Citation: | Yongjian Liu, Long Li, Xingshu Liao, Jinfeng Huang, Dan Liu, Jinping Liu. Sulfur cathodes for sulfide electrolyte-based all-solid-sate batteries: a review[J]. Energy Lab. doi: 10.54227/elab.20250004 |
Lithium-sulfur batteries promise next-generation high-energy and low-cost battery technologies. By substituting conventional liquid ether-based electrolytes with sulfide solid-state electrolytes, all-solid-state lithium-sulfur batteries (ASSLSBs) enable sulfur redox chemistry to escape from a dilemma between reaction kinetics-required polysulfide dissolving and resulting polysulfide shuttling. However, sulfur cathodes in sulfide-based ASSLSBs confront persistent scientific and technical challenges, including intrinsically sluggish reaction kinetics associated with sulfur's insulating properties, suboptimal solid-solid interfaces exacerbated by sulfur conversion-induced significant volume fluctuations, carbon additive-promoted electrolyte decomposition at elevated potentials, and tortuous carrier transport paths within composite cathodes. This comprehensive review first introduces the electrochemical mechanisms governing sulfur redox chemistry in sulfide ASSLSBs and critically analyzes the limitations of sulfur-based cathodes. We also summarize the recent advances in developing and optimizing sulfur cathodes. Finally, we propose forward-looking perspectives on material innovation and architectural optimization to guide the future development of high-performance sulfur cathodes for practical solid-state battery applications.
1. | R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Nat. Energy, 2018, 3, 267 |
2. | J. W. Choi, D. Aurbach, Nat. Rev. Mater., 2016, 1, 16013 |
3. | Y. Zhang, Q. Y. Huo, P. P. Du, L. Z. Wang, A. Q. Zhang, Y. H. Song, Y. Lv, G. Y. Li, Synth. Met., 2012, 162, 1315 |
4. | Y. Lyu, X. Wu, K. Wang, Z. Feng, T. Cheng, Y. Liu, M. Wang, R. Chen, L. Xu, J. Zhou, Y. Lu, B. Guo, Adv. Energy Mater., 2021, 11, 2000982 |
5. | Y. Wu, L. Xie, H. Ming, Y. Guo, J. -Y. Hwang, W. Wang, X. He, L. Wang, H. N. Alshareef, Y. K. Sun, J. Ming, ACS Energy Lett., 2020, 5, 807 |
6. | C. Gong, Z. Xue, S. Wen, Y. Ye, X. Xie, J. Power Sources, 2016, 318, 93 |
7. | M. T. McDowell, S. W. Lee, W. D. Nix, Y. Cui, Adv. Mater., 2013, 25, 4966 |
8. | H. Wu, Y. Cui, Nano Today, 2012, 7, 414 |
9. | J. M. Tarascon, M. Armand, Nature, 2001, 414, 359 |
10. | Y. Zhu, X. He, Y. Mo, ACS Appl. Mater. Interfaces, 2015, 7, 23685 |
11. | X. Nie, J. Hu, C. Li, Interdiscip. Mater., 2023, 2, 365 |
12. | N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, Nat. Mater., 2011, 10, 682 |
13. | T. Kim, K. Kim, S. Lee, G. Song, M. S. Jung, K. T. Lee, Chem. Mater., 2022, 34, 9159 |
14. | S. Wang, Y. Wu, T. Ma, L. Chen, H. Li, F. Wu, ACS Nano, 2022, 16, 16158 |
15. | X. Rui, D. Ren, X. Liu, X. Wang, K. Wang, Y. Lu, L. Li, P. Wang, G. Zhu, Y. Mao, X. Feng, L. Lu, H. Wang, M. Ouyang, Energy Environ. Sci., 2023, 16, 3552 |
16. | N. Nakamura, S. Ahn, T. Momma, T. Osaka, J. Power Sources, 2023, 558, 232566 |
17. | Z. Wang, Y. Li, H. Ji, J. Zhou, T. Qian, C. Yan, Adv. Mater., 2022, 34, 2203699 |
18. | T. Meng, J. C. Chang, J. H. Zhu, N. Li, M. W. Xu, C. M. Li, J. Jiang, J. Mater. Chem. A, 2020, 8, 11976 |
19. | N. Li, C. Sun, J. H. Zhu, S. Li, Y. L. Wang, M. W. Xu, C. M. Li, J. Jiang, Energy Environ. Mater., 2023, 6, e12354 |
20. | Y. V. Mikhaylik, J. R. Akridge, J. Electrochem. Soc., 2004, 151, A1969 |
21. | N. Machida, K. Kobayashi, Y. Nishikawa, T. Shigematsu, Solid State Ionics, 2004, 175, 247 |
22. | N. Li, T. Meng, L. Ma, H. Zhang, J. J. Yao, M. W. Xu, C. M. Li, J. Jiang, Nano-Micro Lett., 2020, 12, 145 |
23. | C. Sun, J. H. Zhu, B. Liu, M. W. Xu, J. Jiang, T. Yu, ACS Energy Lett., 2023, 8, 772 |
24. | W. Xue, Z. Shi, L. Suo, C. Wang, Z. Wang, H. Wang, K. P. So, A. Maurano, D. Yu, Y. Chen, L. Qie, Z. Zhu, G. Xu, J. Kong, J. Li, Nat. Energy, 2019, 4, 374 |
25. | A. Manthiram, Y. Fu, S. H. Chung, C. Zu, Y. S. Su, Chem. Rev., 2014, 114, 11751 |
26. | Y. Yang, G. Zheng, Y. Cui, Chem. Soc. Rev., 2013, 42, 3018 |
27. | D. Cao, X. Sun, F. Li, S. M. Bak, T. Ji, M. Geiwitz, K. S. Burch, Y. Du, G. Yang, H. Zhu, Angew. Chem. Int. Ed., 2023, 62, e202302363 |
28. | J. T. Kim, A. Rao, H. -Y. Nie, Y. Hu, W. Li, F. Zhao, S. Deng, X. Hao, J. Fu, J. Luo, H. Duan, C. Wang, C. V. Singh, X. Sun, Nat. Commun., 2023, 14, 6404 |
29. | J. T. Kim, X. Hao, C. Wang, X. Sun, Matter, 2023, 6, 316 |
30. | J. B. Gu, W. X. Hu, Y. Q. Wu, F. C. Ren, Z. T. Liang, H. Y. Zhong, X. F. Zheng, R. Q. Ma, Y. Luo, X. X. Chen, J. W. Shi, Y. Yang, Chem. Mater., 2024, 36, 4403 |
31. | X. Sun, Q. Li, D. Cao, Y. Wang, A. Anderson, H. Zhu, Small, 2022, 18, 2105678 |
32. | X. X. Zhu, W. Jiang, S. Zhao, R. Z. Huang, M. Ling, C. D. Liang, L. G. Wang, Nano Energy, 2022, 96, 107093 |
33. | D. Wang, B. Gwalani, D. Wierzbicki, V. Singh, L.-J. Jhang, T. Rojas, R. Kou, M. Liao, L. Ye, H. Jiang, S. Shan, A. Silver, A. T. Ngo, Y. Du, X. Li, D. Wang, Nat. Mater., 2025, 24, 243 |
34. | A. Unemoto, T. Ikeshoji, S. Yasaku, M. Matsuo, V. Stavila, T. J. Udovic, Chem. Mater., 2015, 27, 5407 |
35. | W. X. Ji, X. X. Zhang, D. Zheng, H. Huang, T. H. Lambert, D. Y. Qu, Adv. Funct. Mater., 2022, 32, 2202919 |
36. | H. Wan, G. Liu, Y. Li, W. Weng, J. P. Mwizerwa, Z. Tian, L. Chen, X. Yao, ACS Nano, 2019, 13, 9551 |
37. | X. X. Zhu, W. Jiang, L. G. Wang, J. Lu, Adv. Energy Mater., 2024, 14, 2304244 |
38. | B. S. Zhao, L. Wang, S. Liu, G. R. Li, X. P. Gao, ACS Appl. Mater. Interfaces, 2022, 14, 1212 |
39. | B. S. Zhao, P. Chen, X. P. Gao, Sci. China Mater., 2023, 66, 513 |
40. | B. S. Zhao, L. Wang, P. Chen, S. Liu, G. R. Li, N. Xu, M. T. Wu, X. P. Gao, ACS Appl. Mater. Interfaces, 2021, 13, 34477 |
41. | H. Pan, M. Zhang, Z. Cheng, H. Jiang, J. Yang, P. Wang, P. He, H. Zhou, Sci. Adv., 2022, 8, eabn4372 |
42. | Y. S. Oh, M. Kim, S. Kang, J.-Y. Park, H.-T. Lim, Chem. Eng. J., 2022, 442, 136229 |
43. | J. K. Hu, H. Yuan, S. J. Yang, Y. Lu, S. Sun, J. Liu, Y. L. Liao, S. Li, C. Z. Zhao, J. Q. Huang, J. Energy Chem., 2022, 71, 612 |
44. | G. L. Zhu, C. Z. Zhao, H. J. Peng, H. Yuan, J. K. Hu, H. X. Nan, Y. Lu, X. Y. Liu, J. Q. Huang, C. A. X. He, J. Zhang, Q. Zhang, Adv. Funct. Mater., 2021, 31, 2101985 |
45. | Q. Zhang, N. Huang, Z. Huang, L. T. Cai, J. H. Wu, X. Y. Yao, J. Energy Chem., 2020, 40, 151 |
46. | Z. J. Wu, Z. K. Xie, A. Yoshida, X. W. An, Z. D. Wang, X. G. Hao, A. Abudula, G. Q. Guan, Chem. Eng. J., 2020, 380, 122419 |
47. | J. P. Mwizerwa, Q. Zhang, F. Han, H. Wan, L. Cai, C. Wang, X. Yao, ACS Appl. Mater. Interfaces, 2020, 12, 18519 |
48. | A. Kızılaslan, Ş. Efe, H. Akbulut, J. Solid State Electrochem., 2020, 24, 2279 |
49. | L. P. Hou, H. Yuan, C. Z. Zhao, L. Xu, G. L. Zhu, H. X. Nan, X. B. Cheng, Q. B. Liu, C. X. He, J. Q. Huang, Q. Zhang, Energy Storage Mater., 2020, 25, 436 |
50. | C. Yu, J. Hageman, S. Ganapathy, L. van Eijck, L. Zhang, K. R. Adair, X. L. Sun, M. Wagemaker, J. Mater. Chem. A, 2019, 7, 10412 |
51. | J. Yi, L. Chen, Y. Liu, H. Geng, L. Z. Fan, ACS Appl. Mater. Interfaces, 2019, 11, 36774 |
52. | A. Sakuda, Y. Sato, A. Hayashi, M. Tatsumisago, Energy Technol., 2019, 7, 1900077 |
53. | Q. G. Han, X. L. Li, X. X. Shi, H. Z. Zhang, D. W. Song, F. Ding, L. Q. Zhang, J. Mater. Chem. A, 2019, 7, 3895 |
54. | P. Bonnick, K. Niitani, M. Nose, K. Suto, T. S. Arthur, J. Muldoon, J. Mater. Chem. A, 2019, 7, 24173 |
55. | Y. B. Zhang, T. Liu, Q. H. Zhang, X. Zhang, S. Wang, X. Z. Wang, L. L. Li, L. Z. Fan, C. W. Nan, Y. Shen, J. Mater. Chem. A, 2018, 6, 23345 |
56. | K. Suzuki, N. Mashirno, Y. Ikeda, T. Yokoi, M. Hirayama, R. Kanno, Acs Appl. Energy Mater., 2018, 1, 2373 |
57. | K. Suzuki, D. Kato, K. Hara, T. Yano, M. Hirayama, M. Hara, R. Kanno, Electrochemistry, 2018, 86, 1 |
58. | K. Suzuki, D. Kato, K. Hara, T. A. Yano, M. Hirayama, M. Hara, R. Kanno, Electrochim. Acta, 2017, 258, 110 |
59. | X. Y. Yao, N. Huang, F. D. Han, Q. Zhang, H. L. Wan, J. P. Mwizerwa, C. S. Wang, X. X. Xu, Adv. Energy Mater., 2017, 7, 1602923 |
60. | R. C. Xu, X. H. Xia, S. H. Li, S. Z. Zhang, X. L. Wang, J. P. Tu, J. Mater. Chem. A, 2017, 5, 6310 |
61. | R. Xu, Z. Wu, S. Zhang, X. Wang, Y. Xia, X. Xia, X. Huang, J. Tu, Chem. Eur. J., 2017, 23, 13950 |
62. | M. H. Chen, S. Adams, J. Solid State Electrochem., 2015, 19, 697 |
63. | S. Kinoshita, K. Okuda, N. Machida, M. Naito, T. Sigematsu, Solid State Ionics, 2014, 256, 97 |
64. | Z. Lin, Z. Liu, W. Fu, N. J. Dudney, C. Liang, Angew. Chem. Int. Ed., 2013, 52, 7460 |
65. | M. Nagao, A. Hayashi, M. Tatsumisago, Electrochim. Acta, 2011, 56, 6055 |
66. | C. Wang, Y. Wu, J. Gao, X. Sun, Q. Zhao, W. Si, Y. Zhang, K. Wang, F. Zhao, T. Ohsaka, F. Matsumoto, C. Huang, J. Wu, ACS Appl. Mater. Interfaces, 2023, 15, 40496 |
67. | S. Jin, M. Wang, Y. Zhong, X. Wang, C. Gu, X. Xia, J. Tu, Mater. Today Sustainability, 2023, 21, 100281 |
68. | M. Yamamoto, S. Goto, R. Tang, K. Nomura, Y. Hayasaka, Y. Yoshioka, M. Ito, M. Morooka, H. Nishihara, T. Kyotani, ACS Appl. Mater. Interfaces, 2021, 13, 38613 |
69. | D. Wang, L. J. Jhang, R. Kou, M. Liao, S. Zheng, H. Jiang, P. Shi, G. X. Li, K. Meng, D. Wang, Nat. Commun., 2023, 14, 1895 |
70. | Y. Luo, S. Pan, J. Tian, Y. Liang, H. Zhong, R. Ma, J. Gu, Y. Wu, H. Zhang, H. Lin, W. Huang, Y. Deng, Y. Su, Z. Gong, J. Huang, Z. Hu, Y. Yang, Adv. Mater., 2024, 36, 2413325 |
71. | Y. Zhang, M. Lv, Y. Chen, L. Zhou, J. Zhuo, J. Zhang, E. Fu, P. Chen, X. Gao, Cell Rep. Phys. Sci., 2024, 5, 102293 |
72. | Z. Lv, J. Liu, C. Li, J. Peng, C. Zheng, X. Zheng, Y. Wu, M. Xia, H. Zhong, Z. Gong, Y. Yang, eTransportation, 2024, 19, 100298 |
73. | S. Ohno, W. G. Zeier, Acc. Mater. Res., 2021, 2, 869 |
74. | X. Zhu, L. Wang, Z. Bai, J. Lu, T. Wu, Nano-Micro Lett., 2023, 15, 75 |
75. | W. P. Wang, J. Zhang, J. Chou, Y. -X. Yin, Y. You, S. Xin, Y. G. Guo, Adv Energy Mater., 2021, 11, 2000791 |
76. | B. B. Gicha, L. T. Tufa, N. Nwaji, X. Hu, J. Lee, Nano-Micro Lett., 2024, 16, 172 |
77. | R. Koerver, W. Zhang, L. de Biasi, S. Schweidler, A. O. Kondrakov, S. Kolling, T. Brezesinski, P. Hartmann, W. G. Zeier, J. Janek, Energy Environ. Sci., 2018, 11, 2142 |
78. | D. H. S. Tan, E. A. Wu, H. Nguyen, Z. Chen, M. A. T. Marple, J.-M. Doux, X. Wang, H. Yang, A. Banerjee, Y. S. Meng, ACS Energy Lett., 2019, 4, 2418 |
79. | L. E. Camacho-Forero, P. B. Balbuena, Chem. Mater., 2020, 32, 360 |
80. | S. Ohno, R. Koerver, G. Dewald, C. Rosenbach, P. Titscher, D. Steckermeier, A. Kwade, J. Janek, W. G. Zeier, Chem. Mater., 2019, 31, 2930 |
81. | B. Ding, J. Wang, Z. Fan, S. Chen, Q. Lin, X. Lu, H. Dou, A. Kumar Nanjundan, G. Yushin, X. Zhang, Y. Yamauchi, Mater. Today, 2020, 40, 114 |
82. | G. F. Dewald, S. Ohno, J. G. C. Hering, J. Janek, W. G. Zeier, Batteries Supercaps, 2020, 4, 183 |
83. | H. A. Hoang, D. Kim, Small, 2022, 18, 2202963 |
84. | X. Yang, J. Luo, X. Sun, Chem. Soc. Rev., 2020, 49, 2140 |
85. | H. Wang, X. Cao, W. Liu, X. Sun, Front. Energy Res., 2019, 7, 112 |
86. | Z. Lin, C. Liang, J. Mater. Chem. A, 2015, 3, 936 |
87. | H. Yan, H. Wang, D. Wang, X. Li, Z. Gong, Y. Yang, Nano Lett., 2019, 19, 3280 |
88. | D. H. Wang, Y. Q. Wu, X. F. Zheng, S. J. Tang, Z. L. Gong, Y. Yang, J. Power Sources, 2020, 479, 228792 |
89. | J. Wu, S. Liu, F. Han, X. Yao, C. Wang, Adv. Mater., 2021, 33, 2000751 |
90. | L. Yang, X. Huang, C. Zou, X. Tao, L. Liu, K. Luo, P. Zeng, Q. Dai, Y. Li, L. Yi, Z. Luo, X. Wang, Ceram. Int., 2021, 47, 18196 |
91. | H. Sul, A. J. A. E. L. Manthiram, ACS Energy Lett., 2024, 9, 5562 |
92. | P. Lu, Y. Xia, G. Sun, D. Wu, S. Wu, W. Yan, X. Zhu, J. Lu, Q. Niu, S. Shi, Z. Sha, L. Chen, H. Li, F. Wu, Nat. Commun., 2023, 14, 4077 |
93. | H. Song, K. Münch, X. Liu, K. Shen, R. Zhang, T. Weintraut, Y. Yusim, D. Jiang, X. Hong, J. Meng, Y. Liu, M. He, Y. Li, P. Henkel, T. Brezesinski, J. Janek, Q. Pang, Nature, 2025, 637, 846 |
94. | J. M. Whiteley, S. Hafner, S. S. Han, S. C. Kim, K. H. Oh, S.-H. Lee, Adv Energy Mater., 2016, 6, 1600495 |
95. | M. Li, T. Liu, Z. Shi, W. Xue, Y. S. Hu, H. Li, X. Huang, J. Li, L. Suo, L. Chen, Adv. Mater., 2021, 33, 2008723 |
96. | M. Li, H. Pan, T. Liu, X. Xiong, X. Yu, Y.-S. Hu, H. Li, X. Huang, L. Suo, L. Chen, ACS Energy Lett., 2022, 7, 766 |
97. | C. Y. Kwok, S. Xu, I. Kochetkov, L. Zhou, L. F. Nazar, Energy Environ. Sci., 2023, 16, 610 |
98. | Y. Lu, C.-Z. Zhao, H. Yuan, J.-K. Hu, J.-Q. Huang, Q. Zhang, Matter, 2022, 5, 876 |
99. | C. Zheng, K. Wang, L. Li, H. Huang, C. Liang, Y. Gan, X. He, W. Zhang, J. Zhang, Front. Energy Res., 2021, 8, 606494 |
100. | D. Cao, Q. Li, X. Sun, Y. Wang, X. Zhao, E. Cakmak, W. Liang, A. Anderson, S. Ozcan, H. Zhu, Adv. Mater., 2021, 33, 2105505 |
101. | W. Jiang, L. Yan, X. Zeng, X. Meng, R. Huang, X. Zhu, M. Ling, C. Liang, ACS Appl. Mater. Interfaces, 2020, 12, 54876 |
102. | S. B. Hong, Y. J. Lee, U. H. Kim, C. Bak, Y. M. Lee, W. Cho, H. J. Hah, Y. K. Sun, D. W. Kim, ACS Energy Lett., 2022, 7, 1092 |
103. | X. Li, J. Zai, S. Xiang, Y. Liu, X. He, Z. Xu, K. Wang, Z. Ma, X. Qian, Adv. Energy Mater., 2016, 6, 1601056 |
104. | H. Wan, B. Zhang, S. Liu, J. Zhang, X. Yao, C. Wang, Nano Lett., 2021, 21, 8488 |
105. | J. Gao, Y. Gao, J. Hao, X. Sun, F. Zhao, Y. Zhang, W. Si, J. Wu, Small, 2024, 20, 2404171 |
106. | H. Zhong, Y. Su, Y. Wu, J. Gu, R. Ma, Y. Luo, H. Lin, M. Tao, J. Chen, Z. Liang, K. Wang, X. Zheng, Z. Chen, J. Peng, Z. Lv, Z. Gong, J. Huang, Y. Yang, Adv. Energy Mater., 2023, 13, 2300767 |
107. | J. Wu, H. Ye, Y. Hu, W. Huang, X. Zhu, W. Chang, Y. Li, B. Pan, Y. Li, J. Lu, Adv. Mater., 2024, 36, 2411525 |
108. | P. Chong, Z. Zhou, K. Wang, W. Zhai, Y. Li, J. Wang, M. Wei, Batteries, 2022, 9, 26 |
109. | M. Yang, Y. Yao, M. Chang, F. Tian, W. Xie, X. Zhao, Y. Yu, X. Yao, Adv. Energy Mater., 2023, 13, 2300962 |
110. | Justin M. Whiteley, S. Hafner, S. S. Han, S. C. Kim, V.-D. Le, C. Ban, Y. H. Kim, K. H. Oh, S. H. Lee, J. Mater. Chem. A, 2017, 5, 15661 |
111. | Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nat. Nanotechnol., 2012, 7, 699 |
112. | J. E. Trevey, C. R. Stoldt, S.-H. Lee, J. Electrochem. Soc., 2011, 158, A1282 |
113. | D. Y. Oh, Y. E. Choi, D. H. Kim, Y. G. Lee, B. S. Kim, J. Park, H. Sohn, Y. S. Jung, J. Mater. Chem. A, 2016, 4, 10329 |
114. | H. Gao, Y. Chen, S. Wang, J. Li, D. Qu, H. Tang, D. Liu, J. Energy Storage, 2024, 99, 113435 |
115. | T. Matsuyama, A. Hayashi, T. Ozaki, S. Mori, M. Tatsumisago, J. Ceram. Soc. Jpn., 2016, 124, 242 |
116. | Y. Hu, Z. Sun, Z. Zhang, S. Liu, F. He, Y. Liu, Z. Zhuang, F. Liu, Adv. Energy Mater., 2022, 13, 2202756 |
117. | P. Lu, Y. Xia, Y. Huang, Z. Li, Y. Wu, X. Wang, G. Sun, S. Shi, Z. Sha, L. Chen, H. Li, F. Wu, Adv. Funct. Mater., 2022, 33, 2211211 |
118. | M. Chang, J. Jia, G. Liu, J. Zhang, N. Wang, Y. Zhou, P. Cui, T. Wu, X. Yao, Chem. Commun., 2024, 60, 11580 |
119. | L. Zhou, M. K. Tufail, L. Yang, N. Ahmad, R. J. Chen, W. Yang, Chem. Eng. J., 2020, 391, 123529 |
120. | S. M. Hosseini, A. Varzi, S. Ito, Y. Aihara, S. Passerini, Energy Storage Mater., 2020, 27, 61 |
121. | B. Hennequart, M. Deschamps, R. Chometon, B. Leube, R. Dugas, E. Quemin, P. E. Cabelguen, C. Lethien, J.-M. Tarascon, ACS Appl. Energy Mater., 2023, 6, 8521 |
122. | A. Kızılaslan, A. Waleed Majeed Al-Ogaili, H. Akbulut, Chem. Eng. J., 2022, 450, 138050 |
123. | K. Liu, H. Zhao, D. Ye, J. Zhang, Chem. Eng. J., 2021, 417, 129309 |
124. | J. Wang, J. Yang, J. Xie, N. Xu, Adv. Mater., 2002, 14, 963 |
125. | H. Yang, J. Chen, J. Yang, J. Wang, Angew. Chem. Int. Ed., 2020, 59, 7306 |
126. | J. E. Trevey, J. R. Gilsdorf, C. R. Stoldt, S.-H. Lee, P. Liu, J. Electrochem. Soc., 2012, 159, A1019 |
127. | Y. Y. Zhang, Y. L. Sun, L. F. Peng, J. Q. Yang, H. H. Jia, Z. R. Zhang, B. Shan, J. Xie, Energy Storage Mater., 2019, 21, 287 |
128. | W. Zhang, Y. Y. Zhang, L. F. Peng, S. P. Li, X. M. Wang, S. J. Cheng, J. Xie, Nano Energy, 2020, 76, 105083 |
129. | S. Yang, B. Wang, Q. Lv, N. Zhang, Z. Zhang, Y. Jing, J. Li, R. Chen, B. Wu, P. Xu, D. Wang, Chin. Chem. Lett., 2022, 34, 107783 |
130. | A. S. Alzahrani, M. Otaki, D. Wang, Y. Gao, T. S. Arthur, S. Liu, D. Wang, ACS Energy Lett., 2021, 6, 413 |
131. | J. P. Malugani, G. Robert, Solid State Ionics, 1980, 1, 519 |
132. | Z. Liu, Y. Zhang, J. Hao, Y. Zhu, X. Guo, L. Li, G. Sly, H. Wang, Inorg. Chem. Commun., 2020, 112, 107761 |
133. | Y. Fujita, T. Hakari, A. Sakuda, M. Deguchi, Y. Kawasaki, H. Tsukasaki, S. Mori, M. Tatsumisago, A. Hayashi, ACS Appl. Energy Mater., 2022, 5, 9429 |
134. | J. Zhou, M. L. Holekevi Chandrappa, S. Tan, S. Wang, C. Wu, H. Nguyen, C. Wang, H. Liu, S. Yu, Q. R. S. Miller, G. Hyun, J. Holoubek, J. Hong, Y. Xiao, C. Soulen, Z. Fan, E. E. Fullerton, C. J. Brooks, C. Wang, R. J. Clément, Y. Yao, E. Hu, S. P. Ong, P. Liu, Nature, 2024, 627, 301 |
135. | J. Peng, X. Zheng, Y. Wu, C. Li, Z. Lv, C. Zheng, J. Liu, H. Zhong, Z. Gong, Y. Yang, ACS Appl. Mater. Interfaces, 2023, 15, 20191 |
136. | Y. Hu, Y. Liu, Y. Lu, Z. Zhang, S. Liu, F. He, Y. Liu, Y. Chen, F. Liu, Adv. Funct. Mater., 2024, 35, 2412070 |
137. | L. Cui, S. Zhang, J. Ju, T. Liu, Y. Zheng, J. Xu, Y. Wang, J. Li, J. Zhao, J. Ma, J. Wang, G. Xu, T. S. Chan, Y. C. Huang, S. C. Haw, J.-M. Chen, Z. Hu, G. Cui, Nat. Energy, 2024, 9, 1084 |
138. | M. Fiedler, S. Cangaz, F. Hippauf, S. Dörfler, T. Abendroth, H. Althues, S. Kaskel, Adv. Sustainable Syst., 2023, 7, 2200439 |
139. | M. Iwao, H. Miyamoto, H. Nakamura, E. Hayakawa, S. Ohsaki, S. Watano, Adv. Energy Sustainability Res., 2023, 5, 2200206 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Schematic illustration of challenges and optimization strategies of sulfur cathodes for ASSLSBs with sulfide SSEs.
Schematic of typical charge-discharge curves, and reaction mechanisms of Li-S batteries using a ether-based liquid electrolytes and b sulfide SSEs.[27–29] Copyright 2023, Wiley-VCH. Copyright 2023, Cell Press.
a Schematic of an ASSLSB equipped with a pressure sensor and b the corresponding discharge-charge profiles and measured pressure changes. c Cross-sectional scanning electron microscopy (SEM) images of composite sulfur cathode and SEE layers before and after 100 cycles.[37] Copyright 2024, Wiley-VCH.
a CV curves and b galvanostatic discharge-charge voltage profiles of Li-In|Li6PS5Cl|LiP6S5Cl-C half cell for initial two cycles in a voltage window of 0−4.2 V vs. Li+/Li. c Redox decomposition path of Li6PS5Cl.[78] Copyright 2019, American Chemical Society. d Possible reactions between sulfide-based SSE and elemental S CAM.[79] Copyright 2019, American Chemical Society.
a SEM images of S@CNTs and S@P-CNTs and b cycling performance of S@P-CNTs.[66] Copyright 2023, American Chemical Society. c Structural features of PPCF and PPCF-S and schematic of component distribution and charge transport in PPCF-S.[31] Copyright 2020, Elsevier. d Forming a better conductive network with hCNC material.[70] Copyright 2024, Wiley-VCH.
a Schematic of the effect of SSE-sulfur cathode compatibility on ion transportation.[32] Copyright 2022, Elsevier. b Generation rate of H2S and XRD of Li6.8Si0.8As0.2S5I after exposure to air for different durations.[92] Copyright 2023, Springer Nature. c Schematic of the effect of SSE volumetric fraction and particle size on ion transportation.[69] Copyright 2023, Springer Nature.
a Schematic of conventional and dual-phased sulfur cathodes.[33] Copyright 2025, Springer Nature. b Comparison of first-cycle discharge curves and SEM images of MIEC Mo6S8-S (MS-S) electrode and routine three-component sulfur electrode.[96] Copyright 2022, American Chemical Society. c Schematic of the mechanism of VS2 promoting Li2S conversion.[97] Copyright 2023, Royal Society of Chemistry.
a Catalytic mechanism of Co doping on FeS2 cathode material.[36] Copyright 2019, American Chemical Society. b Catalytic mechanism of LiI-LiBr on MoS2 cathode material.[104] Copyright 2021, American Chemical Society. c Catalytic mechanism of Co-N4 unit on S/Li2S conversion.[106] Copyright 2023, Wiley-VCH.
a Predicted GEDs by considering reversible specific capacities and average output voltages of TMS CAMs.[109] Copyright 2023, Wiley-VCH. b SEM images of LTS composite cathodes at pristine and after 1, 100, and 350 cycles.[116] Copyright 2022, Wiley-VCH. c Advantages of FeS2 as an ASSB cathode.[117] Copyright 2022, Wiley-VCH. d Schematic of the synthesis of LiI-doped MoS6 cathode.[118] Copyright 2024, Royal Society of Chemistry.
a Schematic of interfacial electronic transportation of two S-CNT composites with sufficient and poor electronic contacts.[49] Copyright 2020, Elsevier. b Schematic of charge-discharge mechanism of Li2S-LiI solid solution.[133] Copyright 2022, American Chemical Society. c Cross-sectional SEM images of S9.3I cathode/SSE interface before cycling, after 50 cycles at 25 °C, and after reheating at 100 °C. d Cycling performance of S9.3I cathode.[134] Copyright 2024, Springer Nature.
Schematic of charge-carrier conduction in a a conventional composite cathode and b a 100% active material cathode.[137] Copyright 2024, Springer Nature.
Relationship between predicted GEDs and various battery parameters, including a sulfur content with sulfur loading from 2 to 10 mg cm−2, b sulfur loading with sulfur utilization from 50 to 100 %, c N/P ratio with sulfur loading from 2 to 10 mg cm−2, d thickness of Li6PS5Cl SSE with sulfur content from 30 to 70 wt%.