Citation: | Qian Cheng, Shiqing Bi, Hong Zhang, Yuan Zhang, Huiqiong Zhou. Interfaces in monolithic perovskite/organic hybrid solar cells: progresses, prospects and challenges[J]. Energy Lab. doi: 10.54227/elab.20250001 |
Combining the merits of the extended light-harvesting spectrum and simple solution-processed fabrication, multi-junction perovskite/ organic hybrid solar cells (POHSCs) undoubtedly show potential for practical energy conversion applications. The POHSCs can be divided into the perovskite/ organic tandem solar cells (POTSCs) and the integrated perovskite/ organic solar cells (IPOSCs), according to whether there is an interconnecting layer (ICL) between the sub-cells. However, the power conversion efficiency (PCE) of POHSCs lags behind other perovskite-based multi-junction devices due to the deficit of light harvesting and the severe carrier loss at the interface. The increased number of interfaces and the stringent requirements on interface properties make it a top priority to obtain efficient POHSCs. In this comprehensive review, we delve into the impact of interfaces on efficiency losses and provide a detailed overview of the latest advancements in interface engineering strategies for POHSCs. Furthermore, we explore the prospects and challenges that lie ahead for the development and optimization of these innovative solar cells.
1. | Y. Zheng, Y. Li, R. Zhuang, X. Wu, C. Tian, A. Sun, C. Chen, Y. Guo, Y. Hua, K. Meng, Energy Environ. Sci., 2024, 17, 1153 |
2. | S. Li, Y. Jiang, J. Xu, D. Wang, Z. Ding, T. Zhu, B. Chen, Y. Yang, M. Wei, R. Guo, Y. Hou, Y. Chen, C. Sun, K. Wei, S. M. H. Qaid, H. Lu, H. Tan, D. Di, J. Chen, M. Grätzel, E. H. Sargent, M. Yuan, Nature, 2024, 635, 82 |
3. | S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun, Y. Zhang, X. Lei, S. Hu, M. Kober-Czerny, J. Wang, Nature, 2024, 632, 536 |
4. | Z. Liang, Y. Zhang, H. Xu, W. Chen, B. Liu, J. Zhang, H. Zhang, Z. Wang, D. -H. Kang, J. Zeng, Nature, 2023, 624, 557 |
5. | Q. Jiang, K. Zhu, Nat. Rev. Mater., 2024, 9, 399 |
6. | H. Chen, C. Liu, J. Xu, A. Maxwell, W. Zhou, Y. Yang, Q. Zhou, A. S. Bati, H. Wan, Z. Wang, Science, 2024, 384, 189 |
7. | W. Shockley, H. J. Queisser, J. Appl. Phys., 1961, 32, 510 |
8. | A. De Vos, J. Phys. D: Appl. Phys., 1980, 13, 839 |
9. | Z. Ying, X. Yang, X. Wang, J. Ye, Adv. Mater., 2024, 36, 2311501 |
10. | K. O. Brinkmann, P. Wang, F. Lang, W. Li, X. Guo, F. Zimmermann, S. Olthof, D. Neher, Y. Hou, M. Stolterfoht, Nat. Rev. Mater., 2024, 9, 202 |
11. | Y. Bao, T. Ma, Z. Ai, Y. Zhang, L. Shi, L. Qin, Z. Yang, G. Cao, C. Wang, X. Li, Nano Energy, 2024, 120, 109165 |
12. | E. Köhnen, M. Jošt, A. B. Morales-Vilches, P. Tockhorn, A. Al-Ashouri, B. Macco, L. Kegelmann, L. Korte, B. Rech, R. Schlatmann, Sustainable Energy & Fuels, 2019, 3, 1995 |
13. | Z. Zhang, Z. Li, L. Meng, S. Y. Lien, P. Gao, Adv. Funct. Mater., 2020, 30, 2001904 |
14. | Z. Wang, Z. Song, Y. Yan, S. Liu, D. Yang, Adv. Sci., 2019, 6, 1801704 |
15. | B. Xie, Z. Chen, L. Ying, F. Huang, Y. Cao, InfoMat, 2020, 2, 57 |
16. | D.-H. Lim, J.-W. Ha, H. Choi, S. C. Yoon, B. R. Lee, S.-J. Ko, Nanoscale Adv., 2021, 3, 4306 |
17. | D. Meng, R. Zheng, Y. Zhao, E. Zhang, L. Dou, Y. Yang, Adv. Mater., 2022, 34, 2107330 |
18. | B. Chen, X. Zheng, Y. Bai, N. P. Padture, J. Huang, Adv. Energy Mater., 2017, 7, 1602400 |
19. | M. Jošt, L. Kegelmann, L. Korte, S. Albrecht, Adv. Energy Mater., 2020, 10, 1904102 |
20. | K. M. Yeom, S. U. Kim, M. Y. Woo, J. H. Noh, S. H. Im, Adv. Mater., 2020, 32, 2002228 |
21. | Y. Shao, D. Zheng, L. Liu, J. Liu, M. Du, L. Peng, K. Wang, S. Liu, ACS Energy Lett., 2024, 9, 4892 |
22. | R. Wang, M. Han, Y. Wang, J. Zhao, J. Zhang, Y. Ding, Y. Zhao, X. Zhang, G. Hou, J. Energy Chem., 2023, 83, 158 |
23. | Q. Guo, C.-Y. Wang, T. Hayat, A. Alsaedi, J.-X. Yao, Z.-A. Tan, Rare Met., 2021, 40, 2763 |
24. | Y. Liu, Y. Chen, Adv. Mater., 2020, 32, 1805843 |
25. | P. Wang, Y. Zhao, T. Wang, Appl. Phys. Rev., 2020, 7, 031303 |
26. | M. A. Green, E. D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe, G. Siefer, D. Hinken, M. Rauer, J. Hohl-Ebinger, X. Hao, Prog. Photovolt.: Res. Appl., 2024, 32, 425 |
27. | M. A. Green, E. D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe, G. Siefer, X. Hao, J. Y. Jiang, Prog. Photovolt.: Res. Appl., 2025, 33, 3 |
28. | Q. Zeng, L. Liu, Z. Xiao, F. Liu, Y. Hua, Y. Yuan, L. Ding, Sci. Bull., 2019, 64, 885 |
29. | X. Jiang, S. Qin, L. Meng, G. He, J. Zhang, Y. Wang, Y. Zhu, T. Zou, Y. Gong, Z. Chen, Nature, 2024, 635, 860 |
30. | X. Zhou, L. Zhang, J. Yu, D. Wang, C. Liu, S. Chen, Y. Li, Y. Li, M. Zhang, Y. Peng, Adv. Mater., 2022, 34, 2205809 |
31. | J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. I. Seok, Nano Lett., 2013, 13, 1764 |
32. | G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J. Snaith, Energy Environ. Sci., 2014, 7, 982 |
33. | G. Yang, Z. Ni, Z. J. Yu, B. W. Larson, Z. Yu, B. Chen, A. Alasfour, X. Xiao, J. M. Luther, Z. C. Holman, Nat. Photonics, 2022, 16, 588 |
34. | Y. Tong, A. Najar, L. Wang, L. Liu, M. Du, J. Yang, J. Li, K. Wang, S. Liu, Adv. Sci., 2022, 9, 2105085 |
35. | R. He, S. Ren, C. Chen, Z. Yi, Y. Luo, H. Lai, W. Wang, G. Zeng, X. Hao, Y. Wang, Energy Environ. Sci., 2021, 14, 5723 |
36. | L. Tao, J. Qiu, B. Sun, X. Wang, X. Ran, L. Song, W. Shi, Q. Zhong, P. Li, H. Zhang, J. Energy Chem., 2021, 61, 395 |
37. | X. Y. Li, Z. Wu, Q. Yao, L. Y. Chen, W. Zeng, Q. Sun, F. R. Lin, A. K. Y. Jen, T. Shi, H. L. Yip, Small, 2025, 21, 2406824 |
38. | L.-Y. Chen, Q. Sun, Y.-M. Xie, M.-K. Fung, Chem. Commun., 2025, 61, 1063 |
39. | W. Chen, Y. Zhu, J. Xiu, G. Chen, H. Liang, S. Liu, H. Xue, E. Birgersson, J. W. Ho, X. Qin, Nat. Energy, 2022, 7, 229 |
40. | S. Q. Sun, X. Xu, Q. Sun, Q. Yao, Y. Cai, X. Y. Li, Y. L. Xu, W. He, M. Zhu, X. Lv, Adv. Energy Mater., 2023, 13, 2204347 |
41. | S. Gharibzadeh, B. Abdollahi Nejand, M. Jakoby, T. Abzieher, D. Hauschild, S. Moghadamzadeh, J. A. Schwenzer, P. Brenner, R. Schmager, A. A. Haghighirad, Adv. Energy Mater., 2019, 9, 1803699 |
42. | L. Wang, Z. Yan, J. Qiu, J. Wu, C. Zhen, K. Tai, X. Jiang, S. Yang, Nano Energy, 2021, 90, 106537 |
43. | C. Chen, Z. Song, C. Xiao, R. A. Awni, C. Yao, N. Shrestha, C. Li, S. S. Bista, Y. Zhang, L. Chen, ACS Energy Lett., 2020, 5, 2560 |
44. | R. He, Z. Yi, Y. Luo, J. Luo, Q. Wei, H. Lai, H. Huang, B. Zou, G. Cui, W. Wang, C. Xiao, S. Ren, C. Chen, C. Wang, G. Xing, F. Fu, D. Zhao, Adv. Sci., 2022, 9, 2203210 |
45. | S. You, X. Xi, X. Zhang, H. Wang, P. Gao, X. Ma, S. Bi, J. Zhang, H. Zhou, Z. Wei, J. Mater. Chem. A, 2020, 8, 17756 |
46. | K. Wang, J. Zhou, X. Li, N. Ahmad, H. Xia, G. Wu, X. Zhang, B. Wang, D. Zhang, Y. Zou, Phys. Chem. Chem. Phys., 2020, 22, 17847 |
47. | C. Chen, J. Liang, J. Zhang, X. Liu, X. Yin, H. Cui, H. Wang, C. Wang, Z. Li, J. Gong, Nano Energy, 2021, 90, 106608 |
48. | R. Zhao, L. Xie, R. Zhuang, T. Wu, R. Zhao, L. Wang, L. Sun, Y. Hua, ACS Energy Lett., 2021, 6, 4209 |
49. | Z. Guo, S. Zhao, N. Shibayama, A. Kumar Jena, I. Takei, T. Miyasaka, Adv. Funct. Mater., 2022, 32, 2207554 |
50. | X. Gu, W. Xiang, Q. Tian, S. Liu, Angew. Chem. Int. Ed., 2021, 60, 23164 |
51. | X. Wang, D. Zhang, B. Liu, X. Wu, X. Jiang, S. Zhang, Y. Wang, D. Gao, L. Wang, H. Wang, Adv. Mater., 2023, 35, 2305946 |
52. | S. Jiang, R. Wang, M. Li, R. Yu, F. Wang, Z. a. Tan, Energy Environ. Sci., 2024, 17, 219 |
53. | X. Li, W. Chen, S. Wang, G. Xu, S. Liu, Y. Li, Y. Li, Adv. Funct. Mater., 2021, 31, 2010696 |
54. | G. You, L. Li, S. Wang, J. Cao, L. Yao, W. Cai, Z. Zhou, K. Li, Z. Lin, H. Zhen, Adv. Energy Mater., 2022, 12, 2102697 |
55. | J. Tian, Q. Xue, X. Tang, Y. Chen, N. Li, Z. Hu, T. Shi, X. Wang, F. Huang, C. J. Brabec, Adv. Mater., 2019, 31, 1901152 |
56. | A. Guerrero, A. Bou, G. Matt, O. Almora, T. Heumüller, G. Garcia-Belmonte, J. Bisquert, Y. Hou, C. Brabec, Adv. Energy Mater., 2018, 8, 1703376 |
57. | D.-J. Xue, Y. Hou, S.-C. Liu, M. Wei, B. Chen, Z. Huang, Z. Li, B. Sun, A. H. Proppe, Y. Dong, Nat. Commun., 2020, 11, 1514 |
58. | Y. Ding, C. Duan, Q. Guo, Y. Meng, Z. Wang, Z. Dai, E. Zhou, Nano Today, 2023, 53, 102046 |
59. | H. Yang, W. Chen, Y. Yu, Y. Shen, H. Yang, X. Li, B. Zhang, H. Chen, Q. Cheng, Z. Zhang, Adv. Mater., 2023, 35, 2208604 |
60. | X. Liu, D. Luo, Z. -H. Lu, J. S. Yun, M. Saliba, S. I. Seok, W. Zhang, Nat. Rev. Chem., 2023, 7, 462 |
61. | F. Xu, M. Zhang, Z. Li, X. Yang, R. Zhu, Adv. Energy Mater., 2023, 13, 2203911 |
62. | N. Porotnikova, D. Osinkin, J. Mater. Chem. A, 2024, 12, 2620 |
63. | R. Li, H. Liu, Y. Jiao, S. Qin, J. Meng, J. Song, R. Yan, H. Su, H. Chen, Z. Shang, Acta Phys.-Chim. Sin., 2024, 40, 2311011 |
64. | J. T. DuBose, P. V. Kamat, Acc. Mater. Res., 2022, 3, 761 |
65. | S. K. Gautam, M. Kim, D. R. Miquita, J. E. Bourée, B. Geffroy, O. Plantevin, Adv. Funct. Mater., 2020, 30, 2002622 |
66. | Z. Wang, L. Zeng, T. Zhu, H. Chen, B. Chen, D. J. Kubicki, A. Balvanz, C. Li, A. Maxwell, E. Ugur, Nature, 2023, 618, 74 |
67. | Y. Bai, Z. Huang, X. Zhang, J. Lu, X. Niu, Z. He, C. Zhu, M. Xiao, Q. Song, X. Wei, Science, 2022, 378, 747 |
68. | X. Guo, Z. Jia, S. Liu, R. Guo, F. Jiang, Y. Shi, Z. Dong, R. Luo, Y. -D. Wang, Z. Shi, Joule, 2024, 8, 2554 |
69. | Z. Zhang, W. Chen, X. Jiang, J. Cao, H. Yang, H. Chen, F. Yang, Y. Shen, H. Yang, Q. Cheng, Nat. Energy, 2024, 9, 592 |
70. | S. Wu, Y. Yan, J. Yin, K. Jiang, F. Li, Z. Zeng, S.-W. Tsang, A. K.-Y. Jen, Nat. Energy, 2024, 9, 411 |
71. | H. Wu, T. Chen, Y. Li, S. Guan, L. Zhang, T. Chen, Y. Liu, Y. Jin, L. Zuo, W. Fu, J. Mater. Chem. A, 2023, 11, 6877 |
72. | X. Xiao, J. Dai, Y. Fang, J. Zhao, X. Zheng, S. Tang, P. N. Rudd, X. C. Zeng, J. Huang, ACS Energy Lett., 2018, 3, 684 |
73. | X. Li, K. Li, B. Wang, X. Zhang, S. Yue, Y. Li, Q. Chen, S. Li, T. Yue, H. Zhou, Adv. Funct. Mater., 2021, 31, 2107675 |
74. | W. Zhu, S. Wang, X. Zhang, A. Wang, C. Wu, F. Hao, Small, 2022, 18, 2105783 |
75. | F. Jiang, T. Liu, B. Luo, J. Tong, F. Qin, S. Xiong, Z. Li, Y. Zhou, J. Mater. Chem. A, 2016, 4, 1208 |
76. | R. Sheng, M. T. Hörantner, Z. Wang, Y. Jiang, W. Zhang, A. Agosti, S. Huang, X. Hao, A. Ho-Baillie, M. Green, J. Phys. Chem. C, 2017, 121, 27256 |
77. | J. Tong, Z. Song, D. H. Kim, X. Chen, C. Chen, A. F. Palmstrom, P. F. Ndione, M. O. Reese, S. P. Dunfield, O. G. Reid, Science, 2019, 364, 475 |
78. | G. E. Eperon, T. Leijtens, K. A. Bush, R. Prasanna, T. Green, J. T.-W. Wang, D. P. McMeekin, G. Volonakis, R. L. Milot, R. May, Science, 2016, 354, 861 |
79. | A. Rajagopal, Z. Yang, S. B. Jo, I. L. Braly, P. W. Liang, H. W. Hillhouse, A. K. Y. Jen, Adv. Mater., 2017, 29, 1702140 |
80. | Z. Yang, Z. Yu, H. Wei, X. Xiao, Z. Ni, B. Chen, Y. Deng, S. N. Habisreutinger, X. Chen, K. Wang, Nat. Commun., 2019, 10, 1 |
81. | C. Li, Z. S. Wang, H. L. Zhu, D. Zhang, J. Cheng, H. Lin, D. Ouyang, W. C. Choy, Adv. Energy Mater., 2018, 8, 1801954 |
82. | R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang, M. Wei, M. I. Saidaminov, Y. Gao, J. Xu, M. Xiao, Nat. Energy, 2019, 4, 864 |
83. | M. Zhang, Z. Lin, Energy Environ. Sci., 2022, 15, 3152 |
84. | C. H. Y. Ho, J. Kothari, X. Fu, F. So, Mater. Today Energy, 2021, 21, 100707 |
85. | Z. Ma, Y. Dong, R. Wang, Z. Xu, M. Li, Z. a. Tan, Adv. Mater., 2023, 35, 2307502 |
86. | C.-C. Chen, S.-H. Bae, W.-H. Chang, Z. Hong, G. Li, Q. Chen, H. Zhou, Y. Yang, Mater. Horiz., 2015, 2, 203 |
87. | J. Liu, S. Lu, L. Zhu, X. Li, W. C. Choy, Nanoscale, 2016, 8, 3638 |
88. | X. Wu, D. Zhang, B. Liu, Y. Wang, X. Wang, Q. Liu, D. Gao, N. Wang, B. Li, L. Wang, Z. Yu, X. Li, S. Xiao, N. Li, M. Stolterfoht, Y.-H. Lin, S. Yang, X. C. Zeng, Z. Zhu, Adv. Mater., 2024, 36, 2410692 |
89. | K. Brinkmann, T. Becker, F. Zimmermann, C. Kreusel, T. Gahlmann, M. Theisen, T. Haeger, S. Olthof, C. Tückmantel, M. Günster, Nature, 2022, 604, 280 |
90. | P. Wang, W. Li, O. J. Sandberg, C. Guo, R. Sun, H. Wang, D. Li, H. Zhang, S. Cheng, D. Liu, Nano Lett., 2021, 21, 7845 |
91. | Y. Ding, Q. Guo, Y. Geng, Z. Dai, Z. Wang, Z. Chen, Q. Guo, Z. Zheng, Y. Li, E. Zhou, Nano Today, 2022, 46, 101586 |
92. | C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, Nat. Energy, 2021, 6, 605 |
93. | Y. Wang, X. Zhan, Adv. Energy Mater., 2016, 6, 1600414 |
94. | R. Sun, J. Guo, C. Sun, T. Wang, Z. Luo, Z. Zhang, X. Jiao, W. Tang, C. Yang, Y. Li, Energy Environ. Sci., 2019, 12, 384 |
95. | L. Zhu, M. Zhang, J. Xu, C. Li, J. Yan, G. Zhou, W. Zhong, T. Hao, J. Song, X. Xue, Nat. Mater., 2022, 21, 656 |
96. | W. Gao, F. Qi, Z. Peng, F. R. Lin, K. Jiang, C. Zhong, W. Kaminsky, Z. Guan, C. S. Lee, T. J. Marks, Adv. Mater., 2022, 34, 2202089 |
97. | F. Zhao, C. Wang, X. Zhan, Adv. Energy Mater., 2018, 8, 1703147 |
98. | Y. Guo, D. Li, Y. Gao, C. Li, Acta Phys.-Chim. Sin., 2024, 40, 2306050 |
99. | N. Y. Doumon, L. Yang, F. Rosei, Nano Energy, 2022, 94, 106915 |
100. | J. W. Jung, F. Liu, T. P. Russell, W. H. Jo, Energy Environ. Sci., 2012, 5, 6857 |
101. | H. Yao, Y. Cui, R. Yu, B. Gao, H. Zhang, J. Hou, Angew. Chem. Int. Ed., 2017, 56, 3045 |
102. | S. Xie, R. Xia, Z. Chen, J. Tian, L. Yan, M. Ren, Z. Li, G. Zhang, Q. Xue, H.-L. Yip, Nano Energy, 2020, 78, 105238 |
103. | Y. M. Xie, Q. Yao, Z. Zeng, Q. Xue, T. Niu, R. Xia, Y. Cheng, F. Lin, S. W. Tsang, A. K. Y. Jen, Adv. Funct. Mater., 2022, 32, 2112126 |
104. | W. Liu, Y. Duan, Z. Zhang, J. Gao, S. Li, Z. Fink, X. Wu, Z. Ma, A. Saeki, T. P. Russell, ACS Energy Lett., 2023, 8, 4514 |
105. | X. Cui, G. Xie, Y. Liu, X. Xie, H. Zhang, H. Li, P. Cheng, G. Lu, L. Qiu, Z. Bo, Adv. Mater., 2024, 36, 2408646 |
106. | C. Zuo, L. Ding, J. Mater. Chem. A, 2015, 3, 9063 |
107. | Y. Liu, Z. Hong, Q. Chen, W. Chang, H. Zhou, T.-B. Song, E. Young, Y. Yang, J. You, G. Li, Nano Lett., 2015, 15, 662 |
108. | W. Chen, H. Sun, Q. Hu, A. B. Djurišić, T. P. Russell, X. Guo, Z. He, ACS Energy Lett., 2019, 4, 2535 |
109. | C. I. Chen, S. Wu, Y. A. Lu, C. C. Lee, K. C. Ho, Z. Zhu, W. C. Chen, C. C. Chueh, Adv. Sci., 2019, 6, 1901714 |
110. | Y. Wu, Y. Gao, X. Zhuang, Z. Shi, W. Bi, S. Liu, Z. Song, C. Chen, X. Bai, L. Xu, Nano Energy, 2020, 77, 105181 |
111. | Y. Wu, N. Ding, Y. Zhang, B. Liu, X. Zhuang, S. Liu, Z. Nie, X. Bai, B. Dong, L. Xu, Adv. Energy Mater., 2022, 12, 2200005 |
112. | Z. Shi, D. Zhou, X. Zhuang, S. Liu, R. Sun, W. Xu, L. Liu, H. Song, Adv. Funct. Mater., 2022, 32, 2203873 |
113. | Z. Cai, X. Ma, J. Cai, Z. Zhan, D. Lin, K. Chen, P. Liu, W. Xie, J. Power Sources, 2022, 541, 231665 |
114. | T. Wang, Y. Dong, J. Guo, Q. Li, Z. Chang, M. Chen, R. Wang, Y. Liu, Adv. Funct. Mater., 2021, 31, 2107129 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
a Schematic illustration of light absorption in multi-junction solar cells. b Shockley-Queisser limit of two-junction solar cells with 2-terminal structure.[8] c Absorption spectra of perovskite and NIR organic films. d Device structures of POTSCs. e The efficiency evolution of perovskite-based double-junction solar cells.[26–27]
a Schematic illustration of BPA passivation of NiOx HTLs.[39] b SEM images of CsPbI2Br films without and with 10 µL/mL bottom MAFm modification.[40] c Absorption energy of CA and EA on different types of defects.[51] d Calculated structures illustrating the passivation of perovskite surface by a trans-CyDA2+ or cis-CyDA2+ cation.[29]
a Energy band alignment in WBG PSC with different ETLs. b SEM images of SnO2 and Cl@MZO films.[52] c Molecule structure and energy level of PE51, PE52, and PE53.[58] d The combination effects of modified ETLs and HTLs.[59]
Schematic illustration of a phase segregation and b the carrier trapping effects. c Energy diagram of iodine escape process in control perovskite (in blue) and perovskite with AIDCN (in red).[68] d PL spectra of perovskites with and without Pb(SCN)2 under 100 sun illumination.[69] e The redox reaction between AQS and defects. f Time-dependent photoluminescence spectra.[70]
a Transmittance spectra and b EQE spectra of POTSCs with different ICLs.[39] c Filtered EQE spectra related to different thickness of MoOx.[88] d The electrical properties of ALD InOx with increased cycle number. e Transmittance spectra of different ICLs. f Enhanced EQE response enabled by InOx.[89]
a Energy level of POTSCs with different HTL. Simulated photon absorption rate distribution of b polyTPD and c PBDB-T-Si based TSCs.[90] d Energy level of POTSCs with PTQ10 or P3HT. e Transmittance spectra and f conductivity test of PTQ10 and P3HT.[91]
Chemical structures of NIR donors with different absorption window.
Chemical structures of NIR acceptors with different absorption window.
a EQE spectra of POTSCs with different organic active layers.[102] b EQE spectra of OSCs with different acceptors.[103] c Absorption spectra of organic active layer with decreased D/A ratio.[52] d EQE spectra of POTSCs based on binary and ternary organic active layers.[104] e EQE spectra of OSCs with LBL and PDHJ structure.[105]
a Extended EQE response in IPOSCs.[106] b J-V curve and c EQE spectra of IPOSCs based on Sn-Pb perovskite sub-cells.[30] d Schematic illustration for the effect of 1% DPE on the carrier properties of BHJ layer. e Enhanced EQE response via doping the active layers.[109] f Energy level of IPOSCs with BCP and ZrAcae interlayers.[113] g Energy level of IPOSCs with a thin PM6 interlayer and h the related J-V curves.[114]