Citation: | Minghui Xing, Shaoke Zhu, Guoqing Xu, Mengting Han, Zhiping Liu, Qinglan Zhao, Minhua Shao, Dapeng Cao. Anion-doping optimizes metal bonds for promoting hydrogen evolution performance of NiMoN catalysts[J]. Energy Lab, 2024, 2(3): 240016. doi: 10.54227/elab.20240016 |
It is important to design a stable and efficient hydrogen evolution catalyst in a wide pH range for the development of hydrogen production from water splitting. This work synthesizes a series of anion (R = F, Cl, and CO3)-doped NiMoN catalysts, and their morphological structures can be efficiently regulated by selecting different dopant anions. In particular, the Cl-NiMoN exhibits nano-flower and nano-sheet morphology due to the formation of electron-rich Ni and high valence Mo on the surface of Cl-NiMoN. Compared to other three samples (F-NiMoN, CO3-NiMoN and F, CO3-NiMoN), the synergistic effect of Cl and NiMoN optimizes the ratio of metal-bonding (Ni-N/Mo-N = 0.65), which therefore presents excellent hydrogen evolution (HER) performance. Cl-NiMoN requires only 107 mV overpotential in KOH and only 114 mV overpotential in H2SO4 to drive a current density of 100 mA cm−2 accompanying with excellent catalytic stability. Actually, their HER activity follows the order of Cl-NiMoN > F-NiMoN > F, CO3-NiMoN > CO3-NiMoN. This work provides a new route of using the anion-doping strategy to develop the electrocatalyst with excellent performance.
1. | P. Sun, Z. Qiao, X. Dong, R. Jiang, Z.-T. Hu, J. Yun, D. Cao, J. Am. Chem. Soc., 2024, 146, 15515 |
2. | M. Xing, S. Zhu, X. Zeng, S. Wang, Z. Liu, D. Cao, Adv. Energy Mater., 2023, 13, 2302376 |
3. | Y. Z. Wang, M. Yang, Y. M. Ding, N. W. Li, L. Yu, Adv. Funct. Mater., 2022, 32, 2108681 |
4. | Z. Xiao, P. Sun, Z. Qiao, K. Qiao, H. Xu, S. Wang, D. Cao, Chem. Eng. J., 2022, 446, 137112 |
5. | M. Xing, Z. Qiao, S. Zhu, G. Xu, J. Yun, D. Cao, Adv. Funct. Mater., 2024, 34, 2409559 |
6. | S. Anantharaj, S. Noda, V. R. Jothi, S. Yi, M. Driess, P. W. Menezes, Angew. Chem., Int. Ed., 2021, 60, 18981 |
7. | Y. Wang, Y. Jiao, H. Yan, G. Yang, C. Tian, A. Wu, Y. Liu, H. Fu, Angew. Chem., Int. Ed., 2022, 61, 202116233 |
8. | Z. Niu, Z. Lu, Z. Qiao, S. Wang, X. Cao, X. Chen, J. Yun, L. Zheng, D. Cao, Adv. Mater., 2024, 36, 2310690 |
9. | H. Liu, Q. Jia, S. Huang, L. Yang, S. Wang, L. Zheng, D. Cao, J. Mater. Chem. A., 2022, 10, 4817 |
10. | Y. Huang, X. Zhang, L. Li, M. Humayun, H. Zhang, X. Xu, S. P. Anthony, Z. Chen, J. Zeng, D. V. Shtansky, K. Huo, H. Song, C. Wang, W. Zhang, Adv. Funct. Mater., 2024, 2401011 |
11. | P. W. Menezes, A. Indra, D. González-Flores, N. R. Sahraie, I. Zaharieva, M. Schwarze, P. Strasser, H. Dau, M. Driess, ACS Catal., 2015, 5, 2017 |
12. | J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Adv. Mater., 2017, 29, 1605838 |
13. | S. Jeong, U. Kim, S. Lee, Y. Zhang, E. Son, K.-J. Choi, Y.-K. Han, J. M. Baik, H. Park, ACS Nano, 2024, 18, 7558 |
14. | S. Xu, D. Jiao, X. Ruan, Z. Jin, Y. Qiu, Z. Feng, L. Zheng, J. Fan, W. Zheng, X. Cui, Adv. Funct. Mater., 2024, 34, 2401265 |
15. | Z. Hou, C. Cui, Y. Li, Y. Gao, D. Zhu, Y. Gu, G. Pan, Y. Zhu, T. Zhang, Adv. Mater., 2023, 35, 2209876 |
16. | Y. Liu, T. Sakthivel, F. Hu, Y. Tian, D. Wu, E. H. Ang, H. Liu, S. Guo, S. Peng, Z. Dai, Adv. Energy Mater., 2023, 13, 2203797 |
17. | Y. Hu, T. Chao, Y. Li, P. Liu, T. Zhao, G. Yu, C. Chen, X. Liang, H. Jin, S. Niu, W. Chen, D. Wang, Y. Li, Angew. Chem., Int. Ed., 2023, 62, e202308800 |
18. | Z. Cheng, Y. Xiao, W. Wu, X. Zhang, Q. Fu, Y. Zhao, L. Qu, ACS Nano, 2021, 15, 11417 |
19. | D. Wang, Q. Li, C. Han, Z. Xing, X. Yang, Appl. Catal. B, 2019, 249, 91 |
20. | M. Li, X. Wang, H. Du, W. Dong, S. Ye, H. Liu, H. Sun, K. Huang, H. Li, Y. Tang, G. Fu, Adv. Energy Mater., 2024, 14, 2401716 |
21. | X. Zhang, F. Zhou, S. Zhang, Y. Liang, R. Wang, Adv. Sci., 2019, 6, 1900090 |
22. | X. Li, S. Han, Z. Qiao, X. Zeng, D. Cao, J. Chen, Chem. Eng. J., 2023, 453, 139803 |
23. | C. Li, M. Liu, H. Ding, L. He, E. Wang, B. Wang, S. Fan, K. Liu, J. Mater. Chem. A., 2020, 8, 17527 |
24. | P. Liu, J. Yan, J. Mao, J. Li, D. Liang, W. Song, J. Mater. Chem. A., 2020, 8, 11435 |
25. | H. Li, L. Du, Y. Zhang, X. Liu, S. Li, C. C. Yang, Q. Jiang, Appl. Catal. , B, 2024, 346, 123749 |
26. | R. Wang, X. Sun, J. Zhong, S. Wu, Q. Wang, K. Ostrikov, Appl. Catal. , B, 2024, 352, 124027 |
27. | H. Wang, C. Zhang, D. Zhang, L. Jiang, Y. Gao, T. Zhuang, Z. Lv, Small, 2024, 20, 2403170 |
28. | M. Li, X. Deng, Y. Liang, K. Xiang, D. Wu, B. Zhao, H. Yang, J.-L. Luo, X.-Z. Fu, J. Energy Chem., 2020, 50, 314 |
29. | Y. Yan, J. Lin, J. Cao, S. Guo, X. Zheng, J. Feng, J. Qi, J. Mater. Chem. A, 2019, 7, 24486 |
30. | X. Ding, R. Jiang, J. Wu, M. Xing, Z. Qiao, X. Zeng, S. Wang, D. Cao, Adv. Funct. Mater., 2023, 33, 2306786 |
31. | J. W. Q Zhou, G Jin, H Liu, C Wang, J. Mater. Chem. A. , 12, 12475 |
32. | Z. Liang, H. Liu, S. Huang, M. Xing, Z. Li, S. Wang, L. Yang, D. Cao, J. Mater. Chem. A, 2023, 11, 849 |
33. | Y. Zhou, M. Luo, W. Zhang, Z. Zhang, X. Meng, X. Shen, H. Liu, M. Zhou, X. Zeng, ACS Appl. Mater. Inter., 2019, 11, 21998 |
34. | Y. Y. Chen, Y. Zhang, X. Zhang, T. Tang, H. Luo, S. Niu, Z. H. Dai, L. J. Wan, J. S. Hu, Adv. Mater., 2017, 29, 1703311 |
35. | J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, X. Feng, Nat. Commun., 2017, 8, 15437 |
36. | W. He, H. Liu, J. Cheng, Y. Li, C. Liu, C. Chen, J. Zhao, H. L. Xin, ACS Appl. Mater. Inter., 2022, 14, 6869 |
37. | H. Song, J. Yu, Z. Tang, B. Yang, S. Lu, Adv. Energy Mater., 2022, 12, 2102573 |
38. | S. Wan, J. Qi, W. Zhang, W. Wang, S. Zhang, K. Liu, H. Zheng, J. Sun, S. Wang, R. Cao, Adv. Mater., 2017, 29, 1700286 |
39. | R. Liang, B. Zhang, Y. Du, X. Han, S. Li, P. Xu, ACS Catal., 2023, 13, 8821 |
40. | Z. Wang, J. Su, D. Feng, Y. Yao, Y. Yan, Y. Cui, G. M. Rignanese, H. Hosono, J. Wang, Small, 2024, 20, 2407100 |
41. | X. Guo, P. Wang, T. Wu, Z. Wang, J. Li, K. Liu, J. Fu, M. Liu, J. Wu, Z. Lin, L. Chai, Z. Bian, H. Li, M. Liu, Angew. Chem., Int. Ed., 2024, 63, e202318792 |
42. | Y. Ying, Z. Lin, H. Huang, ACS Energy Lett., 2023, 8, 1416 |
43. | I. Udachyan, J. T. Bhanushali, S. G. Patra, T. Zidki, A. Mizrahi, D. Meyerstein, J. Mater. Chem. A, 2023, 11, 17769 |
44. | I. Udachyan, T. Zidki, A. Mizrahi, S. G. Patra, D. Meyerstein, ACS Appl. Energy Mater., 2022, 5, 12261 |
45. | C. Lv, X. Wang, L. Gao, A. Wang, S. Wang, R. Wang, X. Ning, Y. Li, D. W. Boukhvalov, Z. Huang, C. Zhang, ACS Catal., 2020, 10, 13323 |
46. | Y. Li, X. Tan, H. Tan, H. Ren, S. Chen, W. Yang, S. C. Smith, C. Zhao, Energy Environ. Sci., 2020, 13, 1799 |
47. | Q. Zhou, C. Xu, J. Hou, W. Ma, T. Jian, S. Yan, H. Liu, Nano-Micro Lett., 2023, 15, 95 |
48. | L. Yu, Q. Zhu, S. Song, B. McElhenny, D. Wang, C. Wu, Z. Qin, J. Bao, Y. Yu, S. Chen, Z. Ren, Nat. Commun., 2019, 10, 5106 |
49. | T. Wang, L. Miao, S. Zheng, H. Qin, X. Cao, L. Yang, L. Jiao, ACS Catal., 2023, 13, 4091 |
50. | P. Zhai, C. Wang, Y. Zhao, Y. Zhang, J. Gao, L. Sun, J. Hou, Nat. Commun., 2023, 14, 1873 |
51. | Y. Ni, X. Ma, S. Wang, Y. Wang, F. Song, M. Cao, C. Hu, J. Power Sources, 2022, 521, 230934 |
52. | X. Lang, M. A. Qadeer, G. Shen, R. Zhang, S. Yang, J. An, L. Pan, J.-J. Zou, J. Mater. Chem. A, 2019, 7, 20579 |
53. | H. Yan, Y. Xie, A. Wu, Z. Cai, L. Wang, C. Tian, X. Zhang, H. Fu, Adv. Mater., 2019, 31, e1901174 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
ENLAB-2024-0016-suppl |
Synthesis method of R-NiMoN (R= F, Cl, and CO3).
a SEM image of Cl-NiMoO4. b-c SEM, d TEM and e-f HRTEM images of Cl-NiMoN. g EDS element mappings of Ni, Mo, N and Cl in Cl-NiMoN.
a XRD patterns of Cl-NiMoN, F-NiMoN, CO3-NiMoN and F, CO3-NiMoN. b XPS of Cl 2p of Cl-NiMoN. XPS of c Ni 2p, d Mo 3d and e N 1s for Cl-NiMoN and contrast materials. f Comparison of Ni-N and Mo-N contents in different materials.
HER performance of Cl-NiMoN and comparison samples in 1 M KOH electrolyte. a LSV polarization curves. b Comparison of content ratio (Ni-N/Mo-N) and properties of four catalysts. c Tafel slope plots. d Nyquist plots. e Electrochemical double layer capacitance (Cdl). f Chronoamperometry test of Cl-NiMoN at high voltage (−0.66 V vs. RHE, without iR compensation). Inset: LSV curves before and after stabilization.
HER performance of Cl-NiMoN and comparison samples in 0.5 M H2SO4 electrolyte. a LSV polarization curves. b Tafel slope plots. c The overpotential (j=100 mA cm−2) and Tafel slope of different samples. d Nyquist plots. e Electrochemical double layer capacitance (Cdl). f Chronoamperometry test of Cl-NiMoN.