Citation: | Daqi Song, Wenjun Yang, Mutian Ma, Wei Hua, Zhangyi Zheng, Zhihe Wei, Muzi Chen, Jian Cheng, Jun Zhong, Zhao Deng, Yang Peng. Ligand-modulated Cu reconstruction to steer the hydride/hydroxyl pathway of electrocatalytic CO2 reduction[J]. Energy Lab, 2024, 2(3): 240010. doi: 10.54227/elab.20240010 |
Reconstructing metal-organic complexes effectively generates hybrid nanocatalysts for electrocatalytic CO2 reduction (eCO2R), but the role of metal-ligand interactions in shaping these hybrids and their influence on the electronic states of the reduced Cu species remain unclear. Herein, we impregnate Cu(II) acetate (Cu(OAc)2) into two Zirconium-based metal organic frameworks (MOFs) with different ligands to in situ construct Cu-based nanocatalysts for eCO2R. We show that Cu-ligand interactions crucially determine the transformation of Cu(OAc)2 during electrolysis, with biphenyl linkers forming agglomerated Cu2O particles and bipyridine linkers yielding highly dispersed Cu crystallites. This ligand-modulated Cu reconstruction diverges eCO2R towards C2 and C1 pathways, with agglomerated Cu2O particles producing C2+ products and smaller Cu crystallites achieving a maximum CH4 Faradaic efficiency (FE) of 60.3% ± 0.5% at 600 mA cm-2.
1. | B. Belsa, L. Xia, V. Golovanova, B. Polesso, A. Pinilla-Sánchez, L. San Martín, J. Ye, C.-T. Dinh, F. P. García de Arquer, Nat. Rev. Mater., 2024, 9, 535 |
2. | F. Lyu, W. Hua, H. Wu, H. Sun, Z. Deng, Y. Peng, Chinese J. Catal., 2022, 43, 1417 |
3. | Y. Y. Birdja, E. Pérez-Gallent, M. C. Figueiredo, A. J. Göttle, F. Calle-Vallejo, M. T. M. Koper, Nat. Energy, 2019, 4, 732 |
4. | Q. Wang, K. Liu, K. Hu, C. Cai, H. Li, H. Li, M. Herran, Y.-R. Lu, T.-S. Chen, C. Ma, J. Fu, S. Zhang, Y. Liang, E. Cortés, M. Liu, Nat. Commun., 2022, 13, 6082 |
5. | M. Liu, Y. Pang, B. Zhang, P. D. Luna, O. Voznyy, J. Xu, X. Zheng, C. T. Dinh, F. Fan, C. Cao, F. P. G. D. Arquer, T. S. Safaei, A. Mepham, A. Klinkova, E. Kumacheva, T. Filleter, D. Sinton, S. O. Kelley, E. H. Sargent, Nature, 2016, 537, 382 |
6. | D. Song, Y. Lian, M. Wang, Y. Su, F. Lyu, Z. Deng, Y. Peng, eScience, 2023, 3, 100097 |
7. | M. Liu, Q. Wang, T. Luo, M. Herran, X. Cao, W. Liao, L. Zhu, H. Li, A. Stefancu, Y.-R. Lu, T.-S. Chan, E. Pensa, C. Ma, S. Zhang, R. Xiao, E. Cortés, J. Am. Chem. Soc., 2024, 146, 468 |
8. | S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K. Norskov, T. F. Jaramillo, I. Chorkendorff, Chem. Rev., 2019, 119, 7610 |
9. | X. Zi, Y. Zhou, L. Zhu, Q. Chen, Y. Tan, X. Wang, M. Sayed, E. Pensa, R. A. Geioushy, K. Liu, J. Fu, E. Cortés, M. Liu, Angew. Chem. Int. Ed., 2023, 62, e202309351 |
10. | M. B. Ross, P. De Luna, Y. Li, C.-T. Dinh, D. Kim, P. Yang, E. H. Sargent, Nat. Catal., 2019, 2, 648 |
11. | Q. Wang, Y. Gong, Y. Tan, X. Zi, R. Abazari, H. Li, C. Cai, K. Liu, J. Fu, S. Chen, T. Luo, S. Zhang, W. Li, Y. Sheng, J. Liu, M. Liu, Chin. J. Catal., 2023, 54, 229 |
12. | P. De Luna, R. Quintero-Bermudez, C.-T. Dinh, M. B. Ross, O. S. Bushuyev, P. Todorović, T. Regier, S. O. Kelley, P. Yang, E. H. Sargent, Nat. Catal., 2018, 1, 103 |
13. | C. Liu, X.-D. Zhang, J.-M. Huang, M.-X. Guan, M. Xu, Z.-Y. Gu, ACS Catal., 2022, 12, 15230 |
14. | K. Yao, Y. Xia, J. Li, N. Wang, J. Han, C. Gao, M. Han, G. Shen, Y. Liu, A. Seifitokaldani, X. Sun, H. Liang, J. Mater. Chem. A, 2020, 8, 11117 |
15. | H. Shi, L. Luo, C. Li, Y. Li, T. Zhang, Z. Liu, J. Cui, L. Gu, L. Zhang, Y. Hu, H. Li, C. Li, Adv. Funct. Mater., 2023, 34, 2310913 |
16. | H. Mistry, A. S. Varela, C. S. Bonifacio, I. Zegkinoglou, I. Sinev, Y. W. Choi, K. Kisslinger, E. A. Stach, J. C. Yang, P. Strasser, B. R. Cuenya, Nat. Commun., 2016, 7, 12123 |
17. | Z. Weng, Y. Wu, M. Wang, J. Jiang, K. Yang, S. Huo, X. F. Wang, Q. Ma, G. W. Brudvig, V. S. Batista, Y. Liang, Z. Feng, H. Wang, Nat. Commun., 2018, 9, 415 |
18. | J. Gao, Z. Han, X. Wang, L. Wang, Y. Guo, C. Cui, D. Han, L. Zhi, Q.-H. Yang, Z. Weng, ACS Catal., 2023, 13, 15457 |
19. | Y. Xu, F. Li, A. Xu, J. P. Edwards, S. F. Hung, C. M. Gabardo, C. P. O'Brien, S. Liu, X. Wang, Y. Li, J. Wicks, R. K. Miao, Y. Liu, J. Li, J. E. Huang, J. Abed, Y. Wang, E. H. Sargent, D. Sinton, Nat. Commun., 2021, 12, 2932 |
20. | M. Zhang, M. Lu, M.-Y. Yang, J.-P. Liao, Y.-F. Liu, H.-J. Yan, J.-N. Chang, T.-Y. Yu, S.-L. Li, Y.-Q. Lan, eScience, 2023, 3, 100116 |
21. | J. D. Yi, R. Xie, Z. L. Xie, G. L. Chai, T. F. Liu, R. P. Chen, Y. B. Huang, R. Cao, Angew. Chem. Int. Ed., 2020, 59, 23641 |
22. | M. Jun, J. Kundu, D. H. Kim, M. Kim, D. Kim, K. Lee, S. I. Choi, Adv. Mater., 2024, 36, e2313028 |
23. | K. W. Kimura, R. Casebolt, J. Cimada DaSilva, E. Kauffman, J. Kim, T. A. Dunbar, C. J. Pollock, J. Suntivich, T. Hanrath, ACS Catal., 2020, 10, 8632 |
24. | H. Xiao, W. A. Goddard III, T. Cheng, Y. Liu, Proc. Natl. Acad. Sci. U. S. A., 2017, 114, 6685 |
25. | D.-H. Nam, O. S. Bushuyev, J. Li, P. D. Luna, A. Seifitokaldani, C.-T. Dinh, F. P. G. d. Arquer, Y. Wang, Z. Liang, A. H. Proppe, C. S. Tan, P. Todorović, O. Shekhah, C. M. Gabardo, J. W. Jo, J. Choi, M.-J. Choi, S.-W. Baek, J. Kim, D. Sinton, S. O. Kelley, M. Eddaoudi, E. H. Sargent, J. Am. Chem. Soc., 2018, 140, 11378 |
26. | J. Cheng, L. Chen, X. Xie, K. Feng, H. Sun, Y. Qin, W. Hua, Z. Zheng, Y. He, W. Pan, W. Yang, F. Lyu, J. Zhong, Z. Deng, Y. Jiao, Y. Peng, Angew. Chem. Int. Ed., 2023, 62, e202312113 |
27. | Y. Han, S. Zhu, S. Xu, X. Niu, Z. Xu, R. Zhao, Q. Wang, ChemElectroChem, 2021, 8, 3174 |
28. | M. Mandal, K. Oppelt, M. List, I. Teasdale, D. Chakraborty, U. Monkowius, Monatsh. Chem., 2016, 147, 1883 |
29. | F. A. Saad, N. J. Buurma, A. J. Amoroso, J. C. Knight, B. M. Kariuki, Dalton Trans., 2012, 41, 4608 |
30. | Y. Li, Y. Chen, Y. Liu, L. Jia, Y. Chen, Transition Met. Chem., 2018, 43, 731 |
31. | M. Y. Lee, C. Kahl, N. Kaeffer, W. Leitner, JACS Au, 2022, 2, 573 |
32. | S. Derien, E. Dunach, J. Perichon, J. Am. Chem. Soc., 1991, 113, 8447 |
33. | A. Jayamani, N. Sengottuvelan, S. K. Kang, Y.-I. Kim, Polyhedron, 2015, 98, 203 |
34. | Y. Guo, Y. Wang, Y. Shen, Z. Cai, Z. Li, J. Liu, J. Chen, C. Xiao, H. Liu, W. Lin, C. Wang, J. Am. Chem. Soc., 2020, 142, 21493 |
35. | Y. Meng, Y. Gao, M. Zhao, S. Ni, Chemistry, 2014, 77, 809 |
36. | Y. Liang, J. Zhao, H. Zhang, A. Zhang, S. Wang, J. Li, M. Shakouri, Q. Xiao, Y. Hu, Z. Liu, Z. Geng, F. Li, J. Zeng, Nano Lett., 2021, 21, 8924 |
37. | Q. Geng, L. Fan, H. Chen, C. Zhang, Z. Xu, Y. Tian, C. Yu, L. Kang, Y. Yamauchi, C. Li, L. Jiang, J. Am. Chem. Soc., 2024, 146, 10599 |
38. | Q. Li, J. Wu, L. Lv, L. Zheng, Q. Zheng, S. Li, C. Yang, C. Long, S. Chen, Z. Tang, Adv. Mater., 2023, 36, 2305508 |
39. | M. Ma, L. Xiong, Y. Dong, Q. Bai, W. Hua, Z. Zheng, F. Lyu, Y. Lian, Z. Wei, H. Yuan, Z. Jiao, J. Cheng, D. Song, M. Wang, Z. Xing, J. Zhong, S. Han, Z. Deng, Y. Peng, Adv. Funct. Mater., 2024, 34, 2315667 |
40. | Y. Li, A. Xu, Y. Lum, X. Wang, S. F. Hung, B. Chen, Z. Wang, Y. Xu, F. Li, J. Abed, J. E. Huang, A. S. Rasouli, J. Wicks, L. K. Sagar, T. Peng, A. H. Ip, D. Sinton, H. Jiang, C. Li, E. H. Sargent, Nat. Commun., 2020, 11, 6190 |
41. | X. Wang, P. Ou, J. Wicks, Y. Xie, Y. Wang, J. Li, J. Tam, D. Ren, J. Y. Howe, Z. Wang, A. Ozden, Y. Z. Finfrock, Y. Xu, Y. Li, A. S. Rasouli, K. Bertens, A. H. Ip, M. Graetzel, D. Sinton, E. H. Sargent, Nat. Commun., 2021, 12, 3387 |
42. | Z. Guo, P. Zhou, L. Jiang, S. Liu, Y. Yang, Z. Li, P. Wu, Z. Zhang, H. Li, Adv. Mater., 2024, 36, 2311149 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Schematic diagrams illustrating the synthesis and in situ reconstruction of UiO-67-Cu(OAc)2 (top) and UiO-bpy-Cu(OAc)2 (bottom). The lack of filler-host interaction in UiO-67-Cu(OAc)2 leads to the formation of Cu2O agglomerates upon reconstruction, while Cu(OAc)2 anchored through the bipyridine linkers of UiO-bpy turn into well-dispersed Cu crystallites.
Comparison of cyclic voltammograms for Cu(OAc)2·H2O and [Cu(bpy)2]Cl2 in 0.1 M TBABF4/MeCN (2 mM) under Ar atmosphere at a scan rate of 0.1 V s−1.
Structural characterizations on UiO-67-Cu(OAc)2 and UiO-bpy-Cu(OAc)2. a SEM, b and c TEM, and d EDX-mapping images of UiO-67-Cu(OAc)2. e SEM, f and g TEM, and h EDX-mapping images of UiO-bpy-Cu(OAc)2. i XRD patterns of the as-synthesized UiO-67, UiO-bpy, UiO-67-Cu(OAc)2, and UiO-bpy-Cu(OAc)2. j XPS N 1s spectra of UiO-bpy and UiO-bpy-Cu(OAc)2. k XPS Cu 2p3/2 spectra of UiO-67-Cu(OAc)2 and UiO-bpy-Cu(OAc)2. l XANES Cu k-edge and m the corresponding FT-EXAFS spectra of UiO-67-Cu(OAc)2 and UiO-bpy-Cu(OAc)2.
Electrocatalytic CO2 reduction performances of UiO-67-Cu(OAc)2 and UiO-bpy-Cu(OAc)2. a V-i plots acquired in 1 M KOH solution. FEs of H2, CO, CH4, and C2H4 on b UiO-67-Cu(OAc)2 and c UiO-bpy-Cu(OAc)2. Partial current densities of d CH4 and e C2H4 at different potentials. f Plots of the CH4/C2H4 ratios at various current densities.
Post-mortem characterization on UiO-67-Cu(OAc)2 and UiO-bpy-Cu(OAc)2 after eCO2R. Ex situ XRD patterns taken on a UiO-67-Cu(OAc)2 and b UiO-bpy-Cu(OAc)2 after different electrolysis time at 500 mA cm-2. c HRTEM and d HAADF-TEM mapping images of UiO-67-Cu(OAc)2 after eCO2R at 500 mA cm-2 for 2 h. e HRTEM and f HAADF-TEM mapping images of UiO-bpy-Cu(OAc)2 after eCO2R at 500 mA cm-2 for 2 h.
Mechanistic investigations into the eCO2R pathways on the reconstructed catalysts. In situ ATR-SEIRAS spectra recorded from OCP to −2.8 V vs. RHE to monitor the evolution of intermediates binding on a UiO-67-Cu(OAc)2 and b UiO-bpy-Cu(OAc)2 in an electrochemical spectroscopic cell. In situ Raman spectra taken from OCP to −1.20 V vs. RHE on c UiO-67-Cu(OAc)2 and d UiO-bpy-Cu(OAc)2 in a flow cell (left panel: 200-800 cm−1; right panel 950-