Citation: | Zhangci Wang, Xiaoyu Sang, Yuexin Wu, Jiahui Zhang, Henghui Xu, Xianluo Hu. Strategies of binder design for lithium-ion battery cathodes[J]. Energy Lab, 2024, 2(3): 240015. doi: 10.54227/elab.20240015 |
Lithium-ion batteries (LIBs) are crucial for advancing green energy transformation and boosting industrial competitiveness, due to their high energy density, long cycle life, and environmental friendliness. Among the key components of LIBs, cathode materials play a pivotal role in determining overall battery performance. However, these materials face several challenges, including phase transitions, electrolyte corrosion, and low conductivity, which hinder the development of high-energy LIBs. In addition to traditional modification strategies such as doping and micro-structural design, functional binders have emerged as a promising avenue to enhance the electrochemical performance of cathodes. Despite their potential, there is a lack of comprehensive guidance on designing functional binders for high-voltage or high-capacity cathodes, and the relationship between binder design strategies and cathode failure mechanisms is not yet well understood. This review addresses these gaps by summarizing the failure mechanisms of widely used cathodes (e.g., LiCoO2, LiNi
1. | M. Lv, R. Zhao, Z. Hu, J. Yang, X. Han, Y. Wang, C. Wu and Y. Bai, Energy Environ. Sci., 2024, 17, 4871 |
2. | F. Zou and A. Manthiram, Adv. Energy Mater., 2020, 10, 2002508 |
3. | Z. Hu, R. Zhao, J. Yang, C. Wu and Y. Bai, Energy Storage Mater., 2023, 59, 102776 |
4. | W. Dou, M. Zheng, W. Zhang, T. Liu, F. Wang, G. Wan, Y. Liu and X. Tao, Adv. Funct. Mater., 2023, 33, 2305161 |
5. | J. Kang, J. Y. Kwon, D. -Y. Han, S. Park and J. Ryu, Appl. Phys. Rev., 2024, 11, 011315 |
6. | S. Lee, H. Koo, H. S. Kang, K. H. Oh and K. W. Nam, Polymers, 2023, 15, 4477 |
7. | T. Qin, H. Yang, Q. Li, X. Yu and H. Li, Ind. Chem. Mater., 2024, 2, 191 |
8. | S. Sudhakaran and T. K. Bijoy, ACS Appl. Energy Mater., 2023, 6, 11773 |
9. | L. Zhang, X. Wu, W. Qian, K. Pan, X. Zhang, L. Li, M. Jia and S. Zhang, Electrochem. Energy Rev., 2023, 6, 36 |
10. | M. Jiang, D. L. Danilov, R. A. Eichel and P. H. L. Notten, Adv. Energy Mater., 2021, 11, 2103005 |
11. | C. Li, S. Nie and H. Li, Chem. Eur. J., 2024, 30, e202303733 |
12. | T. Fu, D. Lu, Z. Yao, Y. Li, C. Luo, T. Yang, S. Liu, Y. Chen, Q. Guo, C. Zheng and W. Sun, J. Mater. Chem. A, 2023, 11, 13889 |
13. | T. Yi, J. Mei and Y. Zhu, J. Power Sources, 2016, 316, 85 |
14. | L. Yuan, Z. Wang, W. Zhang, X. Hu, J. Chen, Y. Huang and J. B. Goodenough, Energy Environ. Sci., 2011, 4, 269 |
15. | M. Si, D. Wang, R. Zhao, D. Pan, C. Zhang, C. Yu, X. Lu, H. Zhao and Y. Bai, Adv. Sci., 2019, 7, 1902538 |
16. | H. Zhao, W. Li, J. Li, H. Xu, C. Zhang, J. Li, C. Han, Z. Li, M. Chu and X. Qiu, Nano Energy, 2022, 92, 106760 |
17. | X. Fan, G. Hu, B. Zhang, X. Ou, J. Zhang, W. Zhao, H. Jia, L. Zou, P. Li and Y. Yang, Nano Energy, 2020, 70, 104450 |
18. | Q. Li, G. Li, C. Fu, D. Luo, J. Fan and L. Li, ACS Appl. Mater. Interfaces, 2014, 6, 10330 |
19. | R. Qing, J. Shi, D. Xiao, X. Zhang, Y. Yin, Y. Zhai, L. Gu and Y. Guo, Adv. Energy Mater., 2015, 6, 1501914 |
20. | L. Liang, M. Su, Z. Sun, L. Wang, L. Hou, H. Liu, Q. Zhang and C. Yuan, Sci. Adv., 2024, 10, eado4472 |
21. | Y. Zhang, H. Li, J. Liu, J. Zhang, F. Cheng and J. Chen, J. Mater. Chem. A, 2019, 7, 20958 |
22. | C. M. Costa, V. F. Cardoso, P. Martins, D. M. Correia, R. Gonçalves, P. Costa, V. Correia, C. Ribeiro, M. M. Fernandes, P. M. Martins and S. Lanceros-Méndez, Chem. Rev., 2023, 123, 11392 |
23. | J. Lu, C. Xu, W. Dose, S. Dey, X. Wang, Y. Wu, D. Li and L. Ci, Chem. Soc. Rev., 2024, 53, 4707 |
24. | Y. Zhao, Z. Liang, Y. Kang, Y. Zhou, Y. Li, X. He, L. Wang, W. Mai, X. Wang, G. Zhou, J. Wang, J. Li, N. Tavajohi and B. Li, Energy Storage Mater., 2021, 35, 353 |
25. | J. Ahn, H. G. Im, Y. Lee, D. Lee, H. Jang, Y. Oh, K. Chung, T. Park, M. K. Um, J. W. Yi, J. Kim, D. J. Kang and J. K. Yoo, Energy Storage Mater., 2022, 49, 58 |
26. | Y. Ma, J. Ma and G. Cui, Energy Storage Mater., 2019, 20, 146 |
27. | D. Bresser, D. Buchholz, A. Moretti, A. Varzi and S. Passerini, Energy Environ. Sci., 2018, 11, 3096 |
28. | Y. Shi, X. Zhou and G. Yu, Acc. Chem. Res., 2017, 50, 2642 |
29. | Z. Sun, J. Pan, W. Chen, H. Chen, S. Zhou, X. Wu, Y. Wang, K. Kim, J. Li, H. Liu, Y. Yuan, J. Wang, D. Su, D. Peng and Q. Zhang, Adv. Energy. Mater., 2024, 14, 2303165 |
30. | Z. Sun, Q. Yin, H. Chen, M. Li, S. Zhou, S. Wen, J. Pan, Q. Zheng, B. Jiang, H. Liu, K. Kim, J. Li, X. Han, Y. He, L. Zhang, M. Li and Q. Zhang, Interdisciplinary Materials, 2023, 2, 635 |
31. | Q. Jia, Q. Li, M. Luo and H. Li, RSC Adv., 2018, 8, 38980 |
32. | Y. H. Kwon, K. Minnici, M. M. Huie, K. J. Takeuchi, E. S. Takeuchi, A. C. Marschilok and E. Reichmanis, Chem. Mater., 2016, 28, 6689 |
33. | J. E. Marshall, A. Zhenova, S. Roberts, T. Petchey, P. Zhu, C. E. J. Dancer, C. R. McElroy, E. Kendrick and V. Goodship, Polymers, 2021, 13, 1354 |
34. | V. Cardoso, D. Correia, C. Ribeiro, M. Fernandes and S. Lanceros-Méndez, Polymers, 2018, 10, 161 |
35. | J. Yang, P. Li, F. Zhong, X. Feng, W. Chen, X. Ai, H. Yang, D. Xia and Y. Cao, Adv. Energy Mater., 2020, 10, 1904264 |
36. | Y. Zhang, A. Hu, D. Xia, S. Hwang, S. Sainio, D. Nordlund, F. M. Michel, R. B. Moore, L. Li and F. Lin, Nat. Nanotechnol., 2023, 18, 790 |
37. | T. Dong, P. Mu, S. Zhang, H. Zhang, W. Liu and G. Cui, Electrochem. Energy Rev., 2021, 4, 545 |
38. | H. Yuan, J. Huang, H. Peng, M. M. Titirici, R. Xiang, R. Chen, Q. Liu and Q. Zhang, Adv. Energy Mater., 2018, 8, 1802107 |
39. | S. Zhang, X. Fan and C. Wang, ChemElectroChem, 2019, 6, 1536 |
40. | Y. Chen, T. Wang, H. Tian, D. Su, Q. Zhang and G. Wang, Adv. Mater., 2021, 33, 2003666 |
41. | H. Chen, M. Ling, L. Hencz, H. Ling, G. Li, Z. Lin, G. Liu and S. Zhang, Chem. Rev., 2018, 118, 8936 |
42. | X. Yang, C. Wang, P. Yan, T. Jiao, J. Hao, Y. Jiang, F. Ren, W. Zhang, J. Zheng, Y. Cheng, X. Wang, W. Yang, J. Zhu, S. Pan, M. Lin, L. Zeng, Z. Gong, J. Li and Y. Yang, Adv. Energy Mater., 2022, 12, 2200197 |
43. | W. Liu, P. Oh, X. Liu, M. J. Lee, W. Cho, S. Chae, Y. Kim and J. Cho, Angew. Chem., Int. Ed., 2015, 54, 4440 |
44. | J. Vetter, P. Novák, M. R. Wagner, C. Veit, K. C. Möller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler and A. Hammouche, J. Power Sources, 2005, 147, 269 |
45. | M. Fehse, N. Etxebarria, L. Otaegui, M. Cabello, S. Martín-Fuentes, M. A. Cabañero, I. Monterrubio, C. F. Elkjær, O. Fabelo, N. A. Enkubari, J. M. López del Amo, M. Casas-Cabanas and M. Reynaud, Chem. Mater., 2022, 34, 6529 |
46. | M. Fan, Q. Meng, X. Chang, C. Gu, X. Meng, Y. Yin, H. Li, L. Wan and Y. Guo, Adv. Energy Mater., 2022, 12, 2103630 |
47. | J. Wang, Z. Liang, Y. Zhao, J. Sheng, J. Ma, K. Jia, B. Li, G. Zhou and H. Cheng, Energy Storage Mater., 2022, 45, 768 |
48. | F. Li, L. Kong, Y. Sun, Y. Jin and P. Hou, J. Mater. Chem. A, 2018, 6, 12344 |
49. | W. Huang, G. Wang, C. Luo, Y. Xu, Y. Xu, B. J. Eckstein, Y. Chen, B. Wang, J. Huang, Y. Kang, J. Wu, V. P. Dravid, A. Facchetti and T. J. Marks, Nano Energy, 2019, 64, 103936 |
50. | J. Abou-Rjeily, I. Bezza, N. A. Laziz, C. Autret-Lambert, M. T. Sougrati and F. Ghamouss, Energy Storage Mater., 2020, 26, 423 |
51. | C. Lin, J. Li, Z. Yin, W. Huang, Q. Zhao, Q. Weng, Q. Liu, J. Sun, G. Chen and F. Pan, Adv. Mater., 2024, 36, 2307404 |
52. | S. Zhang, M. Qi, S. Guo, Y. Sun, X. Tan, P. Ma, J. Li, R. Yuan, A. Cao and L. Wan, Small Methods, 2022, 6, 2200148 |
53. | K. Wang, J. Wan, Y. Xiang, J. Zhu, Q. Leng, M. Wang, L. Xu and Y. Yang, J. Power Sources, 2020, 460, 228062 |
54. | J. Li, C. Lin, M. Weng, Y. Qiu, P. Chen, K. Yang, W. Huang, Y. Hong, J. Li, M. Zhang, C. Dong, W. Zhao, Z. Xu, X. Wang, K. Xu, J. Sun and F. Pan, Nat. Nanotechnol., 2021, 16, 599 |
55. | Z. Chen and J. R. Dahn, Electrochim. Acta, 2004, 49, 1079 |
56. | I. S. Michel Me´ne´trier, Ste´phane Levasseur and Claude Delmas, J. Mater. Chem., 1999, 9, 1135 |
57. | C. A. Marianetti, G. Kotliar and G. Ceder, Nat. Mater., 2004, 3, 627 |
58. | K. Chung, W. Yoon, H. Lee, J. McBreen, X. Yang, S. H. Oh, W. H. Ryu, J. L. Lee, W. I. Cho and B. W. Cho, J. Power Sources, 2006, 163, 185 |
59. | E. Flores, N. Mozhzhukhina, U. Aschauer and E. J. Berg, ACS Appl. Mater. Interfaces, 2021, 13, 22540 |
60. | X. Lu, Y. Sun, Z. Jian, X. He, L. Gu, Y. Hu, H. Li, Z. Wang, W. Chen, X. Duan, L. Chen, J. Maier, S. Tsukimoto and Y. Ikuhara, Nano Lett., 2012, 12, 6192 |
61. | Y. Takahashi, N. Kijima, K. Tokiwa, T. Watanabe and J. Akimoto, J. Phys.: Condens. Matter., 2007, 19, 436202 |
62. | Y. Lyu, X. Wu, K. Wang, Z. Feng, T. Cheng, Y. Liu, M. Wang, R. Chen, L. Xu, J. Zhou, Y. Lu and B. Guo, Adv. Energy Mater., 2021, 11, 2000982 |
63. | L. Wang, B. Chen, J. Ma, G. Cui and L. Chen, Chem. Soc. Rev., 2018, 47, 6505 |
64. | M. Duffiet, M. Blangero, P. E. Cabelguen, C. Delmas and D. Carlier, J. Phys. Chem. Lett., 2018, 9, 5334 |
65. | B. Hu, F. Geng, M. Shen and B. Hu, Magn. Reson. Lett., 2023, 3, 61 |
66. | A. Manthiram and J. B. Goodenough, Nat. Energy, 2021, 6, 323 |
67. | E. R. Fadel, F. Faglioni, G. Samsonidze, N. Molinari, B. V. Merinov, W. A. Goddard Iii, J. C. Grossman, J. P. Mailoa and B. Kozinsky, Nat. Commun., 2019, 10, 3360 |
68. | X. Li, Y. Qiao, S. Guo, K. Jiang, M. Ishida and H. Zhou, Adv. Mater., 2019, 31, 1807825 |
69. | L. Gong, M. H. T. Nguyen and E. S. Oh, Electrochem. Commun., 2013, 29, 45 |
70. | S. Byun, J. Choi, Y. Roh, D. Song, M. H. Ryou and Y. M. Lee, Electrochim. Acta, 2020, 332, 135471 |
71. | Y. Chen, S. Liu, S. Cheng, S. Gao, J. Chai, Q. Jiang, Z. Liu, X. Liu, J. Liu, M. Xie and W. Dai, ACS Appl. Energy Mater., 2022, 5, 3072 |
72. | G. Li, Y. Liao, Z. He, H. Zhou, N. Xu, Y. Lu, G. Sun and W. Li, Electrochim. Acta, 2019, 319, 527 |
73. | X. Yang, L. Shen, B. Wu, Z. Zuo, D. Mu, B. Wu and H. Zhou, J. Alloys Compd., 2015, 639, 458 |
74. | H. Isozumi, T. Horiba, K. Kubota, K. Hida, T. Matsuyama, S. Yasuno and S. Komaba, J. Power Sources, 2020, 468, 228332 |
75. | Y. Wang, J. Zhu, A. Chen, X. Guo, H. Cui, Z. Chen, Y. Hou, Z. Huang, D. Wang, G. Liang, S. Cao and C. Zhi, Adv. Mater., 2023, 35, 2303165 |
76. | J. M. Kim, H. S. Park, J. H. Park, T. H. Kim, H. K. Song and S. Y. Lee, ACS Appl. Mater. Interfaces, 2014, 6, 12789 |
77. | L. Deng, J. Liu, Z. Wang, J. Lin, Y. Liu, G. Bai, K. Zheng, Y. Zhou, S. Sun and J. Li, Adv. Energy Mater., 2024, 14, 2401514 |
78. | Y. Cao, H. Cai, X. Xu, Y. Huang, F. Zhang, P. Liu, Y. Li, C. Nie, W. Luo, Z. Mao, C. Liao, M. Yang, G. Luo, S. Gu and Z. Lu, Adv. Funct. Mater., 2024, 34, 2405911 |
79. | H. Huang, Z. Li, S. Gu, J. Bian, Y. Li, J. Chen, K. Liao, Q. Gan, Y. Wang, S. Wu, Z. Wang, W. Luo, R. Hao, Z. Wang, G. Wang and Z. Lu, Adv. Energy Mater., 2021, 11, 2101864 |
80. | K. Yang, K. Chen, X. Zhang, S. Gao, J. Sun, J. Gong, J. Chai, Y. Zheng, Z. Liu and H. Wang, Small, 2024, 20, 2403993 |
81. | P. Mu, H. Zhang, H. Jiang, T. Dong, S. Zhang, C. Wang, J. Li, Y. Ma, S. Dong and G. Cui, J. Am. Chem. Soc., 2021, 143, 18041 |
82. | J. Yang, X. Liang, H. H. Ryu, C. S. Yoon and Y. K. Sun, Energy Storage Mater., 2023, 63, 102969 |
83. | Q. Gan, N. Qin, H. Yuan, L. Lu, Z. Xu and Z. Lu, EnergyChem, 2023, 5, 100103 |
84. | S. Cui, Y. Wei, T. Liu, W. Deng, Z. Hu, Y. Su, H. Li, M. Li, H. Guo, Y. uan, W. Wang, M. Rao, J. Zheng, X. Wang and F. Pan, Adv. Energy Mater., 2015, 6, 1501309 |
85. | K. Zhou, Z. Gao, X. Deng, C. Han, Y. Fu, S. Zhang, F. Kang and B. Li, J. Mater. Chem. A, 2021, 9, 11219 |
86. | T. Xu, F. Du, L. Wu, Z. Fan, L. Shen and J. Zheng, Electrochim. Acta, 2022, 417, 140345 |
87. | H. Cao, F. Du, J. Adkins, Q. Zhou, H. Dai, P. Sun, D. Hu and J. Zheng, Ceram. Int., 2020, 46, 20050 |
88. | J. N. Reimers, J. R. Dahn and W. Li, Solid State Ionics, 1993, 67, 123 |
89. | H. J. Noh, S. Youn, C. S. Yoon and Y. K. Sun, J. Power Sources, 2013, 233, 121 |
90. | W. Lee, S. Muhammad, T. Kim, H. Kim, E. Lee, M. Jeong, S. Son, J. H. Ryou and W. S. Yoon, Adv. Energy Mater., 2017, 8, 1701788 |
91. | Y. Mao, X. Wang, S. Xia, K. Zhang, C. Wei, S. Bak, Z. Shadike, X. Liu, Y. Yang, R. Xu, P. Pianetta, S. Ermon, E. Stavitski, K. Zhao, Z. Xu, F. Lin, X. Q. Yang, E. Hu and Y. Liu, Adv. Funct. Mater., 2019, 29, 1900247 |
92. | J. H. Jo, C. H. Jo, H. Yashiro, S. J. Kim and S. T. Myung, J. Power Sources, 2016, 313, 1 |
93. | X. Li, A. Gao, Z. Tang, F. Meng, T. Shang, S. Guo, J. Ding, Y. Luo, D. Xiao, X. Wang, D. Su, Q. Zhang and L. Gu, Adv. Funct. Mater., 2021, 31, 2010291 |
94. | D. Streich, C. Erk, A. Guéguen, P. Müller, F. F. Chesneau and E. J. Berg, J. Phys. Chem. C, 2017, 121, 13481 |
95. | S. Klein, P. Bärmann, O. Fromm, K. Borzutzki, J. Reiter, Q. Fan, M. Winter, T. Placke and J. Kasnatscheew, J. Mater. Chem. A, 2021, 9, 7546 |
96. | D. S. Ko, J. H. Park, S. Park, Y. N. Ham, S. J. Ahn, J. H. Park, H. N. Han, E. Lee, W. S. Jeon and C. Jung, Nano Energy, 2019, 56, 434 |
97. | J. A. Gilbert, I. A. Shkrob and D. P. Abraham, J. Electrochem. Soc., 2017, 164, A389 |
98. | N. Y. Kim, J. Moon, M. H. Ryou, S. H. Kim, J. H. Kim, J. M. Kim, J. Bang and S. Y. Lee, Adv. Energy Mater., 2021, 12, 2102109 |
99. | S. Hong, Y. Jang, H. Kim, Y. Jung, G. Shin, H. J. Hah, W. Cho, Y. Sun and D. Kim, Adv. Energy Mater., 2024, 14, 2400802 |
100. | Y. Wang, N. Dong, B. Liu, G. Tian, S. Qi and D. Wu, Energy Storage Mater., 2023, 56, 621 |
101. | J. Jang, J. Ahn, J. Ahn, U. Jeong, J. Yoon, J. K. Park, W. Shin, M. J. Kang, M. Cho, D. J. Kang, J. Kim, J. Yoo and H. Im, Adv. Funct. Mater., 2024, 34, 2410866 |
102. | B. Jin, Z. Cui and A. Manthiram, Angew. Chem., Int. Ed., 2023, 62, e202301241 |
103. | T. Liu, R. Parekh, P. Mocny, B. P. Bloom, Y. Zhao, S. Y. An, B. Pan, R. Yin, D. H. Waldeck, J. F. Whitacre and K. Matyjaszewski, ACS Mater. Lett., 2023, 5, 2594 |
104. | Y. Wang, N. Dong, B. Liu, K. Qi, G. Tian, S. Qi and D. Wu, Chem. Eng. J., 2022, 450, 137959 |
105. | J. H. Kim, K. M. Lee, J. W. Kim, S. H. Kweon, H. S. Moon, T. Yim, S. K. Kwak and S. Y. Lee, Nat. Commun., 2023, 14, 5721 |
106. | D. Jeong, D. S. Kwon, H. J. Kim and J. Shim, Adv. Energy Mater., 2023, 13, 2302845 |
107. | Z. Xu, X. Guo, J. Wang, Y. Yuan, Q. Sun, R. Tian, H. Yang and J. Lu, Adv. Energy Mater., 2022, 12, 2201323 |
108. | J. Li, C. H. Chang and A. Manthiram, Chem. Mater., 2020, 32, 759 |
109. | Z. Liu, T. Dong, P. Mu, H. Zhang, W. Liu and G. Cui, Chem. Eng. J., 2022, 446, 136798 |
110. | H. Pham, J. Lee, H. Jung and S. Song, Electrochim. Acta, 2019, 317, 711 |
111. | Y. Xu, Y. Wang, N. Dong, C. Pu, B. Liu, G. Tian, S. Qi and D. Wu, J. Energy Chem., 2023, 76, 19 |
112. | Y. Wang, K. Qi, N. Dong, B. Liu, G. Tian, S. Qi and D. Wu, J. Power Sources, 2022, 545, 231927 |
113. | W. He, W. Guo, H. Wu, L. Lin, Q. Liu, X. Han, Q. Xie, P. Liu, H. Zheng, L. Wang, X. Yu and D. L. Peng, Adv. Mater., 2021, 33, 2005937 |
114. | Z. Chen, Z. Lu, and J. R. Dahn, Chem. Mater., 2003, 15, 3214 |
115. | H. Yu, R. Ishikawa, Y. G. So, N. Shibata, T. Kudo, H. Zhou and Y. Ikuhara, Angew. Chem., Int. Ed., 2013, 52, 5969 |
116. | M. M. Thackeray, C. S. Johnson, J. T. Vaughey, N. Li and S. A. Hackney, J. Mater. Chem., 2005, 15, 2257 |
117. | M. M. Thackeray, S. H. Kang, C. S. Johnson, J. T. Vaughey, R. Benedek and S. A. Hackney, J. Mater. Chem., 2007, 17, 3112 |
118. | S. Hy, F. Felix, J. Rick, W. N. Su and B. J. Hwang, J. Am. Chem. Soc., 2014, 136, 999 |
119. | C. S. Johnson, J. S. Kim, C. Lefief, N. Li, J. T. Vaughey and M. M. Thackeray, Electrochem. Commun., 2004, 6, 1085 |
120. | J. Li, Z. Liu, Y. Wang and R. Wang, J. Alloys Compd., 2020, 834, 155150 |
121. | R. Shunmugasundaram, R. Senthil Arumugam and J. R. Dahn, Chem. Mater., 2015, 27, 757 |
122. | P. Liu, H. Zhang, W. He, T. Xiong, Y. Cheng, Q. Xie, Y. Ma, H. Zheng, L. Wang, Z. Zhu, Y. Peng, L. Mai and D. Peng, J. Am. Chem. Soc., 2019, 141, 10876 |
123. | X. Li, M. Tang, X. Feng, I. Hung, A. Rose, P. H. Chien, Z. Gan and Y. Hu, Chem. Mater., 2017, 29, 8282 |
124. | X. Yu, Y. Lyu, L. Gu, H. Wu, S. M. Bak, Y. Zhou, K. Amine, S. N. Ehrlich, H. Li, K. W. Nam and X. Q. Yang, Adv. Energy Mater., 2014, 4, 1300950 |
125. | B. Seteni, N. Rapulenyane, J. C. Ngila, S. Mpelane and H. Luo, J. Power Sources, 2017, 353, 210 |
126. | G. Assat and J. M. Tarascon, Nat. Energy, 2018, 3, 373 |
127. | S. S. Asl, J. Lu, K. Amine and R. S. Yassar, Adv. Energy Mater., 2019, 9, 1900551 |
128. | E. Hu, X. Yu, R. Lin, X. Bi, J. Lu, S. Bak, K. W. Nam, H. Xin, C. Jaye, D. A. Fischer, K. Amine and X. Yang, Nat. Energy, 2018, 3, 690 |
129. | A. Singer, M. Zhang, S. Hy, D. Cela, C. Fang, T. A. Wynn, B. Qiu, Y. Xia, Z. Liu, A. Ulvestad, N. Hua, J. Wingert, H. Liu, M. Sprung, A. V. Zozulya, E. Maxey, R. Harder, Y. S. Meng and O. G. Shpyrko, Nat. Energy, 2018, 3, 641 |
130. | Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou, R. Chen, Y. Wang, C. Jia and S. Wang, Adv. Mater., 2020, 32, 1905923 |
131. | T. Zhang, J. Li, J. Liu, Y. Deng, Z. Wu, Z. Yin, D. Guo, L. Huang and S. Sun, Chem. Commun., 2016, 52, 4683 |
132. | Z. Yin, T. Zhang, S. Zhang, Y. Deng, X. Peng, J. Wang, J. Li, L. Huang, H. Zheng and S. Sun, Electrochim. Acta, 2020, 351, 136401 |
133. | G. Zhang, B. Qiu, Y. Xia, X. Wang, Q. Gu, Y. Jiang, Z. He and Z. Liu, J. Power Sources, 2019, 420, 29 |
134. | H. Q. Pham, G. Kim, H. M. Jung and S. W. Song, Adv. Funct. Mater., 2017, 28, 1704690 |
135. | S. Zhang, H. Gu, H. Pan, S. Yang, W. Du, X. Li, M. Gao, Y. Liu, M. Zhu, L. Ouyang, D. Jian and F. Pan, Adv. Energy Mater., 2016, 7, 1601066 |
136. | T. Zhao, Y. Meng, R. Ji, F. Wu, L. Li and R. Chen, J. Alloys Compd., 2019, 811, 152060 |
137. | S. Zhang, Y. Deng, Q. Wu, Y. Zhou, J. Li, Z. Wu, Z. Yin, Y. Lu, C. Shen, L. Huang and S. Sun, ChemElectroChem, 2018, 5, 1321 |
138. | T. Zhao, L. Chang, R. Ji, S. Chen, X. Jin, Y. Zheng, X. Huang, J. Shen and Y. Zhang, J. Mater. Sci.: Mater. Electron., 2022, 33, 16383 |
139. | M. Yu, Y. Wang, Z. Wang, Y. Fan, J. Song, D. Zhou, K. Wang, Q. Zhang, H. Gu and J. Xie, J. Electrochem. Soc., 2019, 166, A4122 |
140. | T. Zhao, Z. Liu, Q. Gu, X. Zhang, X. Jin, S. Xie and S. Liu, Chem. Phys. Lett., 2024, 841, 141182 |
141. | G. Liang, V. K. Peterson, K. W. See, Z. Guo and W. Pang, J. Mater. Chem. A, 2020, 8, 15373 |
142. | H. Zhang, Y. Xu, D. Liu, X. Zhang and C. Zhao, Electrochim. Acta, 2014, 125, 225 |
143. | Q. Liu, S. Wang, H. Tan, Z. Yang and J. Zeng, Energies, 2013, 6, 1718 |
144. | A. Manthiram, K. Chemelewski and E. S. Lee, Energy Environ. Sci., 2014, 7, 1339 |
145. | J. Ma, P. Hu, G. Cui and L. Chen, Chem. Mater., 2016, 28, 3578 |
146. | D. Liu, J. H. Paquet, J. Trottier, F. Barray, V. Gariépy, P. Hovington, A. Guerfi, A. Mauger, C. M. Julien, J. B. Goodenough and K. Zaghib, J. Power Sources, 2012, 217, 400 |
147. | X. Zhang, F. Cheng, K. Zhang, Y. Liang, S. Yang, J. Liang and J. Chen, RSC Adv., 2012, 2, 5669 |
148. | S. Myung J. H. Kim, C. S. Yoon, S. G. Kang, and Y. K. Sun, Chem. Mater., 2004, 16, 906 |
149. | D. Sheptyakov, L. B. Roblin, V. Pomjakushin, P. Borel, C. Tessier and C. Villevieille, J. Mater. Chem. A, 2020, 8, 1288 |
150. | K. Mukai and J. Sugiyama, J. Electrochem. Soc., 2010, 157, A672 |
151. | W. Pang, N. Sharma, V. K. Peterson, J. J. Shiu and S. Wu, J. Power Sources, 2014, 246, 464 |
152. | G. Liang, C. Didier, Z. Guo, W. Pang and V. Peterson, Adv. Mater., 2019, 32, 1904528 |
153. | N. Sharma, W. Pang, Z. Guo and V. K. Peterson, ChemSusChem, 2015, 8, 2826 |
154. | Y. I. K. Ariyoshi, N. Nakayama and T. Ohzuku, J. Electrochem. Soc., 2004, 151, A296 |
155. | J. Akimoto, Y. Hamada, N. Ishida, Y. Idemoto, Y. Matsushita and K. Kataoka, Cryst. Growth Des., 2020, 20, 4533 |
156. | F. Mao, W. Guo and J. Ma, RSC Adv., 2015, 5, 105248 |
157. | M. Lin, L. Ben, Y. Sun, H. Wang, Z. Yang, L. Gu, X. Yu, X. Yang, H. Zhao, R. Yu, M. Armand and X. Huang, Chem. Mater., 2015, 27, 292 |
158. | W. Chou, Y. Jin, J. G. Duh, C. Lu and S. Liao, Appl. Surf. Sci., 2015, 355, 1272 |
159. | P. P. Prosini, M. Carewska and A. Masci, Solid State Ionics, 2015, 274, 88 |
160. | S. Tanaka, T. Narutomi, S. Suzuki, A. Nakao, H. Oji and N. Yabuuchi, J. Power Sources, 2017, 358, 121 |
161. | S. Hitomi, K. Kubota, T. Horiba, K. Hida, T. Matsuyama, H. Oji, S. Yasuno and S. Komaba, ChemElectroChem, 2019, 6, 5070 |
162. | C. Zou, Y. Huang, L. Zhao, W. Ren, Z. Zhao, J. Liu, X. Li, M. Wang, B. Guo and Y. Lin, ACS Appl. Mater. Interfaces, 2022, 14, 14226 |
163. | Y. Cui, J. Chen, J. Zhao, Z. Ma, Y. Tan, J. Xue, H. Xu and J. Nan, Energy Technol., 2022, 10, 2200163 |
164. | N. P. W. Pieczonka, V. Borgel, B. Ziv, N. Leifer, V. Dargel, D. Aurbach, J. H. Kim, Z. Liu, X. Huang, S. A. Krachkovskiy, G. R. Goward, I. Halalay, B. R. Powell and A. Manthiram, Adv. Energy Mater., 2015, 5, 1501008 |
165. | L. Rao, X. Jiao, C. Yu, A. Schmidt, C. O’Meara, J. Seidt, J. R. Sayre, Y. M. Khalifa and J. H. Kim, ACS Appl. Mater. Interfaces, 2022, 14, 861 |
166. | Y. Ma, K. Chen, J. Ma, G. Xu, S. Dong, B. Chen, J. Li, Z. Chen, X. Zhou and G. Cui, Energy Environ. Sci., 2019, 12, 273 |
167. | M. Kuenzel, H. Choi, F. Wu, A. Kazzazi, P. Axmann, M. W. Mehrens, D. Bresser and S. Passerini, ChemSusChem, 2020, 13, 2650 |
168. | K. A. Vorobeva, S. N. Eliseeva, R. V. Apraksin, M. A. Kamenskii, E. G. Tolstopjatova and V. V. Kondratiev, J. Alloys Compd., 2018, 766, 33 |
169. | Y. Tang, J. Deng, W. Li, O. I. Malyi, Y. Zhang, X. Zhou, S. Pan, J. Wei, Y. Cai, Z. Chen and X. Chen, Adv. Mater., 2017, 29, 1701828 |
170. | B. Chang, D. H. Yun, I. Hwang, J. K. Seo, J. Kang, G. Noh, S. Choi and J. W. Choi, Adv. Mater., 2023, 35, 2303787 |
171. | M. Armand and J. M. Tarascon, Nature, 2001, 414, 359 |
172. | B. Kalska, S. Andersson , L. Haggstrom and J. O. Thomas, Solid State Ionics, 2000, 130, 41 |
173. | J. O. Thomas and S. Andersson, J. Power Sources, 2001, 97, 498 |
174. | M. Cuisinier, J. F. Martin, N. Dupré, A. Yamada, R. Kanno and D. Guyomard, Electrochem. Commun., 2010, 12, 238 |
175. | Y. Gao, J. Huang, Y. Liu and S. Chen, Chem. Sci., 2022, 13, 257 |
176. | A. C. Kucuk and T. Abe, J. Power Sources, 2023, 581, 233478 |
177. | L. Ding, R. Leones, A. Omar, J. Guo, Q. Lu, S. Oswald, K. Nielsch, L. Giebeler and D. Mikhailova, ACS Appl. Mater. Interfaces, 2020, 12, 53827 |
178. | A. V. Kubarkov, O. A. Drozhzhin, E. A. Karpushkin, K. J. Stevenson, E. V. Antipov and V. G. Sergeyev, Colloid Polym. Sci., 2019, 297, 475 |
179. | L. Rao, H. Cho, C. J. Brooks, J. R. Sayre and J. H. Kim, ACS Appl. Energy Mater., 2024, 7, 7131 |
180. | T. Liu, C. J. Tong, B. Wang, L. M. Liu, S. Zhang, Z. Lin, D. Wang and J. Lu, Adv. Energy Mater., 2019, 9, 1803390 |
181. | R. D. Olmo, T. C. Mendes, M. Forsyth and N. Casado, J. Mater. Chem. A, 2022, 10, 19777 |
182. | S. Huang, H. Chen, M. Chen, Y. Huang, X. He, H. Zhuo and S. Chen, ACS Sustainable Chem. Eng., 2021, 9, 13277 |
183. | R. D. Olmo, G. G. González, I. O. S. Mendoza, D. Mecerreyes, M. Forsyth and N. Casado, Batteries Supercaps, 2023, 6, e202200519 |
184. | J. He, H. Zhong, J. Wang and L. Zhang, J. Alloys Compd., 2017, 714, 409 |
185. | A. F. Léonard and N. Job, Mater. Today Energy, 2019, 12, 168 |
186. | S. Yang, Y. Huang, S. Su, G. Han and J. Liu, Powder Technol., 2019, 351, 203 |
187. | Y. Chen, L. Chen, C. Chung, Y. Su, F. Wu and T. M. Hsu, J. Power Sources, 2024, 613, 234861 |
188. | J. C. Daigle, F. Barray, C. Gagnon, D. Clément, P. Hovington, H. Demers, A. Guerfi and K. Zaghib, J. Power Sources, 2019, 415, 172 |
189. | X. Su, H. Fang, H. Yang, F. Zou, G. Li, L. Wang, H. Liao, W. Guan and X. Hu, Carbohydr. Polym., 2023, 313, 120848 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Challenges faced by the current mainstream cathodes of LIBs. a Challenges faced by LCO cathodes. Adapted with permission.[42] Copyright 2022, Wiley-VCH GmbH. b Challenges faced by NCM.[43] Copyright 2015, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. c Challenges faced by LRM.[44] Copyright 2005, Elsevier B.V. d Challenges faced by LNMO.[45] Copyright 2022, The Authors. e Challenges faced by LFP.[46] Copyright 2022, Wiley-VCH GmbH.
a Crystal structure of LCO. b Schematic phase evolution during charge. c Variation of c- and a-axis length in a hexagonal unit cell.[51] Copyright 2023, Wiley-VCH GmbH.
a Adhesion strength of LCO electrodes with different PVDF binders (500 k, 630 k, and
a Schematic illustration of the distinctive Van der Waals and hydrogen bonding forces from the PVDF and DSL binders, respectively, which affects the cycling stability of LCO.[79] Copyright 2021, Wiley-VCH GmbH. b Schematic illustrations of the binder coverage and CEI formation of PVDF and PAE based electrodes.[80] Copyright 2024, Wiley-VCH GmbH. c Schematic illustration of the singlet oxygen- and free radicals-scavenging role of PS.[81] Copyright 2021, American Chemical Society.
a Lattice of the NCM layered structure. b Tetrahedral site pathway (route I), and oxygen dumbbell pathway (route II) for Li+ diffusion.[84] Copyright 2015, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. c Differential capacity vs. voltage curves for NCM111, NCM622 and NCM811.[89] Copyright 2013, Elsevier B.V. d Structural description of NCM cathode during the first de-intercalation process (x = 0 to x = 1.0).[90] Copyright 2017, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. e 2D maps of mesoscale SOC heterogeneity in NCM secondary particles.[91] Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. f Schematic diagrams of the migration paths of TM and O ions.[93] Copyright 2021, Wiley-VCH GmbH. g Schematic overview of selected reactions resulting in surface reconstruction as well as CO2 and O2 formation.[94] Copyright 2017, American Chemical Society.
a Schematic representation depicting structure and functionalities of the BBP binder.[98] Copyright 2021, Wiley-VCH GmbH. b Cyclic voltammetry curves for the first three cycles of NCM811/PVDF and NCM811/cPIS. c HRTEM images and FFTs for the cycled binder-based NCM811 particles after 100 cycles at various cut-off voltages, the orange region refers to layered structure, the green region refers to spinel structure, and the blue region refers to rock−salt structure.[100] Copyright 2023, Elsevier B.V. d Chemical interactions (hydrogen and coordinate bonds) between DPGP-PEI/PVdF binder and electrode particles.[102] Copyright 2023, Wiley-VCH GmbH. e Scheme of NCM811 cathodes with the PVDF-CTFE-g-PEGA-co-PAA binder with ion-conductive pathways and transition metal chelation sites.[103] Copyright 2023, American Chemical Society. f The regulation of the electrostatic phenomena by the c-IPN binder.[105] Copyright 2023, The Author(s). g Schematics highlighting the functional contributions of individual moieties in the PNCI binder system.[106] Copyright 2023, Wiley-VCH GmbH.
a LUMO and HOMO energy levels of commonly used polymeric binders.[11] Copyright 2023, Wiley-VCH GmbH. b Illustration diagram of PAN-assisted interface engineering and effect of coordination bond. c Model and energy barriers calculation of TM ions migration in the cathodes with PVDF and PAN, respectively.[107] Copyright 2022, Wiley-VCH GmbH. d Digital images of the PANI film before and after exposure to HF.[108] Copyright 2019, American Chemical Society.
a Schematic illustration for the chemical binding of PI-FTD to the NCM811 particle and the structure of the as-coated NCM811 cathode with PI-FTD binder. b Flammability test results of the as-coated NCM811 cathodes depending on PVDF and PI-FTD, respectively.[110] Copyright 2019, Elsevier Ltd. c Graphic representing structure design, chemical structure and functions of PI-OmDT. d DSC curves of the fully-charged PVDF/NCM811 and PI-OmDT/NCM811 cathodes after charging of half-cells to 4.5 V, measured at a scan rate of 2 °C min−1.[111] Copyright 2022, ELSEVIER B.V. and Science Press. e Schematic diagram of the synthesis process of PI-COOH. f DSC profiles and g Flammability tests of NCM/PVDF, NCM/PI-OH, and NCM/PI-COOH cathodes after charging to 4.5 V.[112] Copyright 2022, Elsevier B.V.
Crystal structure diagrams of a LiTMO2 with R
a dQ/dV plots of the electrochemical data for cells with PVDF or GG as the binder.[131] Copyright 2016, The Royal Society of Chemistry. b Role of GG binder in charge-discharge process of LRM cathode.[132] Copyright 2020, Elsevier Ltd. c The schematic illustration of LRM/XG electrodes. d FTIR spectra of XG, pristine LRM, LRM/XG electrode (before cycling), LRM/XG-1st electrodes (after the 1st cycle) and LRM/XG-5th electrodes (after the 5th cycle).[133] Copyright 2019, Elsevier B.V. e The schematic illustration of forming a protective layer of FPI on the cathode surface.[134] Copyright 2017, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. f Schematic representation of the enhancement of the TM ion mobility barrier by H+/Li+ exchange, resulting in a stabilized crystal structure.[35] Copyright 2020, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. g XRD patterns of different electrodes before cycling and after 500 cycles.[135] Copyright 2016, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
a First charge/discharge mechanism of the LRM electrodes based on CMC and SA.[136] Copyright 2019, Elsevier B.V. b SEM images of the LRM particle, the fresh electrodes prepared with PVDF, SA, Ba-SA, Al-SA, respectively, and the conductor BP2000.[137] Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
a Mechanism illustration of the LRM cathode with LiPAA as a binder. b First charge-discharge curves of the LiPAA binder-based LRM cathodes.[138] Copyright 2022, The Author(s). c Initial charge/discharge curves of different electrodes. d Charge/discharge curves at different cycles of LiPAA and LiPAA/XG based electrodes.[140] Copyright 2024, Elsevier B.V.
LNMO with space group of a Fd
a Schematic illustration of the PAN-g PVA binder.[160] Copyright 2017, Elsevier B.V. b Optical microscope images of PVDF slurry and AR/CMC slurry.[161] Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. c Schematic representation of PEI in preventing Mn2+ dissolution, promoting the uniform distribution of electrode components and protecting LNMO surface.[162] Copyright 2022, American Chemical Society. d Schematic illustration of different binding mechanisms for LNMO cathodes prepared with P(BMA-AN-St).[72] Copyright 2019, Elsevier Ltd. e Multiple roles of LiPAA binder in passivation of LNMO surface against electrolyte solution oxidation and facilitating of Li+ diffusion.[164] Copyright 2015, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. f Schematic diagram illustrating positive multifunctions of LiPAA-SA composite binders in LNMO cathodes.[165] Copyright 2021, American Chemical Society. g Schematic representation of free radical scavenging by lignin and PVDF.[166] Copyright 2019, The Royal Society of Chemistry.
a Schematic illustration of the co-crosslinked binder network composed of CMC (blue chains) and GG (purple chains) interconnected by CA (green).[167] Copyright 2020, The Authors. b Dependences of |Ip| m−1and v1/2 for LMO/PVDF and LMO/comb2.[168] Copyright 2018, Elsevier B.V. c Chemical illustration of the composition of a single silk fiber originated from the cocoon.[169] Copyright 2017, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. d Schematic illustrations of the binder coverage and CEI formation of PVDF and CRN-based electrodes.[170] Copyright 2023, Wiley-VCH GmbH.
a Crystal structure of olivine LiFePO4 in projection along [001].[171] Copyright 2001, Macmillan Magazines Ltd. b Illustration of Li+ transport in LFP.[175] Copyright 2022, The Author(s).
a Structure of the polysiloxane. b EDX mappings of Fe and Si for LFP prepared with 2550EO#LiTFSI.[176] Copyright 2023, Elsevier B.V. c Overview of the preparation of electrodes with the PGB along with a schematic illustration of the roles and interactions between various components in the electrodes.[177] Copyright 2020, American Chemical Society. d Roles of Conductive binder in LFP cathodes.[179] Copyright 2024, American Chemical Society. e Schematic illustration of the in situ polymerization of FA and the resultant conductive PFA “skin” that bonds the LFP particles onto the Al foils as well as facilitates the electron conduction and lithium ion mass transport.[180] Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. f A model illustrating the possible mechanism of Li+ transport in LFP cathodes.[182] Copyright 2021, American Chemical Society.
a Schematic illustrations of LFP electrodes before and after cycling using XG as the binder.[184] Copyright 2017, Elsevier B.V. b Schematic diagram of an LFP electrode with a composite binder humics/CMC.[186] Copyright 2019, Elsevier B.V. c Illustration of latex formation.[188] Copyright 2019, Elsevier B.V. d Schematic illustration of the CSL binder in affecting the long cycling stability of LFP.[189] Copyright 2023, Elsevier Ltd.