Citation: | Yujia Long, Ruitao Lv. Degradation mechanisms and rational design of durable oxygen evolution electrocatalysts under acidic conditions[J]. Energy Lab. doi: 10.54227/elab.20250005 |
Proton exchange membrane water electrolysis (PEMWE) stands as a pivotal technology for scalable green hydrogen production, yet its efficiency is hindered by the instability of oxygen evolution reaction (OER) catalysts under acidic and oxidative conditions. This review article systematically examines the degradation mechanisms of OER electrocatalysts in PEMWE, categorizing them into intrinsic and extrinsic factors. Intrinsic degradation arises from active metal dissolution (e.g., Ru/Ir oxidative leaching), dynamic surface reconstruction, and structural collapse induced by lattice oxygen participation via the lattice oxygen oxidation mechanism (LOM). Extrinsic instability stems from corrosion-prone supports (e.g., carbon-based materials or oxidized Ti substrates) and weakened catalyst-support interactions due to binder degradation or bubble-induced detachment. To address these challenges, advanced strategies are discussed, including electronic modulation of active sites (e.g., alloying, doping), rational utilization of surface reconstruction, suppression of LOM pathways, and the integration of corrosion-resistant supports with optimized metal-support interactions. Furthermore, self-supported catalysts and superaerophobic electrode designs are highlighted to mitigate delamination. Finally, critical research gaps are identified, emphasizing the need for standardized stability evaluation protocols, in-situ/operando characterization techniques, and holistic integration of catalyst design with PEMWE system components (e.g., membranes, flow fields) to bridge laboratory advancements with industrial-scale applications.
1. | Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science, 2017, 355, eaad4998 |
2. | C. Yu, M. Moslehpour, T. K. Tran, L. M. Trung, J. P. Ou, N. H. Tien, Resour. Policy, 2023, 80, 103221 |
3. | P. De Luna, C. Hahn, D. Higgins, S. A. Jaffer, T. F. Jaramillo, E. H. Sargent, Science, 2019, 364, eaav3506 |
4. | M. Rastgar, K. Moradi, C. Burroughs, A. Hemmati, E. Hoek, M. Sadrzadeh, Chem. Rev., 2023, 123, 10156 |
5. | Z. Huang, R. Lu, Y. Zhang, W. Chen, G. Chen, C. Ma, Z. Wang, Y. Han, W. Huang, Adv. Funct. Mater., 2023, 33, 2306333 |
6. | J. A. Turner, Science, 2004, 305, 972 |
7. | Z. Cui, W. Jiao, Z. Huang, G. Chen, B. Zhang, Y. Han, W. Huang, Small, 2023, 19, 2301465 |
8. | L. Li, G. Zhang, C. Zhou, F. Lv, Y. Tan, Y. Han, H. Luo, D. Wang, Y. Liu, C. Shang, L. Zeng, Q. Huang, R. Zeng, N. Ye, M. Luo, S. Guo, Nat. Commun., 2024, 15, 4974 |
9. | T. Wang, X. Cao, L. Jiao, Angew. Chem. Int. Ed., 2022, 61, e202213328 |
10. | D. Chen, R. Yu, K. Yu, R. Lu, H. Zhao, J. Jiao, Y. Yao, J. Zhu, J. Wu, S. Mu, Nat. Commun., 2024, 15, 3928 |
11. | Z. Shi, J. Li, J. Jiang, Y. Wang, X. Wang, Y. Li, L. Yang, Y. Chu, J. Bai, J. Yang, J. Ni, Y. Wang, L. Zhang, Z. Jiang, C. Liu, J. Ge, W. Xing, Angew. Chem. Int. Ed., 2022, 61, e202212341 |
12. | H. Liu, Z. Zhang, J. Fang, M. Li, M. G. Sendeku, X. Wang, H. Wu, Y. Li, J. Ge, Z. Zhuang, D. Zhou, Y. Kuang, X. Sun, Joule, 2023, 7, 558 |
13. | M. Carmo, D. L. Fritz, J. Mergel, D. Stolten, Int. J. Hydrogen Energy, 2013, 38, 4901 |
14. | L. Chong, G. Gao, J. Wen, H. Li, H. Xu, Z. Green, J. D. Sugar, A. J. Kropf, W. Xu, X.-M. Lin, H. Xu, L.-W. Wang, D.-J. Liu, Science, 2023, 380, 609 |
15. | B. Lu, C. Wahl, R. dos Reis, J. Edgington, X. K. Lu, R. Li, M. E. Sweers, B. Ruggiero, G. T. K. K. Gunasooriya, V. Dravid, L. C. Seitz, Nat. Catal., 2024, 7, 868 |
16. | I. C. Man, H.-Y. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Nørskov, J. Rossmeisl, ChemCatChem, 2011, 3, 1159 |
17. | S. Wang, T. Shen, C. Yang, G. Luo, D. Wang, ACS Catal., 2023, 13, 8670 |
18. | J. Torrero, T. Morawietz, D. García Sanchez, D. Galyamin, M. Retuerto, V. Martin-Diaconescu, S. Rojas, J. A. Alonso, A. S. Gago, K. A. Friedrich, Adv. Energy Mater., 2023, 13, 2204169 |
19. | Z. Wu, Y. Wang, D. Liu, B. Zhou, P. Yang, R. Liu, W. Xiao, T. Ma, J. Wang, L. Wang, Adv. Funct. Mater., 2023, 33, 2307010 |
20. | H. Xie, Z. Zhao, T. Liu, Y. Wu, C. Lan, W. Jiang, L. Zhu, Y. Wang, D. Yang, Z. Shao, Nature, 2022, 612, 673 |
21. | L. Deng, S. Liu, D. Liu, Y.-M. Chang, L. Li, C. Li, Y. Sun, F. Hu, H.-Y. Chen, H. Pan, S. Peng, Small, 2023, 19, 2302238 |
22. | K. A. Stoerzinger, O. Diaz-Morales, M. Kolb, R. R. Rao, R. Frydendal, L. Qiao, X. R. Wang, N. B. Halck, J. Rossmeisl, H. A. Hansen, T. Vegge, I. E. L. Stephens, M. T. M. Koper, Y. Shao-Horn, ACS Energy Lett., 2017, 2, 876 |
23. | H. Wang, P. Yang, X. Sun, W. Xiao, X. Wang, M. Tian, G. Xu, Z. Li, Y. Zhang, F. Liu, L. Wang, Z. Wu, J. Energy Chem., 2023, 87, 286 |
24. | D. Zhang, M. Li, X. Yong, H. Song, G. I. N. Waterhouse, Y. Yi, B. Xue, D. Zhang, B. Liu, S. Lu, Nat. Commun., 2023, 14, 2517 |
25. | Y. Wang, K. Wei, Y. Song, A. A. Obisanya, H. Li, J. Wang, H. Li, F. Gao, Chem. Eng. J., 2024, 497, 154724 |
26. | W. He, X. Tan, Y. Guo, Y. Xiao, H. Cui, C. Wang, Angew. Chem. Int. Ed., 2024, 63, e202405798 |
27. | R. Kötz, S. Stucki, D. Scherson, D. M. Kolb, J. Electroanal. Chem. Interfacial Electrochem., 1984, 172, 211 |
28. | Y. Matsumoto and E. Sato, Mater. Chem. Phys., 1986, 14, 397 |
29. | T. Reier, H. N. Nong, D. Teschner, R. Schlögl, P. Strasser, Adv. Energy Mater., 2017, 7, 1601275 |
30. | Y. Shi, H. Wu, J. Chang, Z. Tang, S. Lu, J. Energy Chem., 2023, 85, 220 |
31. | J. Rossmeisl, A. Logadottir, J. K. Nørskov, Chem. Phys., 2005, 319, 178 |
32. | J. Rossmeisl, Z. W. Qu, H. Zhu, G. J. Kroes, J. K. Nørskov, J. Electroanal. Chem., 2007, 607, 83 |
33. | M. T. M. Koper, Chem. Sci., 2013, 4, 2710 |
34. | J. Shan, T. Ling, K. Davey, Y. Zheng, S.-Z. Qiao, Adv. Mater., 2019, 31, 1900510 |
35. | H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, P. Strasser, ChemCatChem, 2010, 2, 724 |
36. | J. Rossmeisl, K. Dimitrievski, P. Siegbahn, J. K. Nørskov, J. Phys. Chem. C, 2007, 111, 18821 |
37. | M. T. M. Koper, J. Electroanal. Chem., 2011, 660, 254 |
38. | P. Sabatier, Ber. Dtsch. Chem. Ges., 1911, 44, 1984 |
39. | A. Grimaud, A. Demortière, M. Saubanère, W. Dachraoui, M. Duchamp, M.-L. Doublet, J.-M. Tarascon, Nat. Energy, 2017, 2, 16189 |
40. | A. Grimaud, O. Diaz-Morales, B. Han, W. T. Hong, Y.-L. Lee, L. Giordano, K. A. Stoerzinger, M. T. M. Koper, Y. Shao-Horn, Nat. Chem., 2017, 9, 457 |
41. | H. Su, C. Yang, M. Liu, X. Zhang, W. Zhou, Y. Zhang, K. Zheng, S. Lian, Q. Liu, Nat. Commun., 2024, 15, 95 |
42. | E. Fabbri and T. J. Schmidt, ACS Catal., 2018, 8, 9765 |
43. | Z. Shi, Y. Wang, J. Li, X. Wang, Y. Wang, Y. Li, W. Xu, Z. Jiang, C. Liu, W. Xing, J. Ge, Joule, 2021, 5, 2164 |
44. | D. A. Kuznetsov, M. A. Naeem, P. V. Kumar, P. M. Abdala, A. Fedorov, C. R. Müller, J. Am. Chem. Soc., 2020, 142, 7883 |
45. | J. S. Yoo, X. Rong, Y. Liu, A. M. Kolpak, ACS Catal., 2018, 8, 4628 |
46. | S. Hao, M. Liu, J. Pan, X. Liu, X. Tan, N. Xu, Y. He, L. Lei, X. Zhang, Nat. Commun., 2020, 11, 5368 |
47. | M. Okamura, M. Kondo, R. Kuga, Y. Kurashige, T. Yanai, S. Hayami, V. K. K. Praneeth, M. Yoshida, K. Yoneda, S. Kawata, S. Masaoka, Nature, 2016, 530, 465 |
48. | C. Lin, J.-L. Li, X. Li, S. Yang, W. Luo, Y. Zhang, S.-H. Kim, D.-H. Kim, S. S. Shinde, Y.-F. Li, Z.-P. Liu, Z. Jiang, J.-H. Lee, Nat. Catal., 2021, 4, 1012 |
49. | J. Chang, Y. Shi, H. Wu, J. Yu, W. Jing, S. Wang, G. I. N. Waterhouse, Z. Tang, S. Lu, J. Am. Chem. Soc., 2024, 146, 12958 |
50. | A. Zagalskaya and V. Alexandrov, ACS Catal., 2020, 10, 3650 |
51. | J. Edgington and L. C. Seitz, ACS Catal., 2023, 13, 3379 |
52. | F. Zeng, C. Mebrahtu, L. Liao, A. K. Beine, R. Palkovits, J. Energy Chem., 2022, 69, 301 |
53. | N. Danilovic, R. Subbaraman, K.-C. Chang, S. H. Chang, Y. J. Kang, J. Snyder, A. P. Paulikas, D. Strmcnik, Y.-T. Kim, D. Myers, V. R. Stamenkovic, N. M. Markovic, J. Phys. Chem. Lett., 2014, 5, 2474 |
54. | D. Hochfilzer, I. Chorkendorff, J. Kibsgaard, ACS Energy Lett., 2023, 8, 1607 |
55. | S. Cherevko, A. R. Zeradjanin, A. A. Topalov, N. Kulyk, I. Katsounaros, K. J. J. Mayrhofer, ChemCatChem, 2014, 6, 2219 |
56. | Z. Wang, X. Guo, J. Montoya, J. K. Nørskov, npj Comput. Mater., 2020, 6, 160 |
57. | Z. Wang, Y.-R. Zheng, I. Chorkendorff, J. K. Nørskov, ACS Energy Lett., 2020, 5, 2905 |
58. | L. Tang, B. Han, K. Persson, C. Friesen, T. He, K. Sieradzki, G. Ceder, J Am Chem Soc., 2010, 132, 596 |
59. | S. Geiger, O. Kasian, B. R. Shrestha, A. M. Mingers, K. J. J. Mayrhofer, S. Cherevko, J. Electrochem. Soc., 2016, 163, F3132 |
60. | M. A. Hubert, A. M. Patel, A. Gallo, Y. Liu, E. Valle, M. Ben-Naim, J. Sanchez, D. Sokaras, R. Sinclair, J. K. Nørskov, L. A. King, M. Bajdich, T. F. Jaramillo, ACS Catal., 2020, 10, 12182 |
61. | Z. Kou, X. Li, L. Zhang, W. Zang, X. Gao, J. Wang, Small Sci., 2021, 1, 2170017 |
62. | Y. Zeng, M. Zhao, Z. Huang, W. Zhu, J. Zheng, Q. Jiang, Z. Wang, H. Liang, Adv. Energy Mater., 2022, 12, 2201713 |
63. | H. Zhong, Q. Zhang, J. Yu, X. Zhang, C. Wu, Y. Ma, H. An, H. Wang, J. Zhang, X. Wang, J. Xue, Adv. Energy Mater., 2023, 13, 2301391 |
64. | M. Kim, J. Park, M. Wang, Q. Wang, M. J. Kim, J. Y. Kim, H.-S. Cho, C.-H. Kim, Z. Feng, B.-H. Kim, S. W. Lee, Appl. Catal. B, 2022, 302, 120834 |
65. | J. Edgington, N. Schweitzer, S. Alayoglu, L. C. Seitz, J. Am. Chem. Soc., 2021, 143, 9961 |
66. | S. Geiger, O. Kasian, M. Ledendecker, E. Pizzutilo, A. M. Mingers, W. T. Fu, O. Diaz-Morales, Z. Li, T. Oellers, L. Fruchter, A. Ludwig, K. J. J. Mayrhofer, M. T. M. Koper, S. Cherevko, Nat. Catal., 2018, 1, 508 |
67. | C. Yang and A. Grimaud, Catalysts, 2017, 7, 149 |
68. | R. R. Rao, M. J. Kolb, N. B. Halck, A. F. Pedersen, A. Mehta, H. You, K. A. Stoerzinger, Z. Feng, H. A. Hansen, H. Zhou, L. Giordano, J. Rossmeisl, T. Vegge, I. Chorkendorff, I. E. L. Stephens, Y. Shao-Horn, Energy Environ. Sci., 2017, 10, 2626 |
69. | K. Schweinar, B. Gault, I. Mouton, O. Kasian, J. Phys. Chem. Lett., 2020, 11, 5008 |
70. | Y. Wang, R. Ma, Z. Shi, H. Wu, S. Hou, Y. Wang, C. Liu, J. Ge, W. Xing, Chem, 2023, 9, 2931 |
71. | C. H. Choi, C. Baldizzone, J.-P. Grote, A. K. Schuppert, F. Jaouen, K. J. J. Mayrhofer, Angew. Chem. Int. Ed., 2015, 54, 12753 |
72. | K. Beppu, K. Obigane, F. Amano, Catal. Sci. Technol., 2023, 13, 6653 |
73. | M. Etzi Coller Pascuzzi, M. van Velzen, J. P. Hofmann, E. J. M. Hensen, ChemCatChem, 2021, 13, 459 |
74. | J. D. Benck, B. A. Pinaud, Y. Gorlin, T. F. Jaramillo, PLoS One, 2014, 9, e107942 |
75. | A. Angulo, P. van der Linde, H. Gardeniers, M. Modestino, D. Fernández Rivas, Joule, 2020, 4, 555 |
76. | F. Struyven, M. Sellier, P. Mandin, Int. J. Hydrogen Energy, 2023, 48, 32607 |
77. | M. Li, J. Wei, L. Ren, Y. Zhao, Z. Shang, D. Zhou, W. Liu, L. Luo, X. Sun, Cell Rep. Phys. Sci., 2021, 2, 100374 |
78. | Z. Li, R. Hu, J. Song, L. Liu, J. Qu, W. Song, C. Cao, Adv. Mater. Interfaces, 2021, 8, 2001636 |
79. | W. Xu, Z. Lu, X. Sun, L. Jiang, X. Duan, Acc. Chem. Res., 2018, 51, 1590 |
80. | C. Song, D. Jin, S. Choi, Y. Lee, J. Mater. Chem. A, 2023, 11, 26626 |
81. | M. Bernt, A. Hartig-Weiß, M. F. Tovini, H. A. El-Sayed, C. Schramm, J. Schröter, C. Gebauer, H. A. Gasteiger, Chem. Ing. Tech., 2020, 92, 31 |
82. | H. Wang, Z.-n. Chen, Y. Wang, D. Wu, M. Cao, F. Sun, R. Cao, Natl. Sci. Rev., 2024, 11, nwae056 |
83. | Z.-Y. Wu, F.-Y. Chen, B. Li, S.-W. Yu, Y. Z. Finfrock, D. M. Meira, Q.-Q. Yan, P. Zhu, M.-X. Chen, T.-W. Song, Z. Yin, H.-W. Liang, S. Zhang, G. Wang, H. Wang, Nat. Mater., 2023, 22, 100 |
84. | G. Fan, F. Li, D. G. Evans, X. Duan, Chem. Soc. Rev., 2014, 43, 7040 |
85. | Z. Shi, J. Li, Y. Wang, S. Liu, J. Zhu, J. Yang, X. Wang, J. Ni, Z. Jiang, L. Zhang, Y. Wang, C. Liu, W. Xing, J. Ge, Nat. Commun., 2023, 14, 843 |
86. | J. Chen, Y. Ma, T. Huang, T. Jiang, S. Park, J. Xu, X. Wang, Q. Peng, S. Liu, G. Wang, W. Chen, Adv. Mater., 2024, 36, 2312369 |
87. | S. Wang, J. Zang, W. Shi, D. Zhou, Y. Jia, J. Wu, W. Yan, B. Zhang, L. Sun, K. Fan, ACS Appl. Mater. Interfaces, 2023, 15, 59432 |
88. | Y.-N. Zhou, N. Yu, Q.-X. Lv, B. Liu, B. Dong, Y.-M. Chai, J. Mater. Chem. A, 2022, 10, 16193 |
89. | P. Strasser, Acc. Chem. Res., 2016, 49, 2658 |
90. | S. Pan, H. Li, D. Liu, R. Huang, X. Pan, D. Ren, J. Li, M. Shakouri, Q. Zhang, M. Wang, C. Wei, L. Mai, B. Zhang, Y. Zhao, Z. Wang, M. Graetzel, X. Zhang, Nat. Commun., 2022, 13, 2294 |
91. | S. Kong, A. Li, J. Long, K. Adachi, D. Hashizume, Q. Jiang, K. Fushimi, H. Ooka, J. Xiao, R. Nakamura, Nat. Catal., 2024, 7, 252 |
92. | H. Zhao, L. Zhu, J. Yin, J. Jin, X. Du, L. Tan, Y. Peng, P. Xi, C.-H. Yan, Angew. Chem. Int. Ed., 2024, 63, e202402171 |
93. | M. Lu, Y. Zheng, Y. Hu, B. Huang, D. Ji, M. Sun, J. Li, Y. Peng, R. Si, P. Xi, C.-H. Yan, Sci. Adv., 2022, 8, eabq3563 |
94. | J. Hwang, R. R. Rao, L. Giordano, Y. Katayama, Y. Yu, Y. Shao-Horn, Science, 2017, 358, 751 |
95. | S. Stølen, E. Bakken, C. E. Mohn, Phys. Chem. Chem. Phys., 2006, 8, 429 |
96. | T. Bhowmik, M. K. Kundu, S. Barman, ACS Appl. Mater. Interfaces, 2016, 8, 28678 |
97. | J. Chen, P. Cui, G. Zhao, K. Rui, M. Lao, Y. Chen, X. Zheng, Y. Jiang, H. Pan, S. X. Dou, W. Sun, Angew. Chem. Int. Ed., 2019, 58, 12540 |
98. | X. Wang, W. Chen, L. Zhang, T. Yao, W. Liu, Y. Lin, H. Ju, J. Dong, L. Zheng, W. Yan, X. Zheng, Z. Li, X. Wang, J. Yang, D. He, Y. Wang, Z. Deng, Y. Wu, Y. Li, J. Am. Chem. Soc., 2017, 139, 9419 |
99. | X. Bai, X. Zhang, Y. Sun, M. Huang, J. Fan, S. Xu, H. Li, Angew. Chem. Int. Ed., 2023, 62, e202308704 |
100. | J. Zhang, D. Zhu, J. Yan, C.-A. Wang, Nat. Commun., 2021, 12, 6665 |
101. | C. A. Campos-Roldán, R. G. González-Huerta, N. Alonso-Vante, Electrochim. Acta, 2018, 283, 1829 |
102. | A. Mahdavi-Shakib, T. N. Whittaker, T. Y. Yun, K. B. Sravan Kumar, L. C. Rich, S. Wang, R. M. Rioux, L. C. Grabow, B. D. Chandler, Nat. Catal., 2023, 6, 710 |
103. | X. Wang, X. Wan, X. Qin, C. Chen, X. Qian, Y. Guo, Q. Xu, W.-B. Cai, H. Yang, K. Jiang, ACS Catal., 2022, 12, 9437 |
104. | J. Xia, R. Gao, Y. Yang, Z. Tao, Z. Han, S. Zhang, Y. Xing, P. Yang, X. Lu, G. Zhou, ACS Nano, 2022, 16, 19133 |
105. | J. Dai, Y. Zhu, H. A. Tahini, Q. Lin, Y. Chen, D. Guan, C. Zhou, Z. Hu, H.-J. Lin, T.-S. Chan, C.-T. Chen, S. C. Smith, H. Wang, W. Zhou, Z. Shao, Nat. Commun., 2020, 11, 5657 |
106. | B. Yang, Z. Zhang, P. Liu, X. Fu, J. Wang, Y. Cao, R. Tang, X. Du, W. Chen, S. Li, H. Yan, Z. Li, X. Zhao, G. Qin, X.-Q. Chen, L. Zuo, Nature, 2023, 622, 499 |
107. | S. Zhao, S.-F. Hung, L. Deng, W.-J. Zeng, T. Xiao, S. Li, C.-H. Kuo, H.-Y. Chen, F. Hu, S. Peng, Nat. Commun., 2024, 15, 2728 |
108. | I. A. Khan, P. Morgen, S. Gyergyek, R. Sharma, S. M. Andersen, Mater. Chem. Phys., 2023, 308, 128192 |
109. | G.-F. Li, D. Yang, P.-Y. Abel Chuang, ACS Catal., 2018, 8, 11688 |
110. | E. Passalacqua, F. Lufrano, G. Squadrito, A. Patti, L. Giorgi, Electrochim. Acta, 2001, 46, 799 |
111. | J. Wei, Y. Wang, C. Ke, Y. Liu, S. Yang, M. Pan, G. Li, Int. J. Hydrogen Energy, 2024, 69, 1539 |
112. | C. N. Lunardi, A. J. Gomes, F. S. Rocha, J. De Tommaso, G. S. Patience, Can. J. Chem. Eng., 2021, 99, 627 |
113. | H. Wang, Z. Xu, W. Lin, X. Yang, X. Gu, W. Zhu, Z. Zhuang, Nano Res., 2023, 16, 420 |
114. | V. Karimi, R. Sharma, P. Morgen, S. M. Andersen, ACS Appl. Mater. Interfaces, 2023, 15, 49233 |
115. | L. Zhou, Y. Shao, F. Yin, J. Li, F. Kang, R. Lv, Nat. Commun., 2023, 14, 7644 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Schematic illustration of the degradation mechanisms of oxygen evolution reaction (OER) catalysts under acidic conditions.
Adsorbate evolution mechanism (AEM) for oxygen evolution reaction (OER). a Schematic illustration and b Specific reaction steps of AEM pathway for OER under acidic conditions. c Correlation between the binding energies of HO* and HOO*. d Theoretical overpotential for the OER as the function of the Gibbs free energy change of HO* and O* (ΔGO* − ΔGHO*).[16] Copyright 2011, Wiley-VCH Verlag GmbH.
Lattice oxygen oxidation mechanism (LOM) and experimental insights into oxygen participation. a Schematic illustration and b Specific reaction steps of LOM pathway for OER under acidic conditions. c Differential electrochemical mass spectrometry (DEMS) analysis of 34O2 and 36O2 signals from reaction products for 18O-labeled Ir-MnO2 in 0.5 M H2SO4 using H216O.[43] Copyright 2021, Elsevier. d Scheme of band diagrams for Ru-O covalent bond of Y1.8Fe0.2Ru2O7 and Y1.8Cu0.2Ru2O7.[44] Copyright 2020, American Chemical Society.
Oxide path mechanism (OPM) for oxygen evolution and catalytic enhancement through dual active sites. a Schematic illustration of OPM pathway. b O-O radical coupling facilitated by symmetrical dual active sites.[48] Copyright 2021, Nature Publishing Group. c Schematic illustration of Ru atom array-doped Co3O4 (Ru AA-Co3O4). d Operando attenuated total reflectance surface-enhanced IR spectroscopy (ATR-SEIRAS) spectra of 18O-labeled Ru AA-Co3O4 in H216O electrolyte.[49] Copyright 2024, American Chemical Society.
Elemental composition and stability of OER catalysts under acidic conditions. a Frequency at which each element appears in acid-stable oxides. Elements with zero frequency are shaded in gray. Sb/Ti/Sn/Ge/Mo/W-based oxides tend to remain stable in strong acids.[57] Copyright 2020, American Chemical Society. b Correlation between calcination temperature and the crystallinity and stability of IrOx/Ti.[59] Copyright 2016, The Electrochemical Society. c Pourbaix diagrams of Ru-based perovskites calculated to evaluate their thermodynamic stability.[60] Copyright 2020, American Chemical Society.
Structural changes and degradation of OER catalysts during prolonged cycling. a Evolution of overpotential at 10 mA cm−2geo (current density normalized by geometric area), electrochemical capacitance, charge transfer resistance (RCT) of the electrode in Regions I, II, and III during prolonged cycling stability assessments. b Graphical depiction of the surface amorphization and metal to insulator transition (MIT) processes in the SrIr0.8Zn0.2O3 (SIZO) catalyst during prolonged electrochemical cycling.[65] Copyright 2021, American Chemical Society.
Influence of surface roughness and catalyst morphology on bubble detachment efficiency. a Schematic illustration of how the surface roughness affecting the bubble contact angle at given intrinsic aerophilicity.[79] Copyright 2018, American Chemical Society. b Chronopotentiometric monitoring of generated O2 gas desorption for different samples. Potential changes were measured at a constant current density of 5 mA cm−2 between 400 and 500 s. The insets of the respective chronopotentiograms present a schematic illustration of the O2 gas desorption behaviour for the corresponding electrode catalysts.[80] Copyright 2023, The Royal Society of Chemistry.
Strategies to enhance OER stability and activity through structural modifications. a IrOx percentage (estimated by EXAFS analysis) for Au@AuxIr1−x. b Structure–activity relationships.[82] Copyright 2024, Oxford University Press. c Nb K-edge spectra of Nb foil, Nb0.1Ru0.9O2, and Nb2O5. Inset is the enlarged image of selected area. d Ru 3p XPS spectra of Nb0.1Ru0.9O2, Nb0.2Ru0.8O2, and Nb0.1Ru0.9O2 after stability test and pure RuO2.[12] Copyright 2023, Elsevier. e Normalized LSV curves of MRuOx. f The variation of apparent overpotential at 10 mA cm−2 with Ru oxidation states.[85] Copyright 2023, Springer Nature.
Surface reconstruction and its impact on catalyst stability. a Schematic of surface reconstruction for RuFe@CF and Ru@CF during OER process in acidic media.[86] Copyright 2024, Wiley-VCH GmbH. b Pseudocapacitive behaviour in the first and second cycles during CV of E–Zn–RuO2 and C–Zn–RuO2, and the redox reaction on Ru sites during the acidic OER process.[88] Copyright 2022, Royal Society of Chemistry.
Role of structural parameters and oxygen vacancies in enhancing catalyst stability. a Atomic structure of catalyst with 67% planar oxygen (Opla) concentrations (M67%) and the sites involved in the Opla and pyramidal oxygen (Opyr) mechanisms are indicated in red and black boxes, respectively. Ot1 and Ot2 represent terminal oxygens. b Free-energy diagrams for the two dissolution mechanisms on the (001) surface of M67%. c Projected density of states (PDOS) for the 2p orbitals of Opyr and Opla at the M67% (001) surface. d Calculated ΔGPDS of the Opyr and Opla mechanisms for dissolution of MnO2 with different Opla concentrations.[91] Copyright 2024, Springer Nature. e Pourbaix diagrams of 4 atoms’ model with and without Ti doping calculated by DFT. f OER free energy diagrams at the 5Ir site of Ti-IrO2 surface based on AEM and LOM.[70] Copyright 2023, Elsevier. g Illustration of mechanism shift and electronic structure-stability relationship of OER controlled by oxygen defect contents.[93] Copyright 2022, American Association for the Advancement of Science.
Optimizing catalyst-ionomer interactions for enhanced OER performance and stability. a Zeta potential and b particle size of catalyst inks. Error bars are standard deviations from three independent measurements. c Schematic illustration to elucidate ionomer equivalent weight (EW) effect on the catalyst layer (CL) structure.[111] Copyright 2024, Elsevier. d Microscope images of bubble formation on catalyst-supported carbon papers at different elapsed times of the chronoamperometry tests in 0.5M H2SO4 with or without potassium perfluorobutyl sulfonate (PPFBS).[113] Copyright 2022, Springer Nature. e Schematic illustration of synthesis of Ru/TiOx as binder-free electrode towards oxygen evolution reaction (OER) in acidic media.[115] Copyright 2023, Springer Nature.