. Soc. Rev., 2019, 48, 2109 |
36. | S. Xiong, R. Tang, D. Gong, Y. Deng, J. Zheng, L. Li, Z. Zhou, L. Yang, L. Su, Chinese J. Catal., 2022, 43, 1719 |
37. | D. Ma, Z. Zhang, Y. Zou, J. Chen, J.-W. Shi, Coord. Chem. Rev., 2024, 500, 215489 |
38. | C. Kranz, M. Wachtler, Chem. Soc. Rev., 2021, 50, 1407 |
39. | J. Ma, H. Chi, A. Wang, P. Wang, H. Jing, T. Yao, C. Li, J. Am. Chem. Soc., 2022, 144, 38, 17540 |
40. | S. Luo, Z. Zeng, H. Wang, W. Xiong, B. Song, C. Zhou, A. Duan, X. Tan, Q. He, G. Zeng, Z. Liu, R. Xiao, Prog. Polym. Sci., 2021, 115, 101374 |
41. | N. Wan, Q. Chang, F. Hou, S. Zhang, X. Zang, X. Zhao, C. Wang, Z. Wang, Y. Yamauchi, Chem. Mater., 2022, 34, 7598 |
42. | A. Hayat, M. Sohail, A. E. Jery, K. M. AI-Zaydi, S. Raza, H. Ali, Y. Al-Hadeethi, T. A. Taha, I. U. Din, M. A. Khan, M. A. Amin, E. Ghasali, Y. Oroogi, Z. Ajmal, M. Z. Ansari, Mater. Today., 2023, 64, 180 |
43. | Z. Wang, S. Ghasimi, K. Landfester, K. A. I. Zhang, Adv. Mater., 2015, 27, 6265 |
44. | J. Fan, T. Wang, H. Chen, Z. Wang, B. P. Thapaliya, T. Kobayashi, Y. Yuan, I. Popovs, Z. Yang, S. Dai, Adv. Funct. Mater., 2022, 32, 2202669 |
45. | S. Chai, N. Hu, Y. Han, X. Zhang, Z. Yang, L. Wei, L. Wang, H. Wei, RSC Adv., 2016, 6, 49425 |
46. | R. Wang, X. Wang, W. Weng, Y. Yao, P. Kidkhunthod, C. Wang, Y. Hou, J. Guo, Angew. Chem. Int. Ed., 2022, 61, e202115503 |
47. | H. Ma, Y. Chen, X. Li, B. Li, Adv. Funct. Mater., 2021, 31, 2101861 |
48. | Z. Zhou, X. Li, Guo D, G. B. Shinde, D. Lu, L. Chen, X. Liu, L. Cao, A. M. Aboalsaud, Y. Hu, Z. Lai, Nat. Commun., 2020, 11, 5323 |
49. | X. Li, X. J. Zhang, W. L. Guo, Y. Huang, T. Cai, Chem. Eng. J., 2023, 465, 142861 |
50. | L. Zhong, Z. Fang, C. Shu, C. Mo, X. Chen, D. Yu, Angew. Chem. Int. Ed., 2021, 60, 10164 |
51. | Q. He, J. Kang, J. Zhu, S. Huang, C. Lu, H. Liang, Y. Su, X. Zhuang, Chem. Commun., 2022, 58, 2339 |
52. | Y. Liao, H. Wang, M. Zhu, A. Thomas, Adv. Mater., 2018, 30, 1705710 |
53. | J. Lee, O. Buyukcakir, T. Kwon, A. Coskun, J. Am. Chem. Soc., 2018, 140, 10937 |
54. | K. Zhang, X. Dong, B. Zeng, K. Xiong, X. Lang, J. Colloid Interface Sci., 2023, 651, 622 |
55. | S. U. Sharma, M. H. Elsayed, I. M. A. Mekhemer, T. S. Meng, H.-H. Chou, S.-W. Kuo, M. G. Mohamed, Giant., 2024, 17, 100217 |
56. | L. Chang, B. Chen, J. Kang, Z. Yan, Y. Jin, H. Yan, S. Chen, C. Xia, Chem. Eng. J., 2022, 431, 133222 |
57. | Y. Li, Q. Duan, H. Wang, B. Gao, N. Qiu, Y. Li, J. Photochem. Photobiol. A Chem., 2018, 356, 370 |
58. | X. Dong, Y. Wang, F. Huang, X. Lang, Chem. Eng. J., 2023, 469, 143934 |
59. | W. Hao, R. Chen, Y. Zhang, Y. Wang, Y. Zhao, ACS Omega, 2021, 6, 23782 |
60. | F. Huang, X. Dong, Y. Wang, X. Lang, Appl. Catal. B Environ. Energy, 2023, 330, 122585 |
61. | Y. B. Zhao, W. Y. Ma, Y. F. Xu, C. Zhang, Q. Wang, T. J. Yang, X. M. Gao, F. Wang, C. Yan, J. X. Jiang, Macromolecules, 2018, 51, 9502 |
62. | J. Yang, Y. A. Liu, M. M Zhai, J.-J. Qin, W. Hu, H. Yang, K. Wen, Polym. Chem., 2023, 14, 1507 |
63. | Y. T. Zhang, K. M. Li, X. H. Su, Z. F. Li, Y. T. Tian, Y. J. Zhang, B. Y. Liu, G. Yue, Y. Tian, Int. J. Hydrogen Energ., 2024, 82, 407 |
64. | Z. J. Wang, X. Y. Yang, T. J. Yang, Y. B. Zhao, F. Wang, Y. Chen, J. H. Zeng, C. Yan, F. Huang, J. X. Jiang, ACS Catal., 2018, 8, 8590 |
65. | C. B. Meier, R. S. Sprick, A. Monti, P. Guiglion, J. M. Lee, M. A. Zwijnenburg, A. I. Copper, Polymer, 2017, 126, 283 |
66. | R. T. Ren, Z. X. Jiao, Z. F. Li, Y. Tian, B. Y. Liu, G. Yue, J. Catal., 2023, 421, 393 |
67. | J.-X. Jiang, Y. Li, X. Wu, J. Xiao, D. J. Adams, A. I. Cooper, Macromolecules, 2013, 46, 8779 |
68. | C. S. Diercks, S. Lin, N. Kornienko, E. A. Kapustin, E. M. Nichols, C. Zhu, Y. Zhao, C. J. Chang, O. M. Yaghi, J. Am. Chem. Soc., 2018, 140, 1116 |
69. | S. Bandyopadhyay, A. G. Anil, A. James and A. Patra, ACS Appl. Mater. Interfaces, 2016, 8, 27669 |
70. | Z. Luo, X. Chen, Y. Hu, X. Chen, W. Lin, X. Wu, X. Wang, Angew. Chem. Int. Ed., 2023, 135, e202304875 |
71. | L. C. Xu, C. Yang, Z. H. Cheng, Q. H. Huang, S. Z. Zhang, C. Qian, Y. Z. Liao, Chin. J. Chem., 2023, 41, 2518 |
72. | F. L. Yi, Q. Yang, X. Y. Li, Y. Q. Yuan, H. M. Cao, K. W. Liu, H. J. Yan, J. Solid State Chem., 2023, 318, 123769 |
73. | C. Han, S. Xiang, M. Ge, P. Xie, C. Zhang, J.-X. Jiang, Small, 2022, 18, 2202072 |
74. | X. Chi, Q. Chen, Z.-A. Lan, X. Zhang, X. Chen, X. Wang, Chem. Eur. J., 2023, 29, e202202734 |
75. | Y. Yan, X. Yu, C. Shao, Y. Hu, W. Huang, Y. Li, Adv. Funct. Mater., 2023, 33, 2304604 |
76. | X. Gao, C. Shu, C. Zhang, W. Ma, S.-B. Ren, F. Wang, Y. Chen, J. H. Zeng, J.-X. Jiang, J. Mater. Chem. A, 2020, 8, 2404 |
77. | G. Li, Z. Xie, Q. Wang, X. Chen, Y. Zhang, X. Wang, Chem. Eur. J., 2021, 27, 939 |
78. | C. Shu, C. Han, X. Yang, C. Zhang, Y. Chen, S. Ren, F. Wang, F. Huang, J.-X. Jiang, Adv. Mater., 2021, 33, 2008498 |
79. | C. Han, L. Hu, S. Jin, J. Ma, J.-X. Jiang, C. Zhang, ACS Appl. Mater. Interfaces., 2023, 15, 36404 |
80. | C. Li, H. Xu, H. Xiong, S. Xia, X. Peng, F. Xu, X. Chen, Adv. Funct. Mater., 2024, 34, 2405539 |
81. | F. Li, X. Dai, L. Zhang, H. Wu, J. Li, J. Guo, Q. Yi, Fuel, 2024, 370, 131812 |
82. | M. G. Mohamed, M. H. Elsayed, C.-J. Li, A. E. Hassan, I. M. A. Mekhemer, A. F. Musa, M. K. Hussien, L.-C. Chen, K.-H. Chen, H.-H. Chou, S.-W. Kuo, J. Mater. Chem. A, 2024, 12, 7693 |
83. | A. M. Elewa, A. F. M. EL-Mahdy, M. H. Elsayed, M. G. Mohamed, S.-W. Kuo, H.-H. Chou, Chem Eng J., 2021, 421, 129825 |
84. | G. Zhang, A. M. Elewa, M. Rashad, S. Helali, H.-H. Chou, A. F. M. EL-Mahdy, Micropor. Mesopor. Mater., 2024, 363, 112824 |
85. | K. Ding, Q. Zhang, Q. Li, S. Ren, Macromol. Chem. Phys., 2019, 220, 1900304 |
86. | Y. Q. Xing, S. Y. Liu, Chin. J. Struct. Chem., 2022, 41, 2209056 |
87. | J. Low, J. Yu, M. Jaroniec, S. Wageh, A. A. Al-Ghamdi, Adv. Mater., 2017, 29, 1601694 |
88. | C. Pan, Z. Mao, X. Yuan, H. Zhang, L. Mei, X. Ji, Adv. Sci., 2022, 9, 2105747 |
89. | K. Xie, S. Xu, K. Xu, W. Hao, J. Wang, Z. Wei, Chemosphere., 2023, 317, 137823 |
90. | H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Chem. Soc. Rev., 2014, 43, 5234 |
91. | L. Che, J. Pan, K. Cai, Y. Cong, S. W. Lv, Sep. Purif. Technol., 2023, 315, 123708 |
92. | C. Li, G. Ding, X. Liu, P. Huo, Y. Yan, Y. S. Yan, G. F. Liao, Chem. Eng. J., 2022, 435, 134740 |
93. | A. J. Bard, M. A. Fox, Acc. Chem. Res., 1995, 28, 141-145 |
94. | J. Yu, S. Wang, J. Low, J. Low, W. Xiao, Chem. Chem. Phys., 2013, 15, 16883 |
95. | A. Den, Y. Sun, Z. Gao, S. Yang, Y. Liu, H. He, J. Zhang, S. Liu, H. Sun, S. Wang, Nano Energy., 2023, 108, 108228 |
96. | H. Zhang, Z. Wang, J. Zhang, K. Dai, Chinese J. Catal., 2023, 49, 42 |
97. | Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, Chem., 2020, 6, 1543 |
98. | R. Kumar, A. Sudhaik, A. A. P. Khan, P. Raizada, A. M. Asiri, S. Mohapatra, S. Thakur, V. K. Thakur, P. Singh, J. Ind. Eng. Chem., 2021, 106, 340 |
99. | L. Wang, B. Zhu, J. Zhang, J. B. Ghasemi, M. Mousavi, J. Yu, Matter., 2022, 5, 4187 |
100. | Y. Bao, Y. Song, G. Yao, S. Jiang, Sol. RRL., 2021, 5, 2100118 |
101. | L. Zhang, J. Zhang, H. Yu, J. Yu, Adv. Mater., 2022, 34, 2107668 |
102. | S. Dharani, S. Vadivel, L. Gnanasekaran, S. Rajendran, Fuel., 2023, 349, 128688 |
103. | C. Cheng, B. He, J. Fan, B. Cheng, S. Cao, J. Yu, Adv. Mater., 2021, 33, 2100317 |
104. | X. Ruan, C. Huang, H. Cheng H, Z. Zhang, Y. Cui, Z. Li, T. Xie, K. Bai, H. Zhang, L. Zhang, X. Zhao, J. Leng, S. Jin, W. Zhang, W. Zheng, S. K. Ravi, Z. Jiang, X. Cui, J. Yu, Adv. Mater., 2023, 35, 2209141 |
105. | P. Xia, S. Cao, B. Zhu, M. Liu, M. Shi, J. Yu, Y. Zhang, Angew. Chem. Int. Ed., 2020, 59, 5218 |
106. | l. Yuan, C. Zhang, Y. Zou, T. Bao, J. Wang, C. Tang, A. Du, C. Yu, C. Liu, Adv. Funct. Mater., 2023, 33, 2214627 |
107. | B. Ye, W. Wang, L. Wang, H. Tang, J. Hu, Q. Liu, Mat. Sci. Semicon. Proc., 2023, 164, 107623 |
108. | H.-J. Hou, X.-H. Zhang, D.-K. Huang, X. Ding, S.-Y. Wang, X.-L. Yang, S.-Q. Li, Y.-G. Xiang, H. Chen, Appl. Catal. B Environ., 2017, 203, 563 |
109. | J. Wang, Z. Wang, K. Dai, J. Zhang, J. Mater. Sci. Technol., 2023, 165, 187 |
110. | L. Wang, X. Zheng, L. Chen, Y. Xiong, H. Xu, Angew. Chem. Int. Ed., 2018, 57, 3454 |
111. | X. Wang, Y. Wang, G. Chai, G. Yang, C. Wang, W. Yan, J. CO2 Util., 2021, 51, 101654 |
112. | R. S. Sprick, Y. Bai, A. A. Y. Guilbert, M. Zbiri, C. M. Aitchison, L. Wilbraham, Y. Yan, D. J. Woods, M. A. Zwijnenburg, A. I. Cooper, Chem. Mater., 2019, 31, 305 |
113. | M. G. Mohamed, M. H. Elsayed, A. M. Elewa, A. F. M. EL-Mahdy, C. H. Yang, A. A. K. Mohamed, H. H. Chou, S. W. Kuo, Catal. Sci. Technol., 2021, 11, 222 |
114. | L. Wang, Y. Y. Wan, Y. J. Ding, S. K. Wu, Y. Zhang, X. L. Zhang, G. Q. Zhang, Y. J. Xiong, X. J. Wu, J. L. Yang, H. X. Xu, Adv. Mater., 2017, 29, 1702428 |
115. | X. Wang, X. Zhao, W. Dong, X. Zhang, Y. Xiang, Q. Huang, H. Chen, J. Mater. Chem. A, 2019, 7, 16277 |
116. | B. Chen, N. Yang, P. Wang, Y. Xiang, H. Chen, Appl. Surf. Sci., 2020, 499, 143865 |
117. | C. Yang, Z. Cheng, G. Divitini, C. Qian, B. Hou, Y. Liao, J. Mater. Chem. A., 2021, 9, 19894 |
118. | M. M. Samy, I. M. A. Mekhemer, M. G. Mohamed, M. H. Elsayed, K.-H. Lin, Y.-K. Chen, T.-L. Wu, H.-H. Chou, S.-W. Kuo, Chem. Eng. J., 2022, 446, 137158 |
119. | M. G. Kotp, A. M. Elewa, A. F. M. EL-Mahdy, H. H. Chou, S. W. Kuo, ACS. Appl. Energy Mater., 2021, 4, 13140 |
120. | T. L. Lee, A. M. Elewa, M. G. Kotp, H. H. Chou, A. F. M. EL-Mahdy, Chem. Commun., 2021, 57, 11968 |
121. | C. Han, S. Xiang, S. Jin, C. Zhang, J.-X. Jiang, ACS Catal., 2023, 13, 204 |
122. | Y. Liu, Y. Xie, X. Liu, G. Huang, C. Liang, Fuel, 2024, 366, 131415 |
123. | M. G. Bai, K. Bramhaiah, S. Bhattacharyya, R. M. Rao, Chem. Eur. J., 2022, 28, e202202023 |
124. | C.-Y. Chang, A. M. Elewa, A. G. Mohamed, I. M. A. Mekhemer, M. M. Samy, K. Zhang, H.-H. Chou, S.-W. Kuo, Mater. Today Chem., 2023, 33, 101680 |
125. | P. Lu, Y. Hua, L. Su, M. Zhao, D. Sun, G. Zhang, ACS Appl. Polym. Mater, 2024, 6, 7594 |
126. | X. Han, Y. Zhang, Y. Y. Dong, J. Zhao, S. Ming, J. Zhang, RSC Adv, 2022, 12, 708 |
127. | Z.-A, Lan, W. Ren, X. Chen, Y. Zhang, X. Wang, Appl. Catal. B: Environ., 2019, 245, 596 |
128. | I. U. Hasan, G. A. Naikoo, H. Salim, T. Awan, M. A. Tabook, M. Z. Pedram, M. Mustaqeem, A. Sohani, S. Hoseinzadeh, T. A. Saleh, J. Ind. Eng. Chem., 2023, 121, 1 |
129. | H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi, Y. Kuromiya, Y. Nagatsuma, H. Tokudome, S. Akiyama, T. Watanabe, R. Narushima, S. Okunaka, N. Shibata, T. Takata, T. Hisatomi, K. Domen, Nature, 2021, 598, 304 |
130. | R. Gao, X.-S. Wei, W. Zhao, A. Xie, W. Dong, Anal. Chim. Acta, 2022, 1192, 339343 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Several main methods to improve the charge separation capability of CMPs and the advantages of CMP photocatalysts in the field of PHE.[29] Copyright 2007, Wiley.
Schematic of the basic principles of photocatalytic water splitting.
a Demonstration diagram of how geometric design principles can change the VB and CB locations of a CMP network.[43] Copyright 2015, Wiley. b Synthetic representation of KECMP-1 via microwave-aided polymerization.[45] Copyright 2016, Royal Society of Chemistry. c Synthetic method of CNT@CMP(CoPc-H2Pc) by ionic thermal deposition.[46] Copyright 2022, Wiley. d Schematic diagram of the electropolymerization process of a three-electrode electrochemical cell.[48] Copyright 2020, Springer Nature.
a Synthetic ways of CMP. [49] Copyright 2023, Elsevier. b Synthetic route of CMP.[50] Copyright 2021, Wiley. c Preparation of CMPs.[51] Copyright 2022, Royal Society of Chemistry. d Synthetic route.[52] Copyright 2018, Wiley. e Synthesis and designment of Cyclized CMP.[53] Copyright 2018, American Chemical Society.
a Common organic photoactive functional units. b Synthetic route of pyrene-based CMPs.[55] Copyright 2024, Elsevier. c Preparation of porphyrin-based CMPs.[56] Copyright 2022, Elsevier. d Synthetic route of carbazole-based CMPs.[58] Copyright 2023, Elsevier. e Synthesis of thiophene-based CMPs.[60] Copyright 2023, Elsevier.
a Illustration of synthesizing CMPs. b The UV-vis reflectance spectra. c Tauc plots of PyDOBT-1 and PyDOBT-2.[61] Copyright 2018, ACS Publications.
a Synthesis of different types of CMPs. b The DFT calculation for different CMPs.[66] Copyright 2023, Elsevier.
a Synthesis of TPE-BTDO and DBC-BTDO. b The DFT calculation for TPE-BTDO and DBC-BTDO.[73] Copyright 2022, Wiley.
a Atomic structure engineering of CMP photocatalysts. b Linear diagram of exciton binding energy and electron affinity of acceptor unit. c Evaluation of HER preformation of CMPs.[75] Copyright 2023, Wiley.
a Synthesis of D-π-A copolymer photocatalysts. b HERs of PyBS-3 at distinct photocatalytic circumstances.[78] Copyright 2021, Wiley. c Synthesis diagram of D-π-A-A type photocatalyst with different feed ratios. d Photocatalytic HER properties and AQY e of CMPs with 3 wt % Pt.[79] Copyright 2023, American Chemical Society.
a Synthesis of Por-based CMPs. Mulliken charge distribution b and electrostatic potential distributions c of H-Por-based CMP (top picture) and Zn-Por-based CMP (bottom picture). Copyright 2024, Elsevier.[84]
Schematic diagrams of charge carrier transfer paths in a type I, b type II, c p-n, d Z-scheme, and e S-scheme heterojunctions, where SCA serves as semiconductor A and SCB as semiconductor B.
a Chemical structure of two polymers, b Diagram of heterojunction and PHE mechanism.[110] Copyright 2018, Wiley.
a, b TEM images of PTEPB and PTEB. c The PHE performance of PTEPB. d AQY of PTEPB. e, f The possible active sites in HER of PTEPB and PTEB.[114] Copyright 2017, Wiley.
a Synthetic ways of PCM, Ni@PCMP and Co@PCMP. b Schematic diagram of the change in HER over time.[117] Copyright 2021, Royal Society of Chemistry.