Citation: | Chen Pan, Shujing Chen, Qianlong Wang, Muhammad Tayyab, Lei Wang, Xian-Zhu Fu, Jing-Li Luo. Recent advances in current collectors for Li-ion batteries: materials, structures and interfacial properties[J]. Energy Lab. doi: 10.54227/elab.20240018 |
Due to the high efficiency and high energy density, Li-ion batteries are widely used in the field of portable electronic consumer devices, and play an important role in the development of electric vehicles and the storage and conversion of renewable energy. Current collectors are an indispensable component because of their key role in determining the electrochemical properties of Li-ion batteries, such as the energy density, power density and cycling stability. In this paper, the recent advances in the field of current collectors of Li-ion batteries are summarized. Firstly, the merits and flaws of two kinds of current collectors, i.e., metallic and carbonaceous ones are analyzed. Next, the recent progress in design, preparation, and utilization of three-dimensionally structured current collectors, the strategies to decrease the interfacial resistance, and the methods of improving the interfacial adhesion between the current collector and the electrode layer are reviewed. Finally, conclusions and perspectives for future research are discussed.
1. | A. Sadeghi, A. Ghaffarinejad, J. Power Sources, 2024, 600, 234275 |
2. | W. Guan, T. Wang, Y. Liu, H. Du, S. Li, Z. Du, W. Ai, Adv. Energy Mater., 2023, 13, 2302565 |
3. | L. Kong, H. Peng, J. Huang, Q. Zhang, Nano Res., 2017, 10, 4027 |
4. | M. Dubarry, N. Costa, D. Matthews, Nat. Commun., 2023, 14, 3138 |
5. | H. Li, A. Berbille, X. Zhao, Z. Wang, W. Tang, Z. L. Wang, Nat. Energy, 2023, 8, 1137 |
6. | C. Zhang, Y. Guo, S. Tan, Y. Wang, J. Guo, Y. Tian, X. Zhang, B. Liu, S. Xin, J. Zhang, L. Wan, Y. Guo, Sci. Adv., 2024, 10, eadl4842 |
7. | Z. Ouyang, S. Wang, Y. Wang, S. Muqaddas, S. Geng, Z. Yao, X. Zhang, B. Yuan, X. Zhao, Q. Xu, S. Tang, Q. Zhang, J. Li, H. Sun, Adv. Mater., 2024, 36, 2407648 |
8. | Z. Liu, W. Huang, Y. Xiao, J. Zhang, W. Kong, P. Wu, C. Zhao, A. Chen, Q. Zhang, Acta Phys.-Chim. Sin., 2024, 40, 2305040 |
9. | J. Seo, J. Lim, H. Chang, J. Lee, J. Woo, I. Jung, Y. Kim, B. Kim, J. Moon, H. Lee, Small, 2024, 20, 2402988 |
10. | D. Gu, H. Kim, J. Lee, S. Park, J. Energy Chem., 2022, 70, 248 |
11. | Y. Jiang, Y. Yang, F. Ling, G. Lu, F. Huang, X. Tao, S. Wu, X. Cheng, F. Liu, D. Li, H. Yang, Y. Yao, P. Shi, Q. Chen, X. Rui, Y. Yu, Adv. Mater., 2022, 34, 2109439 |
12. | H. Yu, D. Jiang, X. Cheng, P. Lu, S. Li, H. Zhang, Y. Jiang, F. Huang, Adv. Funct. Mater., 2023, 33, 2307628 |
13. | H. Li, H. Zhang, F. Wu, M. Zarrabeitia, D. Geiger, U. Kaiser, A. Varzi, S. Passerini, Adv. Energy Mater., 2022, 12, 2202293 |
14. | Z. Karimi, A. Sadeghi, A. Ghaffarinejad, J. Energy Storage, 2023, 72, 108282 |
15. | W. Zhu, J. Zhang, J. Luo, C. Zeng, H. Su, J. Zhang, R. Liu, E. Hu, Y. Liu, W. Liu, Y. Chen, W. Hu, Y. Xu, Adv. Mater., 2023, 35, 2208974 |
16. | Z. Jing, S. Wang, Q. Fu, V. Baran, A. Tayal, N. P. M. Casati, A. Missyul, L. Simonelli, M. Knapp, F. Li, H. Ehrenberg, S. Indris, C. Shan, W. Hua, Energy Storage Mater., 2023, 59, 102775 |
17. | F. Wang, Z. Zhai, Z. Zhao, Y. Di, X. Chen, Nat. Commun., 2024, 15, 4332 |
18. | J. Chen, W. Fu, S. Zhang, F. Zhang, J. Zhou, Y. Ma, J. Zhao, Batteries Supercaps, 2024, 7, e202400304 |
19. | Z. Wang, C. Wei, H. Jiang, Y. Zhang, K. Tian, Y. Li, X. Zhang, S. Xiong, C. Zhang, J. Feng, Adv. Mater., 2024, 36, 2306015 |
20. | E. Mados, I. Atar, Y. Gratz, M. Israeli, O. Kondrova, V. Fourman, D. Sherman, D. Golodnitsky, A. Sitt, J. Power Sources, 2024, 603, 234397 |
21. | Z. Wang, C. Wei, H. Jiang, Y. Zhang, K. Tian, Y. Li, X. Zhang, S. Xiong, C. Zhang, J. Feng, Adv. Mater., 2024, 36, 2306015 |
22. | Z. Wang, C. Wei, H. Jiang, Y. Zhang, K. Tian, Y. Li, X. Zhang, S. Xiong, C. Zhang, J. Feng, Adv. Mater., 2023, 13, 2370146 |
23. | C. Lv, Z. Tong, S. Zhou, S. Pan, H. Liao, Y. Zhou, J. Li, J. Energy Chem., 2023, 80, 553 |
24. | Y. Ye, R. Xu, W. Huang, H. Ai, W. Zhang, J. O. Affeld, A. Cui, F. Liu, X. Gao, Z. Chen, T. Li, X. Xiao, Z. Zhang, Y. Peng, R. A. Vila, Y. Wu, S. T. Oyakhire, H. Kuwajima, Y. Suzuki, R. Matsumoto, Y. Masuda, T. Yuuki, Y. Nakayama, Y. Cui, Nat. Energy, 2024, 9, 643 |
25. | J. Wang, S. Chou, J. Chen, S. Chew, G. Wang, K. Konstantinov, J. Wu, S. Dou, H. K. Liu, Electrochem. Commun., 2008, 10, 1781 |
26. | E. Foreman, W. Zakri, M. Hossein Sanatimoghaddam, A. Modjtahedi, S. Pathak, A. G. Kashkooli, N. G. Garafolo, S. Farhad, Adv. Sustain. Syst., 2017, 1, 1700061 |
27. | L. Nyholm, G. Nyström, A. Mihranyan, M. Strømme, Adv. Mater., 2011, 23, 3751 |
28. | C. Wang, N. Kurra, M. Alhabeb, J. Chang, H. N. Alshareef, Y. Gogotsi, ACS Omega, 2018, 3, 12489 |
29. | Z. Wang, C. Wei, H. Jiang, Y. Zhang, K. Tian, Y. Li, X. Zhang, S. Xiong, C. Zhang, J. Feng, Adv. Mater., 2024, 36, 2306015 |
30. | P. Zhu, D. Gastol, J. Marshall, R. Sommerville, V. Goodship, E. Kendrick, J. Power Sources, 2021, 485, 229321 |
31. | Lain, Brandon, Kendrick, Batteries (Basel), 2019, 5, 64 |
32. | R. Choudhury, J. Wild, Y. Yang, Joule, 2021, 5, 1301 |
33. | H. Chu, H. Tuan, J. Power Sources, 2017, 346, 40 |
34. | Y. Ye, L. Chou, Y. Liu, H. Wang, H. K. Lee, W. Huang, J. Wan, K. Liu, G. Zhou, Y. Yang, A. Yang, X. Xiao, X. Gao, D. T. Boyle, H. Chen, W. Zhang, S. C. Kim, Y. Cui, Nat. Energy, 2020, 5, 786 |
35. | J. Choi, D. J. Lee, Y. M. Lee, Y. Lee, K. M. Kim, J. Park, K. Y. Cho, Adv. Funct. Mater., 2013, 23, 2108 |
36. | J. H. Yun, G. Han, Y. M. Lee, Y. Lee, K. M. Kim, J. Park, K. Y. Cho, Electrochem. Solid-State Lett., 2011, 14, A116 |
37. | J. Xie, Y. Ji, J. Kang, J. Sheng, D. Mao, X. Fu, R. Sun, C. Wong, Energy Environ. Sci., 2019, 12, 194 |
38. | J. Xie, Y. Ji, D. Mao, F. Zhang, X. Fu, R. Sun, C. Wong, ACS Appl. Nano Mater., 2018, 1, 1531 |
39. | Y. Li, Q. Wang, Y. Wang, M. Bai, J. Shao, H. Ji, H. Feng, J. Zhang, X. Ma, W. Zhao, Dalton Trans., 2019, 48, 7659 |
40. | Y. Liao, Z. Kao, ACS Appl. Mater. Interfaces, 2012, 4, 5109 |
41. | C. Pan, S. Chen, Y. Huang, L. Wang, J. Luo, X. Fu, J. Power Sources, 2022, 528, 231207 |
42. | X. Wu, S. Chen, D. Liu, C. Ye, F. Si, Y. Zhang, Y. Yang, J. Luo, X. Fu, J. Energy Storage, 2023, 74, 109208 |
43. | J. H. Yu, Y. Rho, H. Kang, H. S. Jung, K. Kang, Int. J. Precis. Eng. Manuf.-Green Technol., 2015, 2, 333 |
44. | Y. Jang, J. Jo, Y. Choi, S. Kwon, K. Kim, Energy, 2015, 93, 1303 |
45. | L. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L. Cui, Y. Cui, Proc. Natl. Acad. Sci.-PNAS, 2009, 106, 21490 |
46. | S. Poetz, B. Fuchsbichler, M. Schmuck, S. Koller, J. Appl. Electrochem., 2014, 44, 989 |
47. | Z. Liu, Y. Dong, X. Qi, R. Wang, Z. Zhu, C. Yan, X. Jiao, S. Li, L. Qie, J. Li, Y. Huang, Energy Environ. Sci., 2022, 15, 5313 |
48. | J. Hu, Y. Li, S. Liao, X. Huang, Y. Chen, X. Peng, Y. Yang, Y. Min, ACS Appl. Energ. Mater., 2021, 4, 9721 |
49. | L. Guo, D. B. Thornton, M. A. Koronfel, I. E. L. Stephens, M. P. Ryan, J. Phys.: Energy, 2021, 3, 32015 |
50. | E. Yoon, J. Lee, S. Byun, D. Kim, T. Yoon, Adv. Funct. Mater., 2022, 32, 2200026 |
51. | S. Yang, J. Zhong, S. Li, B. Li, J. Energy Chem., 2024, 89, 610 |
52. | B. Liu, T. Lv, A. Zhou, X. Zhu, Z. Lin, T. Lin, L. Suo, Nat. Commun., 2024, 15, 2922 |
53. | H. Du, Y. Wang, Y. Kang, Y. Zhao, Y. Tian, X. Wang, Y. Tan, Z. Liang, J. Wozny, T. Li, D. Ren, L. Wang, X. He, P. Xiao, E. Mao, N. Tavajohi, F. Kang, B. Li, Adv. Mater., 2024, 36, 2401482 |
54. | S. Yang, S. Li, Z. Du, J. Du, C. Han, B. Li, Adv. Mater. Interfaces, 2022, 9, 22000856 |
55. | E. Yoon, J. Lee, S. Byun, D. Kim, T. Yoon, Adv. Funct. Mater., 2022, 32, 2200026 |
56. | M. Wang, M. Tang, S. Chen, H. Ci, K. Wang, L. Shi, L. Lin, H. Ren, J. Shan, P. Gao, Z. Liu, H. Peng, Adv. Mater., 2017, 29, 1703882 |
57. | S. S. Zhang, T. R. Jow, J. Power Sources, 2002, 109, 458 |
58. | E. Yoon, J. Lee, S. Byun, D. Kim, T. Yoon, Adv. Funct. Mater., 2022, 32, 2200026 |
59. | H. Gao, T. Ma, T. Duong, L. Wang, X. He, I. Lyubinetsky, Z. Feng, F. Maglia, P. Lamp, K. Amine, Z. Chen, Mater. Today Energy, 2018, 7, 18 |
60. | S. Myung, Y. Hitoshi, Y. Sun, J. Mater. Chem., 2011, 21, 9891 |
61. | S. Myung, Y. Sasaki, S. Sakurada, Y. Sun, H. Yashiro, Electrochim. Acta, 2009, 55, 288 |
62. | C. Yen, A. R. Neale, J. Lim, D. Bresser, L. J. Hardwick, C. Hu, Electrochim. Acta, 2022, 431, 141105 |
63. | Z. Peng, D. Ding, W. Zhang, Y. Gao, G. Chen, Y. Xie, Y. Liao, Materials, 2022, 15, 5126 |
64. | S. Y. Kim, Y. I. Song, J. Wee, C. H. Kim, B. W. Ahn, J. W. Lee, S. J. Shu, M. Terrones, Y. A. Kim, C. Yang, Carbon, 2019, 153, 495 |
65. | J. Chen, Z. Bai, X. Li, Q. Wang, J. Du, R. Lu, X. Liu, Appl. Surf. Sci., 2022, 606, 155002 |
66. | X. Yang, D. Ding, Y. Xu, W. Zhang, Y. Gao, Z. Wu, G. Chen, R. Chen, Y. Huang, J. Tang, Metals, 2020, 10, 109 |
67. | X. Yang, D. Ding, Y. Xu, W. Zhang, Y. Gao, Z. Wu, G. Chen, R. Chen, Y. Huang, J. Tang, Metals, 2019, 9, 706 |
68. | X. Li, S. Deng, M. N. Banis, K. Doyle-Davis, D. Zhang, T. Zhang, J. Yang, R. Divigalpitiya, F. Brandys, R. Li, X. Sun, ACS Appl. Mater. Interfaces, 2019, 11, 32826 |
69. | S. Deng, M. Jiang, A. Rao, X. Lin, K. Doyle-Davis, J. Liang, C. Yu, R. Li, S. Zhao, L. Zhang, H. Huang, J. Wang, C. V. Singh, X. Sun, Adv. Funct. Mater., 2022, 32, 2200767 |
70. | D. Shin, H. Ahn, ACS Appl. Mater. Interfaces, 2020, 12, 19210 |
71. | G. Zhang, K. Lin, X. Qin, L. Zhang, T. Li, F. Lv, Y. Xia, W. Han, F. Kang, B. Li, ACS Appl. Mater. Interfaces, 2020, 12, 37034 |
72. | S. J. Richard Prabakar, Y. Hwang, E. G. Bae, D. K. Lee, M. Pyo, Carbon, 2013, 52, 128 |
73. | N. Piao, L. Wang, T. Anwar, X. Feng, S. E. Sheng, G. Tian, J. Wang, Y. Tang, X. He, Corros. Sci., 2019, 158, 108100 |
74. | S. Yang, S. Li, Y. Meng, M. Yu, J. Liu, B. Li, Corros. Sci., 2021, 190, 109632 |
75. | G. Teucher, T. Van Gestel, M. Krott, H. Gehrke, R. Eichel, S. Uhlenbruck, Thin Solid Films, 2016, 619, 302 |
76. | T. Ma, G. Xu, Y. Li, L. Wang, X. He, J. Zheng, J. Liu, M. H. Engelhard, P. Zapol, L. A. Curtiss, J. Jorne, K. Amine, Z. Chen, J. Phys. Chem. Lett., 2017, 8, 1072 |
77. | P. Briois, M. Arab-Pour-Yazdi, N. Martin, A. Billard, Coatings, 2020, 10, 224 |
78. | S. Wang, K. V. Kravchyk, A. N. Filippin, R. Widmer, A. N. Tiwari, S. Buecheler, M. I. Bodnarchuk, M. V. Kovalenko, ACS Appl. Energ. Mater., 2019, 2, 974 |
79. | A. Heckmann, M. Krott, B. Streipert, S. Uhlenbruck, M. Winter, T. Placke, Chemphyschem, 2017, 18, 156 |
80. | X. Jiang, J. Chen, Y. Yang, Y. Lv, Y. Ren, W. Li, C. Li, Int. J. Electrochem. Sci., 2020, 15, 2667 |
81. | T. Liu, L. Zhao, D. Wang, J. Zhu, B. Wang, C. Guo, RSC Adv., 2013, 3, 25648 |
82. | S. Shironita, N. Ihsan, K. Konakawa, K. Souma, M. Umeda, Electrochim. Acta, 2019, 295, 1052 |
83. | A. Irshad, D. Mitra, A. Sundar Rajan, P. Trinh, M. Balasubramanian, S. R. Narayanan, A. I. U. S. Argonne National Lab. Anl, J. Electrochem. Soc., 2020, 167, 20543 |
84. | P. Han, B. Zhang, C. Huang, L. Gu, H. Li, G. Cui, Electrochem. Commun., 2014, 44, 70 |
85. | S. K. Martha, N. J. Dudney, J. O. Kiggans, J. Nanda, J. Electrochem. Soc., 2012, 159, A1652 |
86. | Y. Zhao, J. Yang, J. Ma, Q. Wu, W. Qian, Z. Wang, H. Zhang, D. He, S. Mu, ACS Sustain. Chem. Eng., 2021, 9, 8635 |
87. | S. Chen, Q. Wang, C. Liu, J. Zhang, L. Wang, J. Luo, X. Fu, ACS Sustain. Chem. Eng., 2023, 11, 13483 |
88. | Y. Yao, F. Jiang, C. Yang, K. K. Fu, J. Hayden, C. Lin, H. Xie, M. Jiao, C. Yang, Y. Wang, S. He, F. Xu, E. Hitz, T. Gao, J. Dai, W. Luo, G. Rubloff, C. Wang, L. Hu, ACS Nano, 2018, 12, 5266 |
89. | Y. Chen, K. Fu, S. Zhu, W. Luo, Y. Wang, Y. Li, E. Hitz, Y. Yao, J. Dai, J. Wan, V. A. Danner, T. Li, L. Hu, Nano Lett., 2016, 16, 3616 |
90. | K. Wang, Y. Wu, H. Wu, Y. Luo, D. Wang, K. Jiang, Q. Li, Y. Li, S. Fan, J. Wang, J. Power Sources, 2017, 351, 160 |
91. | H. Li, L. Peng, D. Wu, J. Wu, Y. Zhu, X. Hu, Adv. Energy Mater., 2019, 9, 1802930 |
92. | H. Sun, J. Zhu, D. Baumann, L. Peng, Y. Xu, I. Shakir, Y. Huang, X. Duan, Nat. Rev. Mater., 2018, 4, 45 |
93. | Y. Kuang, C. Chen, D. Kirsch, L. Hu, Adv. Energy Mater., 2019, 9, 1901457 |
94. | N. Issatayev, A. Nuspeissova, G. Kalimuldina, Z. Bakenov, J. Power Sources Adv., 2021, 10, 100065 |
95. | Y. Yang, W. Yuan, X. Zhang, Y. Ke, Z. Qiu, J. Luo, Y. Tang, C. Wang, Y. Yuan, Y. Huang, Appl. Energy, 2020, 276, 115464 |
96. | R. Xu, L. Du, D. Adekoya, G. Zhang, S. Zhang, S. Sun, Y. Lei, Adv. Energy Mater., 2021, 11, 2001537 |
97. | A. Sankaran, N. Kapuria, S. Beloshapkin, S. A. Ahad, S. Singh, H. Geaney, K. M. Ryan, Adv. Mater., 2024, 36, 2310823 |
98. | H. Zhao, C. Wang, R. Vellacheri, M. Zhou, Y. Xu, Q. Fu, M. Wu, F. Grote, Y. Lei, Adv. Mater., 2014, 26, 7654 |
99. | P. L. Taberna, S. Mitra, P. Poizot, P. Simon, J. M. Tarascon, Nat. Mater., 2006, 5, 567 |
100. | M. M. Shaijumon, E. Perre, B. Daffos, P. Taberna, J. Tarascon, P. Simon, Adv. Mater., 2010, 22, 4978 |
101. | L. Bazin, S. Mitra, P. L. Taberna, P. Poizot, M. Gressier, M. J. Menu, A. Barnabé, P. Simon, J. M. Tarascon, J. Power Sources, 2009, 188, 578 |
102. | F. Zhan, H. Zhang, Y. Qi, J. Wang, N. Du, D. Yang, J. Alloy. Compd., 2013, 570, 119 |
103. | E. Perre, L. Nyholm, T. Gustafsson, P. Taberna, P. Simon, K. Edström, Electrochem. Commun., 2008, 10, 1467 |
104. | G. Oltean, L. Nyholm, K. Edström, Electrochim. Acta, 2011, 56, 3203 |
105. | S. R. Gowda, A. Leela Mohana Reddy, X. Zhan, H. R. Jafry, P. M. Ajayan, Nano Lett., 2012, 12, 1198 |
106. | W. Wang, M. Tian, A. Abdulagatov, S. M. George, Y. Lee, R. Yang, Nano Lett., 2012, 12, 655 |
107. | S. K. Cheah, E. Perre, M. Rooth, M. Fondell, A. Hårsta, L. Nyholm, M. Boman, T. Gustafsson, J. Lu, P. Simon, K. Edström, Nano Lett., 2009, 9, 3230 |
108. | L. Liang, Y. Xu, L. Wen, Y. Li, M. Zhou, C. Wang, H. Zhao, U. Kaiser, Y. Lei, Nano Res., 2017, 10, 3189 |
109. | L. Liang, Y. Xu, C. Wang, L. Wen, Y. Fang, Y. Mi, M. Zhou, H. Zhao, Y. Lei, Energy Environ. Sci., 2015, 8, 2954 |
110. | G. Oltean, M. Valvo, L. Nyholm, K. Edström, Thin Solid Films, 2014, 562, 63 |
111. | J. O. Omale, R. Rupp, P. Van Velthem, V. Van Kerckhoven, V. Antohe, A. Vlad, L. Piraux, Energy Storage Mater., 2019, 21, 77 |
112. | A. Vlad, V. Antohe, J. M. Martinez-Huerta, E. Ferain, J. Gohy, L. Piraux, J. Mater. Chem. A, 2016, 4, 1603 |
113. | Y. Li, J. Xu, T. Feng, Q. Yao, J. Xie, H. Xia, Adv. Funct. Mater., 2017, 27, 1606728 |
114. | T. Song, H. Cheng, H. Choi, J. Lee, H. Han, D. H. Lee, D. S. Yoo, M. Kwon, J. Choi, S. G. Doo, H. Chang, J. Xiao, Y. Huang, W. I. Park, Y. Chung, H. Kim, J. A. Rogers, U. Paik, ACS Nano, 2012, 6, 303 |
115. | G. Kim, S. Jeong, J. Shin, J. Cho, H. Lee, ACS Nano, 2014, 8, 1907 |
116. | F. Cao, J. Deng, S. Xin, H. Ji, O. G. Schmidt, L. Wan, Y. Guo, Adv. Mater., 2011, 23, 4415 |
117. | C. Yang, Y. Yin, S. Zhang, N. Li, Y. Guo, Nat. Commun., 2015, 6, 8058 |
118. | Z. Zhang, Z. L. Wang, X. Lu, ACS Nano, 2018, 12, 3587 |
119. | Z. Qi, J. Tang, S. Misra, C. Fan, P. Lu, J. Jian, Z. He, V. G. Pol, X. Zhang, H. Wang, Nano Energy, 2020, 69, 104381 |
120. | N. Wang, T. Hang, H. Ling, A. Hu, M. Li, J. Mater. Chem. A, 2015, 3, 11912 |
121. | C. Wu, C. Chang, J. Duh, J. Power Sources, 2016, 325, 64 |
122. | Y. Y. Tang, X. H. Xia, Y. X. Yu, S. J. Shi, J. Chen, Y. Q. Zhang, J. P. Tu, Electrochim. Acta, 2013, 88, 664 |
123. | S. Zhang, Z. Du, R. Lin, T. Jiang, G. Liu, X. Wu, D. Weng, Adv. Mater., 2010, 22, 5378 |
124. | X. Wang, Z. Yang, X. Sun, X. Li, D. Wang, P. Wang, D. He, J. Mater. Chem., 2011, 21, 9988 |
125. | Z. Du, S. Zhang, Y. Xing, X. Wu, J. Power Sources, 2011, 196, 9780 |
126. | J. Hao, X. Liu, X. Liu, X. Liu, N. Li, X. Ma, Y. Zhang, Y. Li, J. Zhao, RSC Adv., 2015, 5, 19596 |
127. | T. Hang, H. Nara, T. Yokoshima, T. Momma, T. Osaka, J. Power Sources, 2013, 222, 503 |
128. | G. Zhang, J. Hu, Y. Nie, Y. Zhao, L. Wang, Y. Li, H. Liu, L. Tang, X. Zhang, D. Li, L. Sun, H. Duan, Adv. Funct. Mater., 2021, 31, 2100290 |
129. | M. Shimizu, R. Yatsuzuka, M. Horita, T. Yamamoto, S. Arai, J. Phys. Chem. C, 2017, 121, 27285 |
130. | Y. Hu, J. Liu, R. Ding, K. Wang, J. Jiang, X. Ji, Y. Li, X. Huang, Thin Solid Films, 2010, 518, 6876 |
131. | Y. Yue, D. Juarez-Robles, Y. Chen, L. Ma, W. C. H. Kuo, P. Mukherjee, H. Liang, ACS Appl. Mater. Interfaces, 2017, 9, 28695 |
132. | G. Lee, H. Shim, D. Kim, Nano Energy, 2015, 13, 218 |
133. | G. Lee, S. Lee, C. W. Lee, C. Choi, D. Kim, J. Mater. Chem. A, 2016, 4, 1060 |
134. | W. Zhao, N. Du, C. Xiao, H. Wu, H. Zhang, D. Yang, J. Mater. Chem. A, 2014, 2, 13949 |
135. | J. M. Haag, G. Pattanaik, M. F. Durstock, Adv. Mater., 2013, 25, 3238 |
136. | L. Lu, J. Ge, J. Yang, S. Chen, H. Yao, F. Zhou, S. Yu, Nano Lett., 2016, 16, 4431 |
137. | Z. Yin, S. Cho, D. You, Y. Ahn, J. Yoo, Y. S. Kim, Nano Res., 2018, 11, 769 |
138. | S. Song, S. W. Kim, D. J. Lee, Y. Lee, K. M. Kim, C. Kim, J. Park, Y. M. Lee, K. Y. Cho, ACS Appl. Mater. Interfaces, 2014, 6, 11544 |
139. | B. Breitung, N. Aguiló-Aguayo, T. Bechtold, H. Hahn, J. Janek, T. Brezesinski, Sci. Rep., 2017, 7, 13010 |
140. | Q. Li, S. Zhu, Y. Lu, Adv. Funct. Mater., 2017, 27, 1606422 |
141. | J. Y. Seok, J. Lee, J. H. Park, M. Yang, Adv. Energy Mater., 2019, 9, 1803764 |
142. | L. Liu, H. Zhao, Y. Lei, Small Methods, 2019, 3, 1800341 |
143. | C. Shi, Q. Zhao, H. Li, Z. Liao, D. Yu, Nano Energy, 2014, 6, 82 |
144. | R. Ron, E. Haleva, A. Salomon, Adv. Mater., 2018, 30, 1706755 |
145. | V. Paserin, S. Marcuson, J. Shu, D. S. Wilkinson, Adv. Eng. Mater., 2004, 6, 454 |
146. | X. Huang, D. Xu, S. Yuan, D. Ma, S. Wang, H. Zheng, X. Zhang, Adv. Mater., 2014, 26, 7264 |
147. | G. Yang, S. Joo, Electrochim. Acta, 2015, 170, 263 |
148. | H. Zhu, X. Du, Z. Xu, Z. Lin, X. Li, X. Wang, ACS Appl. Energ. Mater., 2022, 5, 7392 |
149. | D. Mazouzi, D. Reyter, M. Gauthier, P. Moreau, D. Guyomard, L. Roué, B. Lestriez, Adv. Energy Mater., 2014, 4, 1301718 |
150. | G. F. Yang, K. Y. Song, S. K. Joo, J. Mater. Chem. A, 2014, 2, 19648 |
151. | M. Fritsch, G. Standke, C. Heubner, U. Langklotz, A. Michaelis, J. Energy Storage, 2018, 16, 125 |
152. | G. Yang, K. Song, S. Joo, RSC Adv., 2015, 5, 16702 |
153. | C. Zhao, S. Li, X. Luo, B. Li, W. Pan, H. Wu, J. Mater. Chem. A, 2015, 3, 10114 |
154. | Z. Yang, J. Tian, Z. Ye, Y. Jin, C. Cui, Q. Xie, J. Wang, G. Zhang, Z. Dong, Y. Miao, X. Yu, W. Qian, F. Wei, Energy Storage Mater., 2020, 33, 18 |
155. | Z. Yu, Z. Cheng, G. Tsekouras, X. Wang, X. Kong, M. Osada, S. X. Dou, Electrochim. Acta, 2018, 281, 761 |
156. | J. Li, J. Xiao, Z. Wang, Z. Wei, Y. Qiu, S. Yang, Nano Energy, 2014, 10, 329 |
157. | T. Qiu, B. Luo, M. Giersig, E. M. Akinoglu, L. Hao, X. Wang, L. Shi, M. Jin, L. Zhi, Small, 2014, 10, 4136 |
158. | H. Zhang, T. Shi, D. J. Wetzel, R. G. Nuzzo, P. V. Braun, Adv. Mater., 2016, 28, 742 |
159. | H. Zhang, X. Yu, P. V. Braun, Nat. Nanotechnol., 2011, 6, 277 |
160. | H. Zhang, P. V. Braun, Nano Lett., 2012, 12, 2778 |
161. | J. H. Pikul, H. Gang Zhang, J. Cho, P. V. Braun, W. P. King, Nat. Commun., 2013, 4, 1732 |
162. | J. Wang, N. Du, Z. Song, H. Wu, H. Zhang, D. Yang, RSC Adv., 2013, 3, 7543 |
163. | A. Varzi, L. Mattarozzi, S. Cattarin, P. Guerriero, S. Passerini, Adv. Energy Mater., 2018, 8, 1701706 |
164. | T. Wang, Y. Guo, B. Zhao, S. Yu, H. Yang, D. Lu, X. Fu, R. Sun, C. Wong, J. Power Sources, 2015, 286, 371 |
165. | A. Ferris, S. Garbarino, D. Guay, D. Pech, Adv. Mater., 2015, 27, 6625 |
166. | M. Mirzaee, C. Dehghanian, J. Iran. Chem. Soc., 2019, 16, 283 |
167. | X. Chen, K. Sun, E. Zhang, N. Zhang, RSC Adv., 2013, 3, 432 |
168. | X. Fan, F. Ke, G. Wei, L. Huang, S. Sun, J. Alloy. Compd., 2009, 476, 70 |
169. | Q. Q. Xiong, H. Y. Qin, H. Z. Chi, Z. G. Ji, J. Alloy. Compd., 2016, 685, 15 |
170. | X. Lang, A. Hirata, T. Fujita, M. Chen, Adv. Energy Mater., 2014, 4, 1301809 |
171. | C. Hou, X. Shi, C. Zhao, X. Lang, L. Zhao, Z. Wen, Y. Zhu, M. Zhao, J. Li, Q. Jiang, J. Mater. Chem. A, 2014, 2, 15519 |
172. | B. Liu, J. Hou, T. Zhang, C. Xu, H. Liu, J. Mater. Chem. A, 2019, 7, 16222 |
173. | X. Lang, A. Hirata, T. Fujita, M. Chen, Nat. Nanotechnol., 2011, 6, 232 |
174. | Z. Luo, J. Xu, B. Yuan, R. Hu, L. Yang, Y. Gao, M. Zhu, ACS Appl. Mater. Interfaces, 2018, 10, 22050 |
175. | V. S. Prabhin, K. Jeyasubramanian, I. Jeyaseeli Rashmi, G. S. Hikku, P. Veluswamy, B. J. Cho, Mater. Chem. Phys., 2018, 220, 128 |
176. | L. Y. Chen, Y. Hou, J. L. Kang, A. Hirata, T. Fujita, M. W. Chen, Adv. Energy Mater., 2013, 3, 851 |
177. | Y. Chen, H. Feng, Y. Wang, Z. Tang, D. Chua, Mater. Lett., 2018, 226, 8 |
178. | X. Liu, R. Zhang, W. Yu, Y. Yang, Z. Wang, C. Zhang, Y. Bando, D. Golberg, X. Wang, Y. Ding, Energy Storage Mater., 2018, 11, 83 |
179. | Y. Li, J. Li, X. Lang, Z. Wen, W. Zheng, Q. Jiang, Adv. Funct. Mater., 2017, 27, 1700447 |
180. | W. Liu, X. Chen, P. Xiang, S. Zhang, J. Yan, N. Li, S. Shi, Nanoscale, 2019, 11, 4885 |
181. | D. Gao, G. Yang, Z. Zhu, J. Zhang, Z. Yang, Z. Zhang, D. Xue, J. Mater. Chem., 2012, 22, 9462 |
182. | Z. Zhang, P. He, X. Li, Z. Yang, Y. Fu, Z. Lin, J. Alloy. Compd., 2018, 758, 38. |
183. | H. Mao, P. Shen, G. Yang, L. Zhao, X. Qiu, H. Wang, Q. Jiang, J. Mater. Sci., 2020, 55, 11462 |
184. | Y. Fu, Z. Yang, X. Li, X. Wang, D. Liu, D. Hu, L. Qiao, D. He, J. Mater. Chem. A, 2013, 1, 10002 |
185. | L. Lu, P. Andela, J. T. M. De Hosson, Y. Pei, ACS Appl. Nano Mater., 2018, 1, 2206 |
186. | L. Lu, J. T. M. De Hosson, Y. Pei, Carbon, 2019, 144, 713 |
187. | W. Xu, N. L. Canfield, D. Wang, J. Xiao, Z. Nie, X. S. Li, W. D. Bennett, C. C. Bonham, J. Zhang, J. Electrochem. Soc., 2010, 157, A765 |
188. | X. Guo, J. Han, L. Zhang, P. Liu, A. Hirata, L. Chen, T. Fujita, M. Chen, Nanoscale, 2015, 7, 15111 |
189. | K. Evanoff, J. Khan, A. A. Balandin, A. Magasinski, W. J. Ready, T. F. Fuller, G. Yushin, Adv. Mater., 2012, 24, 533 |
190. | H. Zhou, F. Lou, P. E. Vullum, M. Einarsrud, D. Chen, F. Vullum-Bruer, Nanotechnology, 2013, 24, 435703 |
191. | S. Lee, J. Ha, H. Cheng, J. W. Lee, T. S. Jang, Y. Jung, Y. Huang, J. A. Rogers, U. Paik, Adv. Energy Mater., 2014, 4, 1300472 |
192. | X. Wang, R. A. Susantyoko, Y. Fan, L. Sun, Q. Xiao, Q. Zhang, Small, 2014, 10, 2826 |
193. | A. Gohier, B. Laïk, K. Kim, J. Maurice, J. Pereira-Ramos, C. S. Cojocaru, P. T. Van, Adv. Mater., 2012, 24, 2592 |
194. | Y. Zhao, M. Hong, N. Bonnet Mercier, G. Yu, H. C. Choi, H. R. Byon, Nano Lett., 2014, 14, 1085 |
195. | G. P. Pandey, S. A. Klankowski, Y. Li, X. S. Sun, J. Wu, R. A. Rojeski, J. Li, ACS Appl. Mater. Interfaces, 2015, 7, 20909 |
196. | H. Kim, X. Huang, X. Guo, Z. Wen, S. Cui, J. Chen, ACS Appl. Mater. Interfaces, 2014, 6, 18590 |
197. | E. Kang, G. Jeon, J. K. Kim, Chem. Commun., 2013, 49, 6406 |
198. | K. Chiu, S. Su, H. Leu, C. Wu, Surf. Coat. Technol., 2015, 267, 70 |
199. | J. Kim, S. Kennedy, I. Phiri, S. Ryou, ACS Appl. Mater. Interfaces, 2024, 16, 11400 |
200. | K. Wang, Y. Li, X. Wu, J. Chen, J. Power Sources, 2012, 203, 140 |
201. | Y. Zhang, Q. Zou, H. S. Hsu, S. Raina, Y. Xu, J. B. Kang, J. Chen, S. Deng, N. Xu, W. P. Kang, ACS Appl. Mater. Interfaces, 2016, 8, 7363 |
202. | Z. Zhang, C. Lee, W. Zhang, Adv. Energy Mater., 2017, 7, 1700678 |
203. | T. M. Dinh, A. Achour, S. Vizireanu, G. Dinescu, L. Nistor, K. Armstrong, D. Guay, D. Pech, Nano Energy, 2014, 10, 288 |
204. | S. Moitzheim, C. S. Nimisha, S. Deng, D. J. Cott, C. Detavernier, P. M. Vereecken, Nanotechnology, 2014, 25, 504008 |
205. | R. Thomas, K. Yellareswar Rao, G. Mohan Rao, Electrochim. Acta, 2013, 108, 458 |
206. | S. Jin, Y. Jiang, H. Ji, Y. Yu, Adv. Mater., 2018, 30, 1802014 |
207. | S. Li, G. Liu, J. Liu, Y. Lu, Q. Yang, L. Yang, H. Yang, S. Liu, M. Lei, M. Han, J. Mater. Chem. A, 2016, 4, 6426 |
208. | T. Qin, S. Peng, J. Hao, Y. Wen, Z. Wang, X. Wang, D. He, J. Zhang, J. Hou, G. Cao, Adv. Energy Mater., 2017, 7, 1700409 |
209. | X. Wu, Z. Han, X. Zheng, S. Yao, X. Yang, T. Zhai, Nano Energy, 2017, 31, 410 |
210. | N. A. Alhebshi, R. B. Rakhi, H. N. Alshareef, J. Mater. Chem. A, 2013, 1, 14897 |
211. | L. Wang, H. Yang, X. Liu, R. Zeng, M. Li, Y. Huang, X. Hu, Angew. Chem., 2017, 129, 1125 |
212. | A. Joshi, A. Raulo, S. Bandyopadhyay, A. Gupta, R. Srivastava, B. Nandan, Carbon, 2022, 192, 429 |
213. | G. H. Waller, S. Y. Lai, B. H. Rainwater, M. Liu, J. Power Sources, 2014, 251, 411 |
214. | X. Xiong, G. Waller, D. Ding, D. Chen, B. Rainwater, B. Zhao, Z. Wang, M. Liu, Nano Energy, 2015, 16, 71 |
215. | G. Kalimuldina, I. Taniguchi, J. Mater. Chem. A, 2017, 5, 6937 |
216. | J. Wang, H. Zhong, Z. Wang, F. Meng, X. Zhang, ACS Nano, 2016, 10, 2342 |
217. | J. Wang, H. Sun, H. Liu, D. Jin, R. Zhou, B. Wei, J. Mater. Chem. A, 2017, 5, 23115 |
218. | L. Chen, Y. Feng, H. Liang, Z. Wu, S. Yu, Adv. Energy Mater., 2017, 7, 1700826 |
219. | J. Wang, R. Zhou, D. Jin, K. Xie, B. Wei, Electrochim. Acta, 2017, 231, 396 |
220. | S. Abouali, M. Akbari Garakani, B. Zhang, H. Luo, Z. Xu, J. Huang, J. Huang, J. Kim, J. Mater. Chem. A, 2014, 2, 16939 |
221. | J. Wang, H. Wang, F. Li, S. Xie, G. Xu, Y. She, M. K. H. Leung, T. Liu, J. Mater. Chem. A, 2019, 7, 3024 |
222. | E. Josef, R. Yan, R. Guterman, M. Oschatz, ACS Appl. Energy Mater., 2019, 2, 5724 |
223. | S. Kalybekkyzy, A. Mentbayeva, Y. Yerkinbekova, N. Baikalov, M. V. Kahraman, Z. Bakenov, Nanomaterials, 2020, 10, 745 |
224. | J. W. Hu, Z. P. Wu, S. W. Zhong, W. B. Zhang, S. Suresh, A. Mehta, N. Koratkar, Carbon, 2015, 87, 292 |
225. | J. Zou, X. Sun, R. Li, Q. He, Journal of Materials Science: Materials in Electronics, 2020, 31, 9242 |
226. | N. Yitzhack, M. Auinat, N. Sezin, Y. Ein-Eli, APL Mater., 2018, 6, 111102 |
227. | S. Yehezkel, M. Auinat, N. Sezin, D. Starosvetsky, Y. Ein-Eli, J. Power Sources, 2016, 312, 109 |
228. | K. R. Crompton, M. P. Hladky, H. H. Park, S. M. Prokes, C. T. Love, B. J. Landi, Electrochim. Acta, 2018, 292, 628 |
229. | S. Zhu, J. Sheng, Y. Chen, J. Ni, Y. Li, Natl. Sci. Rev., 2021, 8, nwaa261 |
230. | D. Wei, W. Shen, T. Xu, K. Li, L. Yang, Y. Zhou, M. Zhong, F. Yang, X. Xu, Y. Wang, M. Zheng, Y. Zhang, Q. Li, Z. Yong, H. Li, Q. Wang, Mater. Today Energy, 2022, 23, 100889 |
231. | C. Arbizzani, S. Beninati, M. Lazzari, M. Mastragostino, J. Power Sources, 2006, 158, 635 |
232. | K. Fu, O. Yildiz, H. Bhanushali, Y. Wang, K. Stano, L. Xue, X. Zhang, P. D. Bradford, Adv. Mater., 2013, 25, 5109 |
233. | J. J. Vilatela, R. Marcilla, Chem. Mater., 2015, 27, 6901 |
234. | R. Zhou, C. Meng, F. Zhu, Q. Li, C. Liu, S. Fan, K. Jiang, Nanotechnology, 2010, 21, 345701 |
235. | K. Wang, S. Luo, Y. Wu, X. He, F. Zhao, J. Wang, K. Jiang, S. Fan, Adv. Funct. Mater., 2013, 23, 846 |
236. | K. Jiang, J. Wang, Q. Li, L. Liu, C. Liu, S. Fan, Adv. Mater., 2011, 23, 1154 |
237. | B. G. Choi, S. Chang, Y. B. Lee, J. S. Bae, H. J. Kim, Y. S. Huh, Nanoscale, 2012, 4, 5924 |
238. | B. G. Choi, M. Yang, W. H. Hong, J. W. Choi, Y. S. Huh, ACS Nano, 2012, 6, 4020 |
239. | X. Huang, K. Qian, J. Yang, J. Zhang, L. Li, C. Yu, D. Zhao, Adv. Mater., 2012, 24, 4419 |
240. | Y. Xu, K. Sheng, C. Li, G. Shi, ACS Nano, 2010, 4, 4324 |
241. | Q. Shi, Y. Cha, Y. Song, J. Lee, C. Zhu, X. Li, M. Song, D. Du, Y. Lin, Nanoscale, 2016, 8, 15414 |
242. | W. Chen, L. Yan, Nanoscale, 2011, 3, 3132 |
243. | W. Lv, C. Zhang, Z. Li, Q. Yang, J. Phys. Chem. Lett., 2015, 6, 658 |
244. | F. Liu, T. S. Seo, Adv. Funct. Mater., 2010, 20, 1930 |
245. | F. Liu, S. Chung, G. Oh, T. S. Seo, ACS Appl. Mater. Interfaces, 2012, 4, 922 |
246. | Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H. Cheng, Nat. Mater., 2011, 10, 424 |
247. | X. Yu, B. Lu, Z. Xu, Adv. Mater., 2014, 26, 1044 |
248. | H. Ji, L. Zhang, M. T. Pettes, H. Li, S. Chen, L. Shi, R. Piner, R. S. Ruoff, Nano Lett., 2012, 12, 2446 |
249. | J. He, Q. Li, Y. Chen, C. Xu, K. Zhou, X. Wang, W. Zhang, Y. Li, Carbon, 2017, 114, 111 |
250. | Y. Hsieh, Y. Fang, J. Daum, S. N. Kanakaraj, G. Zhang, S. Mishra, S. Gbordzoe, V. Shanov, Carbon, 2019, 145, 677 |
251. | S. Chu, Y. Zhong, R. Cai, Z. Zhang, S. Wei, Z. Shao, Small, 2016, 12, 6724 |
252. | Z. Cao, J. Zhang, Y. Ding, Y. Li, M. Shi, H. Yue, Y. Qiao, Y. Yin, S. Yang, J. Mater. Chem. A, 2016, 4, 8636 |
253. | J. Xu, Z. Tan, W. Zeng, G. Chen, S. Wu, Y. Zhao, K. Ni, Z. Tao, M. Ikram, H. Ji, Y. Zhu, Adv. Mater., 2016, 28, 5222 |
254. | Z. Bi, Q. Kong, Y. Cao, G. Sun, F. Su, X. Wei, X. Li, A. Ahmad, L. Xie, C. Chen, J. Mater. Chem. A, 2019, 7, 16028 |
255. | Z. Zhou, N. Li, Y. Yang, H. Chen, S. Jiao, W. Song, D. Fang, Adv. Energy Mater., 2018, 8, 1801439 |
256. | D. Sun, X. Miao, Y. He, L. Wang, X. Zhou, G. Ma, Z. Lei, Electrochim. Acta, 2019, 320, 134616 |
257. | C. Jin, J. Nai, O. Sheng, H. Yuan, W. Zhang, X. Tao, X. W. D. Lou, Energy Environ. Sci., 2021, 14, 1326 |
258. | C. Chen, Y. Zhang, Y. Li, Y. Kuang, J. Song, W. Luo, Y. Wang, Y. Yao, G. Pastel, J. Xie, L. Hu, Adv. Energy Mater., 2017, 7, 1700595 |
259. | C. Chen, Y. Zhang, Y. Li, J. Dai, J. Song, Y. Yao, Y. Gong, I. Kierzewski, J. Xie, L. Hu, Energy Environ. Sci., 2017, 10, 538 |
260. | F. Wang, J. Y. Cheong, Q. He, G. Duan, S. He, L. Zhang, Y. Zhao, I. Kim, S. Jiang, Chem. Eng. J., 2021, 414, 128767 |
261. | X. Wang, Y. Zhang, C. Zhi, X. Wang, D. Tang, Y. Xu, Q. Weng, X. Jiang, M. Mitome, D. Golberg, Y. Bando, Nat. Commun., 2013, 4, 2905 |
262. | R. Usiskin, J. Maier, Adv. Energy Mater., 2021, 11, 2001455 |
263. | L. Yu, Z. Qian, N. Shi, Q. Liu, J. Wang, X. Jing, RSC Adv., 2014, 4, 37491 |
264. | C. Dai, Z. Wang, K. Liu, X. Zhu, X. Liao, X. Chen, Y. Pan, Eng. Fail. Anal., 2019, 101, 193 |
265. | P. Taheri, A. Mansouri, B. Schweitzer, M. Yazdanpour, M. Bahrami, J. Electrochem. Soc., 2013, 160, A1731 |
266. | P. Taheri, S. Hsieh, M. Bahrami, J. Power Sources, 2011, 196, 6525 |
267. | S. Yoshihara, H. Katsuta, H. Isozumi, M. Kasai, K. Oyaizu, H. Nishide, J. Power Sources, 2011, 196, 7806 |
268. | J. Huang, P. Zhai, H. Peng, W. Zhu, Q. Zhang, Sci. Bull., 2017, 62, 1267 |
269. | Z. Bo, W. Zhu, W. Ma, Z. Wen, X. Shuai, J. Chen, J. Yan, Z. Wang, K. Cen, X. Feng, Adv. Mater., 2013, 25, 5799 |
270. | X. Liu, D. Wang, B. Zhang, C. Luan, T. Qin, W. Zhang, D. Wang, X. Shi, T. Deng, W. Zheng, Electrochim. Acta, 2018, 268, 234 |
271. | K. Wang, C. Wang, H. Yang, X. Wang, F. Cao, Q. Wu, H. Peng, Nano Res., 2020, 13, 1948 |
272. | M. Wang, H. Yang, K. Wang, S. Chen, H. Ci, L. Shi, J. Shan, S. Xu, Q. Wu, C. Wang, M. Tang, P. Gao, Z. Liu, H. Peng, Nano Lett., 2020, 20, 2175 |
273. | D. Shin, D. Park, H. Ahn, Appl. Surf. Sci., 2019, 475, 519 |
274. | H. Pan, Y. Hu, H. Li, L. Chen, Chin. Phys. B, 2011, 20, 118202 |
275. | Y. Arai, M. Kunisawa, T. Yamaguchi, H. Yokouchi, A. Matsuo, M. Ohmori, Ecs Transactions, 2013, 50, 153 |
276. | M. Kuenzel, D. Bresser, G. Kim, P. Axmann, M. Wohlfahrt-Mehrens, S. Passerini, ACS Appl. Energ. Mater., 2020, 3, 218 |
277. | A. Benítez, F. Luna-Lama, A. Caballero, E. Rodríguez-Castellón, J. Morales, J. Energy Chem., 2021, 62, 295 |
278. | J. Jiang, P. Nie, B. Ding, W. Wu, Z. Chang, Y. Wu, H. Dou, X. Zhang, ACS Appl. Mater. Interfaces, 2016, 8, 30926 |
279. | H. R. Kim, W. M. Choi, Scr. Mater., 2018, 146, 100 |
280. | Y. Lee, G. An, B. Kim, J. Hong, S. Pak, E. Lee, Y. Cho, J. Lee, P. Giraud, S. N. Cha, H. Ahn, J. I. Sohn, J. M. Kim, ACS Appl. Mater. Interfaces, 2016, 8, 17651 |
281. | J. Ning, L. Hao, X. Zhang, M. Liang, L. Zhi, Science China Technological Sciences, 2014, 57, 259 |
282. | E. Cho, C. Chang-Jian, Y. Wu, S. Chao, J. Huang, K. Lee, H. C. Weng, S. Hsu, J. Power Sources, 2021, 506, 230060 |
283. | C. Portet, P. L. Taberna, P. Simon, E. Flahaut, J. Electrochem. Soc., 2006, 153, A649 |
284. | K. Chiu, S. Su, H. Leu, W. Huang, Thin Solid Films, 2015, 596, 34 |
285. | K. Rytel, D. Waszak, K. Kędzierski, D. Wróbel, Electrochim. Acta, 2016, 222, 921 |
286. | Z. Huang, J. Li, J. Yao, H. Zhou, Y. Huang, L. Wang, Journal of Materials Science: Materials in Electronics, 2017, 28, 15095 |
287. | I. Doberdò, N. Löffler, N. Laszczynski, D. Cericola, N. Penazzi, S. Bodoardo, G. Kim, S. Passerini, J. Power Sources, 2014, 248, 1000 |
288. | K. Striebel, J. Shim, A. Sierra, H. Yang, X. Song, R. Kostecki, K. Mccarthy, J. Power Sources, 2005, 146, 33 |
289. | D. Y. Kornilov, S. P. Gubin, P. N. Chuprov, A. Y. Rychagov, A. V. Cheglakov, A. S. Karaseva, E. S. Krasnova, V. A. Voronov, S. V. Tkachev, L. A. Kasharina, Russ. J. Electrochem., 2017, 53, 622 |
290. | S. Kang, H. Xie, W. Zhang, J. Zhang, Z. Ma, R. Wang, X. Wu, Electrochim. Acta, 2015, 176, 604 |
291. | X. Zhu, S. Zhou, X. Jiang, X. Yao, X. Xu, A. Peng, L. Wang, Q. Xue, J. Alloy. Compd., 2020, 830, 154682 |
292. | S. Zhou, G. Liu, N. Ding, L. Shang, R. Dang, J. Zhang, Surf. Coat. Technol., 2020, 399, 126150 |
293. | H. Wu, H. Wu, E. Lee, N. Wu, Electrochem. Commun., 2010, 12, 488 |
294. | H. Wu, Y. Lin, E. Lee, W. Lin, J. Hu, H. Chen, N. Wu, Mater. Chem. Phys., 2009, 117, 294 |
295. | S. Chen, K. Chiu, S. Su, S. Liu, K. H. Hou, H. Leu, C. Hsiao, Thin Solid Films, 2014, 572, 56 |
296. | R. Wang, W. Li, L. Liu, Y. Qian, F. Liu, M. Chen, Y. Guo, L. Liu, J. Electroanal. Chem., 2019, 833, 63 |
297. | D. Lepage, L. Savignac, M. Saulnier, S. Gervais, S. B. Schougaard, Electrochem. Commun., 2019, 102, 1 |
298. | S. Wen, Z. Li, C. Zou, W. Zhong, C. Wang, J. Chen, S. Zhong, New J. Chem., 2021, 45, 1541 |
299. | K. Ding, J. Chen, D. Zhang, F. Shi, B. Li, W. Tian, X. He, L. Wang, H. Wang, Synth. Met., 2021, 278, 116837 |
300. | R. Solmaz, B. D. Karahan, J. Alloy. Compd., 2021, 872, 159594 |
301. | E. Taer, M. Deraman, I. A. Talib, S. A. Hashmi, A. A. Umar, Electrochim. Acta, 2011, 56, 10217 |
302. | S. Tao, Z. Zeng, X. Shi, C. Liao, E. Guo, X. Long, H. Zhou, X. Wang, D. Deng, Y. Dai, Appl. Surf. Sci., 2018, 456, 410 |
303. | F. Martín, E. Navarrete, J. Morales, C. Roldán, J. R. Ramos-Barrado, L. Sánchez, J. Mater. Chem., 2010, 20, 2847 |
304. | X. Li, L. Wang, C. Li, B. Chen, Q. Zhao, G. Zhang, J. Power Sources, 2016, 308, 65 |
305. | S. Byun, J. Yu, J. Power Sources, 2016, 307, 849 |
306. | S. W. Kim, J. H. Yun, B. Son, Y. Lee, K. M. Kim, Y. M. Lee, K. Y. Cho, Adv. Mater., 2014, 26, 2977 |
307. | J. Busom, A. Schreiber, A. Tolosa, N. Jäckel, I. Grobelsek, N. J. Peter, V. Presser, J. Power Sources, 2016, 329, 432 |
308. | E. Luais, J. Sakai, S. Desplobain, G. Gautier, F. Tran-Van, F. Ghamouss, J. Power Sources, 2013, 242, 166 |
309. | K. C. Kil, M. E. Lee, G. Y. Kim, C. Cho, K. Kim, G. Kim, U. Paik, J. Phys. Chem. C, 2011, 115, 16242 |
310. | F. Zou, A. Manthiram, Adv. Energy Mater., 2020, 10, 2002508 |
311. | Y. Shi, X. Zhou, G. Yu, Acc. Chem. Res., 2017, 50, 2642 |
312. | K. Park, H. E. Yoo, Y. Jung, M. Ryu, S. Myeong, D. Lee, S. C. Kim, C. Kim, J. Kim, J. Kwon, K. Lee, C. Cho, U. Paik, T. Song, J. Power Sources, 2023, 577, 233238 |
313. | J. H. Hwang, E. Kim, E. Y. Lim, W. Lee, J. Kim, I. Choi, Y. S. Kim, D. Kim, J. H. Lee, J. Lee, Adv. Sci., 2023, 10, 2302144 |
314. | H. Jeon, I. Cho, H. Jo, K. Kim, M. Ryou, Y. M. Lee, RSC Adv., 2017, 7, 35681 |
315. | S. Yu, B. Lee, S. Choi, S. Park, B. H. Hong, Y. Sung, Chem. Commun., 2016, 52, 3203 |
316. | X. Fan, F. Ke, G. Wei, L. Huang, S. Sun, J. Solid State Electrochem., 2009, 13, 1849 |
317. | C. G. Bong, L. B. Ki, S. W. Chul, C. K. Koo, A. H. Jun, N. T. Hyun, K. K. Won, J. Mater. Sci., 2006, 41, 313 |
318. | D. Gu, H. Kim, J. Lee, S. Park, J. Energy Chem., 2022, 70, 248 |
319. | J. Kim, S. Kennedy, I. Phiri, S. Ryou, ACS Appl. Mater. Interfaces, 2024, 16, 11400 |
320. | L. Romoli, A. H. A. Lutey, G. Lazzini, Cirp Ann.-Manuf. Technol., 2022, 71, 481 |
321. | S. Yoon, H. Jang, S. Kim, J. Kim, K. Y. Cho, J. Electroanal. Chem., 2017, 797, 37 |
322. | A. Mukanova, A. Nurpeissova, S. Kim, M. Myronov, Z. Bakenov, Chemistryopen, 2018, 7, 92 |
323. | M. M. Loghavi, M. Askari, M. Babaiee, A. Ghasemi, J. Electroanal. Chem., 2019, 841, 107 |
324. | Z. Wu, W. Qiu, Y. Chen, Y. Luo, Y. Huang, Q. Lei, S. Guo, P. Liu, M. Balogun, Y. Tong, J. Mater. Chem. A, 2017, 5, 756 |
325. | G. Cho, Y. Im, W. Lee, S. Lee, S. Y. Ji, G. Kim, T. Nam, K. Kim, Thin Solid Films, 2013, 546, 410 |
326. | Q. Yi, Y. He, N. Peng, H. Song, X. Yang, X. Cai, Int. J. Miner. Metall. Mater., 2016, 23, 70 |
327. | C. U. Jeong, S. Lee, J. Kim, K. Y. Cho, S. Yoon, J. Power Sources, 2018, 398, 193 |
328. | S. Nakanishi, T. Suzuki, Q. Cui, J. Akikusa, K. Nakamura, Trans. Nonferrous Met. Soc. China, 2014, 24, 2314 |
329. | G. An, S. Cha, H. Ahn, Appl. Surf. Sci., 2019, 478, 435 |
330. | J. Ha, G. Cho, K. Kim, J. Ahn, D. K. Cho, J. Nanosci. Nanotechnol., 2016, 16, 10552 |
331. | C. Lecoeur, J. Tarascon, C. Guery, Electrochem. Solid-State Lett., 2011, 14, A6 |
332. | L. Cao, L. Li, Z. Xue, W. Yang, H. Zou, S. Chen, Z. Liu, J. Porous Mater., 2020, 27, 1677 |
333. | G. Cho, J. Kim, S. Lee, G. Kim, J. Noh, K. Cho, K. Kim, T. Nam, H. Ahn, Electrochim. Acta, 2017, 224, 649 |
334. | D. Shin, K. Sung, H. Ahn, Chem. Eng. J., 2021, 413, 127563 |
335. | J. C. Chen, J. Yang, M. M. Cheng, J. Power Sources, 2019, 430, 169 |
336. | Y. Kim, Y. Sun, S. Lee, Electrochim. Acta, 2008, 53, 4500 |
337. | Y. Ding, Q. Zhang, K. Rui, F. Xu, H. Lin, Y. Yan, H. Li, J. Zhu, W. Huang, Nano Lett., 2020, 20, 8818 |
338. | J. Luo, W. Yuan, S. Huang, B. Zhao, Y. Chen, M. Liu, Y. Tang, Adv. Sci., 2018, 5, 1800031 |
339. | W. Yuan, J. Luo, Z. Yan, Z. Tan, Y. Tang, Electrochim. Acta, 2017, 226, 89. |
340. | W. Yuan, Z. Qiu, Y. Huang, C. Wang, H. Huang, Y. Yang, X. Zhang, J. Luo, Y. Tang, Energy Technol., 2019, 7, 1900445 |
341. | M. Park, M. Noh, S. Lee, M. Ko, S. Chae, S. Sim, S. Choi, H. Kim, H. Nam, S. Park, J. Cho, Nano Lett., 2014, 14, 4083 |
342. | Y. Huang, Y. Li, Q. Gong, G. Zhao, P. Zheng, J. Bai, J. Gan, M. Zhao, Y. Shao, D. Wang, L. Liu, G. Zou, D. Zhuang, J. Liang, H. Zhu, C. Nan, ACS Appl. Mater. Interfaces, 2018, 10, 16572 |
343. | D. Yang, A. Laforgue, J. Electrochem. Soc., 2019, 166, A2503 |
344. | J. So, C. Lee, J. Kim, H. Kim, J. Jun, W. Bae, Materials, 2018, 11, 1018 |
345. | Q. Li, X. Sun, W. Zhao, X. Hou, Y. Zhang, F. Zhao, X. Li, X. Mei, Adv. Eng. Mater., 2020, 22, 2000710 |
346. | D. Yang, A. Laforgue, J. Electrochem. Soc., 2021, 168, 050504 |
347. | X. Fei, Z. Dong, B. Gong, X. Zhao, ACS Appl. Mater. Interfaces, 2021, 13, 42266 |
348. | Y. Wang, Z. Zhao, J. Zhong, T. Wang, L. Wang, H. Xu, J. Cao, J. Li, G. Zhang, H. Fei, J. Zhu, Energy Environ. Mater., 2022, 5, 969 |
349. | T. Xia, T. Liang, Z. E. Xiao, J. Chen, J. Liu, S. Zhong, J. Alloy. Compd., 2020, 831, 154801 |
350. | Z. Xiao, J. Chen, J. Liu, T. Liang, Y. Xu, C. Zhu, S. Zhong, J. Power Sources, 2019, 438, 226973 |
351. | W. Yuan, B. Pan, Z. Qiu, Z. Peng, Y. Ye, Y. Huang, H. Huang, Y. Tang, ACS Sustain. Chem. Eng., 2019, 7, 12910 |
352. | J. Cao, S. Tian, K. Zhang, R. Liu, H. Guo, L. Wen, G. Liang, J. Electrochem. Soc., 2021, 168, 70526 |
353. | S. Kim, S. Moon, M. Kim, J. So, S. Han, D. Kwak, W. Bae, K. Park, J. Appl. Electrochem., 2018, 48, 1057 |
354. | J. Chen, X. Wang, H. Gao, S. Yan, S. Chen, X. Liu, X. Hu, Surf. Coat. Technol., 2021, 410, 126881 |
355. | J. Ha, A. K. Haridas, G. Cho, H. Ahn, J. Ahn, K. Cho, Appl. Surf. Sci., 2019, 481, 307 |
356. | K. Lee, J. Jung, S. Lee, H. Moon, J. Park, J. Power Sources, 2004, 129, 270 |
357. | J. Wu, Z. Zhu, H. Zhang, H. Fu, H. Li, A. Wang, H. Zhang, Z. Hu, Electrochim. Acta, 2014, 146, 322 |
358. | J. Long, H. Liu, Y. Xie, W. Tang, T. Fu, Y. Tang, L. Lu, X. Ding, X. Tang, Materials, 2018, 11, 1338 |
359. | P. Liu, Y. Wang, H. Hao, S. Basu, X. Feng, Y. Xu, J. A. Boscoboinik, J. Nanda, J. Watt, D. Mitlin, Adv. Mater., 2020, 32, 2002908 |
360. | Z. Zheng, Z. Wang, X. Song, S. Xun, V. Battaglia, G. Liu, ChemSusChem, 2014, 7, 2853 |
361. | W. Yuan, Z. Yan, B. Pan, Z. Qiu, J. Luo, Z. Tan, Y. Tang, Z. Li, J. Alloy. Compd., 2017, 719, 353 |
362. | G. Cho, J. Jeong, Y. Im, H. Choi, J. Noh, J. Kim, H. Ahn, T. Nam, K. Kim, Vacuum, 2016, 132, 130 |
363. | S. Lee, E. Oh, J. Power Sources, 2013, 244, 721 |
364. | K. Chen, Y. Yang, Y. Yi, X. Zheng, H. Tuan, J. Colloid. Interface. Sci., 2021, 598, 155 |
365. | C. Busson, M. A. Blin, P. Guichard, P. Soudan, O. Crosnier, D. Guyomard, B. Lestriez, J. Power Sources, 2018, 406, 7 |
366. | M. Goyal, N. Bhatnagar, J. Appl. Polym. Sci., 2022, 139, e52816 |
367. | I. Cho, S. Gong, D. Song, Y. Lee, M. Ryou, Y. M. Lee, Sci. Rep., 2016, 6, 30945 |
368. | K. Stokes, W. Boonen, H. Geaney, T. Kennedy, D. Borsa, K. M. Ryan, ACS Appl. Mater. Interfaces, 2019, 11, 19372 |
369. | Y. Yang, X. Fan, G. Casillas, Z. Peng, G. Ruan, G. Wang, M. J. Yacaman, J. M. Tour, ACS Nano, 2014, 8, 3939 |
370. | J. Chen, J. Xu, S. Zhou, N. Zhao, C. Wong, Nano Energy, 2016, 21, 145 |
371. | S. Kim, S. Kim, K. Jung, J. Kim, J. Jang, Nano Energy, 2016, 24, 17 |
372. | K. H. Oh, G. S. Gund, H. S. Park, J. Mater. Chem. A, 2018, 6, 22106 |
373. | X. Shi, H. Wang, S. Ji, V. Linkov, F. Liu, R. Wang, Chem. Eng. J., 2019, 364, 320 |
374. | H. Han, T. Song, E. Lee, A. Devadoss, Y. Jeon, J. Ha, Y. Chung, Y. Choi, Y. Jung, U. Paik, ACS Nano, 2012, 6, 8308 |
375. | Y. F. Li, Y. H. Shi, S. G. Wang, J. H. Liu, J. Lin, Y. Xia, X. L. Wu, C. Y. Fan, J. P. Zhang, H. M. Xie, H. Z. Sun, Z. M. Su, Adv. Energy Mater., 2019, 9, 1803690 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Three elements of current collectors of LIBs: the types of materials, structures and interfacial properties with the electrode layer.
a Schematic of the conventional Cu foil fabrication process (rolling-annealing or electrodeposition methods) and Cu nanowire foil fabrication process (rolling press).[33] Copyright 2017, Elsevier. b Schematic of the conventional pure Cu current collectors and the composite current collectors with Cu deposited on both sides of polyimide incorporating triphenyl phosphate (PI-TPP-Cu).[34] Copyright 2020, Nature Publishing Group. c Schematic of the fabrication process of a flexible current collector and electrode. d Illustration of an anode electrode. e Photograph of the porous separator. f Copper sputtered onto the separator. g Silicon sputtered onto the copper layer.[35] Copyright 2013, Wiley-VCH.
Schematic illustration of the corrosion of Al foil current collectors in a LiPF6-based electrolyte.[59] Copyright 2018, Elsevier.
a Schematic diagram showing a graphene-armored Al foil with enhanced anticorrosion proeperty as a current collector for LIBs.[56] Copyright 2017, Wiley-VCH. b Schematic representation of the corrosion resistance of GO-Al foil current collectors.[72] Copyright 2013, Elsevier. c Diagrams showing the corrosion mechanism of an Al foil and the corrosion resistance mechanism of CCC-Al foil in the imide salt-based electrolyte.[73] Copyright 2019, Elsevier.
a Epitaxial welding for the formation of interconnected W-CNTs. Diagrams of CNTs with a conformal polymer coating and after high-temperature heating. The inset is a photo of CNT/PAN film under high-temperature (
Schematic illustration of the electron and ion transport pathways in a conventional electrode with a a 2D current collector and b a 3D current collector.
a Schematic of the preparation process of metal NW/nanotube array current collectors using an AAO template. Reproduced with permission.[142] Copyright 2019, Wiley-VCH. b Schematic diagram showing the fabrication of Cu-Si and Cu-Si-Al2O3 nanocables.[116] Copyright 2011, Wiley-VCH. c Schematic of the fabrication of 3D amorphous Si on a Cu nanopillar electrode.[115] Copyright 2014, American Chemical Society. d SEM image of the assembly of Ni nanofibers. The inset shows the assembly of Ni nanofiber standing before a coin.[135] Copyright 2013, Wiley-VCH. e SEM image of the stainless-steel mesh.[143] Copyright 2014, Elsevier. f Schematic representation of the fabrication system configuration and electrochemical growth procedure of Cu NPFs on a Cu mesh substrate.[141] Copyright 2019, Wiley-VCH.
a Schematic illustration of the fabrication process of NiCo2O4-loaded MNFNF electrode.[155] Copyright 2018, Elsevier. b Photo image of the copper foam used for electrode fabrication. c The steps of the integrated electrode for trapping silicon particles.[153] Copyright 2015, Royal Society of Chemistry. d Bicontinuous electrode fabrication process via a PS spheres template.[159] Copyright 2011, Nature Publishing Group. e Scheme illustrating the operating principles of the dynamic hydrogen bubble template method.[163] Copyright 2018, Wiley-VCH. f Fabrication of a nanoporous gold/MnO2 anode via bicontinuous electrode fabrication, that is, directly depositing MnO2 into nanoporous gold prepared by chemical dealloying from a Ag65Au35 alloy.[188] Copyright 2015, Royal Society of Chemistry. g Schematic diagram of the fabrication process of a Ni nanofoam and the Ni/NiO nanostructure.[184] Copyright 2013, Royal Society of Chemistry.
a SEM image of a vertically aligned CNT (VACNT)-based electrode adhered onto a thin Cu foil. The discharge capacity vs. cycle number of a VACNT/Si/C electrode at 0.2 C.[189] Copyright 2012, Wiley-VCH. b Tilt-view SEM image (Scale bar: 100 nm) of vertically oriented graphene sheets. c Schematic illustration of the ion diffusion direction based on vertically-aligned graphene nanosheets current collectors.[201] Copyright 2016, American Chemical Society. d Scheme of carbon nanofiber fabrication and sulfur-based cathode preparation.[223] Copyright 2020, MDPI. e SEM images showing close contact at the graphite/SACNT interface and the top surface of a SACNT current collector.[235] Copyright 2013, Wiley-VCH.
a Schematic diagram and SEM image showing the synthetic procedure for fabricating porous rGO and Co3O4/rGO films. b Cross-sectional SEM images of 3D macroporous graphene film with different magnifications.[237] Copyright 2012, Royal Society of Chemistry. c Proposed formation mechanism for SGH. d Photograph of a homogeneous 2 mg/mL GO aqueous dispersion before and after hydrothermal reduction at 180 °C for 12 h. e SEM images with different magnifications of the SGH interior microstructures.[240] Copyright 2010, American Chemical Society.
a Schematics of the synthesis of CVD-GF.[246] Copyright 2011, Nature Publishing Group. b Schematic illustrating of different growth patterns of active materials on traditional metallic foil current collectors, 3DG, and an NCNT-3DG hybrid. Bioinspired structure of NCNT/3DG with active materials.[250] Copyright 2019, Elsevier. c Graphical illustration of the design concept of an ultrathick 3D electrode fabricated using a 3D conductive CF as current collector. Visual comparison between a battery with an ultrathick 3D electrode and a conventional battery.[258] Copyright 2017, Wiley-VCH. d SEM images (Scale bar: 50 μm) of glucose and NH4Cl that are subsequently transformed into melanoidin bubbles via a browning reaction and finally converted into SG- containing graphitic membranes and struts.[261] Copyright 2013, Nature Publishing Group.
a Schematic presentation of the electrical contact between a current collector and the electrode layer.[268] Copyright 2017, Elsevier. b Schematic presentation of conductive paths for electrical current in the contact interface with scattered contact spots. Constriction and spreading of current lines rising to contact resistances at the interface. The total resistance is the combination of bulk and contact resistances.[266] Copyright 2011, Elsevier.
a Schematic illustration of electron transport between active materials and Ni foil, Ni foam, and VG/Ni foam.[269] Copyright 2013, Wiley-VCH. b Schematic illustration of the two main effects on a cathode fabricated with a bare Al foil and porous crater Al foil for enhancing ultrafast cycling performances.[273] Copyright 2019, Elsevier. c Schematic illustration of electron collecting ability and ion transport mechanism: pure Cu foil-Li4Ti5O12 and the carbon film modified Cu foil-Li4Ti5O12.[291] Copyright 2020, Elsevier. d Schematic of the fabrication process of an RGO film with sputtered Ni.[305] Copyright 2016, Elsevier.
a Schematic illustration for microwave-induced fabrication of porous Al foil.[337] Copyright 2020, American Chemical Society. b Schematic diagrams of the fabrication process of the checkerboard-like Cu@CNF current collector.[338] Copyright 2018, Wiley-VCH. c Schematic diagram of Al HMNCC and Cu HMNCC assembled into lithium-ion full battery.[348] Copyright 2021, Wiley-VCH. d Schematic illustration of surface treatment of Cu foil via ultrasonic peening and its electrode fabrication process.[350] Copyright 2019, Elsevier. e Schematic diagram of machining of a 3D on-chip-structured current collector, SEM images of surface structures on the Cu plate generated using the orthogonal ploughing/extrusion method, and the electrochemical properties of graphite anodes with two kinds of current collectors.[351] Copyright 2019, American Chemical Society. f Schematic illustration for the copper foil-powder sintering current collector and battery fabrication process.[358] Copyright 2018, MDPI.
a Fabrication procedure of a double-layered electrode containing a conductive adhesive layer.[363] Copyright 2013, Elsevier. b Schematic for a thin, conductive, non-peelable, amphiphilic and antioxidant current collector coating with enhanced LIB performance.[364] Copyright 2021, Elsevier. c Schematic for the covalent bonds between the PD-treated Cu and the PAA binder in the Si composite electrode.[367] Copyright 2016, Nature Publishing Group. d Schematic illustration of the synthesis of NiO@NiO/NF composite.[375] Copyright 2019, Wiley-VCH.