| Citation: | Yanjin Chen, Wenyue Tian, Shaohui Yuan, Huiting Yang, Ting Jin, Lifang Jiao. Deep eutectic electrolytes enable sustainable and high-performance metal-Ion batteries[J]. Energy Lab. doi: 10.54227/elab.20250011 |
Deep eutectic electrolytes (DEEs), as an emerging class of electrolytes, exhibit unique advantages through the versatile intermolecular interactions (such as hydrogen bond, van der Waals forces, etc.), including high ionic conductivity, wide-temperature adaptability, non-flammability, and considerable electrochemical stability. In this review, the fundamentals and mechanisms of DEEs are initially discussed. Subsequently, we systematically summarize recent advances in the application of DEEs in conventional liquid, solid-state, and aqueous metal-ion batteries (MIBs). Researches have demonstrated that DEEs significantly improve the cycling stability and operational safety of MIBs by regulating ion solvation structures, constructing optimized electrode/electrolyte interphases, and inhibiting dendrite growth. Moreover, the synergistic effects of multi-component DEEs (e.g., ternary or quaternary mixtures) are further discussed. Despite these promising features, the practical implementation of DEEs still face challenges such as high viscosity, and issues related to large-scale production. Future researches are suggested to prioritize the rational design of DEEs, in-depth exploration of interfacial stability mechanisms, and the development of green, scalable synthesis processes to facilitate the commercialization of DEEs for next-generation energy storage technologies. DEEs play a critical role in enabling sustainable and high-performance MIBs. We hope this review provides guidance to the development of DEEs in energy storage systems.
| 1. | J. Hao, X. Li, X. Song, Z. Guo, EnergyChem, 2019, 1, 100004 |
| 2. | L. Geng, X. Wang, K. Han, P. Hu, L Zhou, Y. Zhao, W. Luo, L. Mai, ACS Energy Lett., 2022, 7, 247 |
| 3. | Y. Deng, T. Jin, C. Li, T. Zhang, W. Zhang, S. Cui, C. Shen, L. Jiao, H. Huang, K. Xie, Energy Storage Mater., 2025, 74, 103935 |
| 4. | Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Nat. Energy., 2019, 4, 269 |
| 5. | Charlie A. F. Nason, Yang Xu, eScience, 2024, 4, 100183 |
| 6. | T. Zhang, J. Yu, H. Guo, J. Qi, M. Che, M. Hou, P. Jiao, Z. Zhang, Z. Yan, L. Zhou, K. Zhang, J. Chen, Chem. Soc. Rev., 2024, 53, 12043 |
| 7. | X. Li, C. Deng, M. Liu, J. Xiong, X. Zhang, Q Yan, J. Lin, C. Chen, F. Wu, Yi Zhao, R. Chen, L. Li, eScience, 2025, 5, 100394 |
| 8. | J. Li, J. Chen, X. Xu, J. Sun, B. Huang, T. Zhao, Energy Environ. Sci., 2024, 17, 5521 |
| 9. | Y. Li, F. Wu, Y. Li, M. Liu, X. Feng, Y. Bai, Chem. Soc. Rev., 2022, 51, 4484 |
| 10. | X. Liu, A. Mariani, T. Diemant, M. E. D. Pietro, X. Dong, A. Mele, S. Passerini, Adv. Mater., 2024, 36, 2309062 |
| 11. | J. Sun, L. A. O'Dell, M. Armand, P. C. Howlett, M. Forsyth, ACS Energy Lett., 2021, 6, 2481 |
| 12. | X. Cui, S. Ding, Y. Niu, H. Wang, Y. Lu, Y. Hu, W. Xue, Adv. Mater., 2025, 37, 2415611 |
| 13. | J. S. Terreblanche, T. Luo, L. F. J. Piper, W. M. Dose, Adv. Energy Mater., 2024, 15, 2404427 |
| 14. | A. Pipertzis, N. Abdou, J. Xu, L. E. Asp, A. Martinelli, J. Swenson, Energy Mater., 2023, 3, 300050 |
| 15. | X. T. Li, J. Chou, Y. H. Zhu, W. P. Wang, S. Xin, Y. G. Guo, eScience, 2023, 3, 100121 |
| 16. | X. Zhu, Z. Lin, J. Lai, T. Lv, T. Lin, H. Pan, J. Feng, Q. Wang, S. Han, R. Chen, L. Chen, L. Suo, Angew. Chem. Int. Ed., 2024, 63, e202317549 |
| 17. | Y. Feng, M. Liu, W. Qi, H. Liu, Q. Liu, C. Yang, Y. Tang, X. Zhu, S. Sun, Y. Li, T. Chen, B. Xiao, X. Ji, Y. You, P. Wang, Angew. Chem. Int. Ed., 2025, 64, e202415644 |
| 18. | F. Hai, Y. Yi, Z. Xiao, J. Guo, X. Gao, W. Chen, W. Xue, W. Hua, W. Tang, M. Li, Adv. Energy Mater., 2024, 14, 2304253 |
| 19. | R. Vijayaraghavan, M. Surianarayanan, V. Armel, D. R Macfarlane, V. P. Sridhar, Chem. Commun, 2009, 6297 |
| 20. | J. Wei, P. Zhang, J. Sun, Y. Liu, F. Li, H. Xu, R. Ye, Z. Tie, L. Sun, Z. Jin, Chem. Soc. Rev., 2024, 53, 10335 |
| 21. | W. Lu, T. Zheng, X. Zhang, T. He, Y. Sun, S. Li, B. Guan, D. Zhang, Z. Wei, H. Jiang, H. J. Fan, F. Du, Angew. Chem. Int. Ed., 2025, 127, e202417171 |
| 22. | Z. Xu, B. Xiang, C. Liu, Y. Sun, J. Xie, J. Tu, X. Xu, X. Zhao, RSC Adv., 2021, 11, 30383 |
| 23. | C. Cazorla, Nat. Phys., 2025, 21, 11 |
| 24. | W. Li, M. Li, H. Ren, J. T. Kim, R. Li, T. Sham, X. Sun, Energy Environ. Sci., 2025, 18, 4521 |
| 25. | A. P. Abbott, G Capper, D. L. Davies, R. K. Rasheed, V. Tambyrajah, Chem. Commun, 2003, 70 |
| 26. | E. L. Smith, A. P. Abbott, K. S. Ryder, Chem. Rev., 2014, 114, 11060 |
| 27. | S. S. Gholami, M. Pérez-Page, C. D'Agostino, J. Esteban, Chem. Eng. J., 2025, 505, 159497 |
| 28. | A. Entezari-Zarandi, F. Larachi, J. Rare. Earth., 2019, 37, 528 |
| 29. | T. X. Yang, L. Q. Zhao, J. Wang, G. L. Song, H. M. Liu, H. Cheng, Z. Yang, ACS Sustainable Chem. Eng., 2017, 5, 5713 |
| 30. | M. K. Tran, M. T. F. Rodrigues, K. Kato, G. Babu, P. M. Ajayan, Nat. Energy, 2019, 4, 339 |
| 31. | B. Chenthamara, R. L. Gardas, ACS Sustainable Chem. Eng., 2024, 12, 12827 |
| 32. | P. J. Griffin, T. Cosby, A. P. Holt, R. S. Benson, J. R. Sangoro, J. Phys. Chem. B., 2014, 118, 9378 |
| 33. | W. Ling, F. Mo, X. Wu, X. Zeng, J. Xiong, Y. Huang, Nat. Commun., 2025, 16, 4868 |
| 34. | L. Geng, J. Meng, X. Wang, C. Han, K. Han, Z. Xiao, M. Huang, P. Xu, L. Zhang, L. Zhou, L. Mai, Angew. Chem. Int. Ed., 2022, 31, e202206717 |
| 35. | B. B. Hansen, S. Spittle, B. Chen, D. Poe, Y. Zhang, J. M. Klein, A. Horton, L. Adhikari, T. Zelovich, B. W. Doherty, B. Gurkan, E. J. Maginn, A. Ragauskas, M. Dadmun, T. A. Zawodzinski, G. A. Baker, M. E. Tuckerman, R. F. Savinell, J. R. Sangoro, Chem. Rev., 2021, 121, 1232 |
| 36. | E. R. Cooper, C. D. Andrews, P. S. Wheatley, P. B. Webb, P. Wormald, R. E. Morris, Nature, 2004, 430, 1012 |
| 37. | W. Chen, J. Jiang, X. Lan, X. Zhao, H. Mou, T. Mu, Green Chem., 2019, 21, 4748 |
| 38. | L. I. N. Tomé, V. Baião, W. Silva, C. M. A. Brett, Appl. Mater. Today, 2018, 10, 30 |
| 39. | Z. Liu, F. Feng, W. Feng, G. Wang, B. Qi, M. Gong, F. Zhang, H. Pang, Energy Environ. Sci., 2025, 18, 3568 |
| 40. | M. Wu, J. Wang, Z. Liu, X. Liu, J. Duan, T. Yang, J. Lan, Y. Tan, C. Wang, M. Chen, K. Ji, Adv. Mater., 2023, 7, 2209924 |
| 41. | M. Cheng, Q. Sun, T. Sun, M. Shi, W. Zhang, D. Li, Z. Zha, H. Li, K. Zhang, Z. Tao, Energy Storage Mater., 2025, 77, 104174 |
| 42. | C. Sheng, W. Li, H. Zhou, P. He, Chem. Commun., 2025, 61, 7265 |
| 43. | T. Liu, H. Wu, X. Du, J. Wang, Z. Chen, H. Wang, J. Sun, J. Zhang, J. Niu, L. Yao, J. Zhao, G. Cu, ACS Appl. Mater. Interfaces, 2022, 14, 33041 |
| 44. | G. A. L. e Souza, E. Pelegano-Titmuss, M. Muñoz, B. Gurkan, M. E. di Pietro, A. Mele, P. Stallworth, S. Greenbaum, J. Mol. Liq., 2024, 416, 126526 |
| 45. | P. Sun, P. Lu, J. Xu, Q. Ma, W. Zhang, A. A. Shah, H. Su, W. Yang, Q. Xu, Electrochim. Acta, 2021, 394, 139140 |
| 46. | D. Yu, Z. Xue, T. Mu, Chem. Soc. Rev., 2021, 50, 8596 |
| 47. | Y. Hu, H. Li, X. Huang, L. Chen, Electrochem. Commun., 2004, 6, 28 |
| 48. | Y. Wang, H. Zhou, Energy Environ. Sci., 2016, 9, 2267 |
| 49. | B. Joos, T. Vranken, W. Marchal, M. Safari, M. K. V. Bael, A. T. Hardy, Chem. Mater., 2018, 30, 655 |
| 50. | J. Heo, K. Shin, H. T. Kim, Adv. Sci., 2022, 28, 2204908 |
| 51. | R. Mori, RSC Adv., 2019, 9, 22220 |
| 52. | J. Hwang, A. N. Sivasengaran, H. Yang, H. Yamamoto, T. Takeuchi, K. Matsumoto, R. Hagiwara, ACS Appl. Mater. Interfaces, 2021, 13, 2538 |
| 53. | C. Zhang, L. Zhang, Y. Ding, X. Guo, G. Yu, ACS Energy Lett., 2018, 3, 2875 |
| 54. | K. Xu, Chem. Rev., 2004, 104, 4303 |
| 55. | S. Sreenath, V. Dave, P. Kumar, V. Verma, R. K. Nagarale, Electrochim. Acta, 2024, 508, 145242 |
| 56. | G. Zante, A. Braun, A. Masmoudi, R. Barillon, D. Trébouet, M. Boltoeva, Miner. Eng., 2020, 1, 106512 |
| 57. | X. Pei, Y. Li, T. Ou, X. Liang, Y. Yang, E. Jia, Y. Tan, S. Guo, Angew. Chem. Int. Ed., 2022, 61, e202205075 |
| 58. | W. Sun, F. Zhang, J. Lai, B. Li, X. Hu, B. Gui, N. Chen, X. Guo, Z. Li, N. Chen, L. Li, F Wu, R Chen, Angew. Chem. Int. Ed., 2024, 63, e202409965 |
| 59. | H. Guo, L. Li, X. Xu, M. Zeng, S. Chai, L. Wu, H. Li, Angew. Chem. Int. Ed., 2022, 61, e202210695 |
| 60. | G. Lu, H. Qiu, X. Du, K. K. Sonigara, J. Wang, Y. Zhang, Z. Chen, L. Chen, Y. Ren, Z. Zhao, J. Du, S. Li, J. Zhao, G. Cui, Chem. Mater., 2022, 34, 8975 |
| 61. | J. Tang , Z. Da, C. Yang, R. Chanajaree, X. Zhang, J. Qin, Chem. Eng. J., 2025, 508, 161101 |
| 62. | G. Lyu, C. Korte, J. Luo, Materials, 2025, 18, 2048 |
| 63. | J. Li, S. Qin, M. Xu, W. Wang, J. Zou, Y. Zhang, H. Dou, Z. Chen, Adv. Funct. Mater., 2024, 34, 2402186 |
| 64. | R. Vadthya, C. Fetrow, O. Oladoyin, J. Wu, S. Ivanov, Y. Wang, D. Chen, X. D. Zhou, S. Wei, ChemSusChem, 2025, 18, e202400983 |
| 65. | X. Song, Y. Ge, H. Xu, S. Bao, L. Wang, X. Xue, Q. Yu, Y. Xing, Z. Wu, K. Xie, T. Zhu, P. Zhang, Y. Liu, Z. Wang, Z. Tie, J. Ma, Z. Jin, J. Am. Chem. Soc., 2024, 146, 7018 |
| 66. | L. Zhao, A. Xu, Y. Cheng, H. Xu, L. Xu, L. Mai, Angew. Chem. Int. Ed., 2024, 63, e202411224 |
| 67. | J. Yang, M. Sun, R. Li, L. Yin, B. Huang, X. Pu, J. Mater. Chem. A, 2024, 12, 27269 |
| 68. | D. Sheng, X. Liu, Z. Yang, M. Zhang, Y. Li, P. Ren, X. Yan, Z. Shen, D. Chao, Adv. Funct. Mater., 2024, 34, 2402014 |
| 69. | H. Hong, J. Zhu, Y. Wang, Z. Wei, X. Guo, S. Yang, R. Zhang, H. Cui, Q. Li, D. Zhang, C. Zhi, Adv. Mater., 2024, 36, 2308210 |
| 70. | C. Zhao, Q. Cheng, Zi. Chen, Shu. Sun, X. Chen, Xue. Zhang, B. Li, Jia. Huang, Q. Zhang, J. Am. Chem. Soc., 2022, 144, 14638 |
| 71. | T. Zhang, X. Zhu, J. Xiong, Z. Xue, Y. Cao, K. C. Gordon, G. Xu, M. Zhu, Nat. Commun., 2025, 16, 4867 |
| 72. | Z. Xu, X. Zhang, J. Yang, X. Cui, Y. Nuli, J. Wang, Nat. Commun., 2024, 15, 9856 |
| 73. | S. Ji, J. Li, J. Li, C. Song, S. Wang, K. Wang, K. S. Hui, C. Zha, Y. Zheng, D. A. Dinh, S. Chen, J. Zhang, W. Mai, Z. Tang, Z. Shao, K. N. Hui, Adv. Funct. Mater., 2022, 32, 2200771 |
| 74. | Y. Feng, C. Lin, H. Qin, G. Wei, C. Yang, Y. Tang, X. Zhu, S. Sun, T. Chen, M. Liu, H. Zheng, X. Ji, X. Ji, Y. You, P. Wang, J. Am. Chem. Soc., 2025, 147, 16107 |
| 75. | H. Wan, J. Xu, C. Wang, Nat. Rev. Chem, 2024, 8, 30 |
| 76. | M. Li, J. Lu, X. Ji, Y. Li, Y. Shao, Z. Chen, C. Zhong, K. Amine, Nat. Rev. Mater., 2020, 5, 276 |
| 77. | Y. Feng, M. Liu, J. Wu, C. Yang, Q. Liu, Y. Tang, X. Zhu, G. Wei, H. Dong, X. Fan, S. Chen, W. Hao, L. Yu, X. Ji, Y. You, P. Wang, J. Lu, Angew. Chem. Int. Ed., 2024, 63, e202403585 |
| 78. | A. Rudola, R. Sayers, C. J. Wright, J. Barker, Nat. Energy, 2023, 8, 215 |
| 79. | W. Li , W. Kong , W. Liu , S. Xu , H. Zhu , S. Liu , W. Yu , Z. Wen, Energy Storage Mater., 2024, 65, 103103 |
| 80. | X. Ren, R. Dou, Q. Wang, K. Hu, K. Su, C. Liu, L. Lu, Adv. Funct. Mater, 2025, 1,2500464 |
| 81. | N. ITO, T. HOSAKA, R. TATARA, Z. T. GOSSAGE, S. KOMABA, Electrochemistry, 2025, 93, 027018 |
| 82. | N. Z. Hardin, Z. Duca, A. Imel, P. A. Ward, ChemElectroChem, 2022, 9, e202200628 |
| 83. | D. D. Sloovere, D. E. P. Vanpoucke, A. Paulus, B. Joos, L. Calvi, T. Vranken, G. Reekmans, P. Adriaensens, N. Eshraghi, A. Mahmoud, F. Boschini, M. Safari, M. K. V. Bael, A. Hardy, Adv. Energy and Sust. Res., 2022, 3, 2100159 |
| 84. | J. Chen, Z. Yang, X. Xu, Y. Qiao, Z. Zhou, Z. Hao, X. Chen, Y. Liu, X. Wu, X. Zhou, L. Li, S. Chou, Adv. Mater., 2024, 36, 2400169 |
| 85. | Y. Liang, W. Wu, J. Cao, R. Guo, M. Cao, J. Zhang, M. Wang, W. Yu, J. Zhang, Small, 2022, 18, 2104538 |
| 86. | W. Tian, G. Lin, S. Yuan, T. Jin, Q. Wang, L. Jiao, Adv. Mater., 2024, 36, 2308586 |
| 87. | E. Fu, Y. Zhang, C. Zheng, Y. Hua, S. Hao, X. Gao, ACS Appl. Mater. Interfaces, 2025, 17, 7811 |
| 88. | C. Wang, Y. He, P. Zou, Q. He, J. Li, H. L. Xin, J. Am. Chem. Soc, 2025, 147, 19084 |
| 89. | W. Tian, G. Lin, S. Yuan, T. Jin, Q. Wang, L. Jiao, Angew. Chem. Int. Ed., 2025, 64, e202423075 |
| 90. | Y. Liu, S. Wang, W. Chen, W. Kong, S. Wang, H. Liu, L. Ding, L. X. Ding, H. Wang, Adv. Mater., 2024, 36, 2401837 |
| 91. | M. W. Logan, S. Langevin, B. Tan, A. W. Freeman, C. Hoffman, D. B. Trigg, K. Gerasopoulos, J. Mater. Chem. A, 2020, 8, 8485 |
| 92. | S. Wu, F. Tang, K. Zhang, L. Zhang, F. Huang, Adv. Funct. Mater, 2025, 2501107 |
| 93. | T. Jin, X. Ji, P. Wang, K. Zhu, J. Zhang, L. Cao, L. Chen, C. Cui, T. Deng, S. Liu, N. Piao, Y. Liu, C. Shen, K. Xie, L. Jiao, C. Wang, Angew. Chem. Int. Ed., 2021, 60, 11943 |
| 94. | T. Sun, S. Zheng, H. Du, Z. Tao, Nano-Micro Lett., 2021, 13, 204 |
| 95. | G. Fang, J. Zhou, A. Pan, S. Liang, ACS Energy Lett., 2018, 3, 2480 |
| 96. | K. Xie, K. Ren, Q. Wang, Y. Li, F. Ma, C. Sun, Y. Li, X. Zhao, C. Lai, eScience, 2023, 3, 100153 |
| 97. | X. Lin, G. Zhou, M. J. Robson, J. Yu, S. C. T. Kwok, F. Ciucc, Adv. Funct. Mater., 2022, 32, 2109322 |
| 98. | W. Wang, A. Mu, Y. Wang, J. Wang, B. Yang, Electrochim. Acta, 2024, 504, 114926 |
| 99. | Xu, C., Li, B., Du, H., Kang, F, Angew. Chem. Int. Ed., 2012, 51, 933 |
| 100. | Q. Peng, R. Cao, H. Ma, Y. Li, E. Zhu, X. Zhu, N. Ma, M. Xue, X. Zhang, J. Mater. Chem. A, 2025, 13, 6586 |
| 101. | W. Deng, Z. Deng, Y. Chen, X. Wang, Angew. Chem. Int. Ed., 2024, 63, e202316499 |
| 102. | Y. Zhu, X. Guo, Y. Lei, W. Wang, A. H. Emwas, Y. Yuan, Y. He, H. N. Alshareef, Energy Environ. Sci., 2022, 15, 1282 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
a Schematic representation of typical MIBs. b Radar plots comparing the properties of different electrolyte types. Values (distances from the center) range from 0 to 5, with 5 indicating the optimal performance for each property. c Phase diagram of eutectic electrolytes with two components. d Applications of DES. Metallurgy.[28] Copyright 2019, Chinese Society of Rare Earths. Recycling.[30] Copyright 2019, Springer Nature. Catalysis.[29] Copyright 2017, American Chemical Society. Medicine.[32] Copyright 2014, American Chemical Society. e Number of publications dealing with DEEs for batteries from 2004 to 2024. The keywords used for the search in the Web of Science were ‘deep eutectic electrolytes’. f four types of deep eutectic solvents.
Development history of DESs. DEEs in Al-air batteries.[51] Copyright 2019, The Royal Society of Chemistry. Rich metal salts and ligands.[39] Copyright 2025, The Royal Society of Chemistry. DEEs for Na-ion batteries.[84] Copyright 2024, Wiley-VC. DEEs for high-voltage (HV) lithium metal batteries.[67] Copyright 2024, The Royal Society of Chemistry. Ternary deep eutectic electrolytes (TDESs) for Mg-ion batteries.[65] Copyright 2024, American Chemical Society.
Scope and content diagram are discussed in this review. Solvation Structure of DEEs.[63] Copyright 2024, Wiley-VCH. Competitive solvation shell.[65] Copyright 2024, American Chemical Society. Design Model for Solid-State DEEs.[90] Copyright 2024, Wiley-VCH. Nonflammability.[84] Copyright 2024, Wiley-VCH. Comparison of ionic conductivity and Ea, and eutectic-based polymer electrolytes.[87] Copyright 2025, American Chemical Society. Cycle performance of DEEs and wide electrochemical window.[101] Copyright 2024, Wiley-VCH.
a Electrostatic potential distribution of the coordination structure in Li(DMPY)4TFSI. b The relative contents of C-F/LiF, and C-N/Li3N within the SEI layer at varying etching depths. c Quantified atomic ratios of the formed SEI at varying etching depths.[80] Copyright 2025, Wiley-VCH. Coordination environment and Molecular electrostatic potential map of d LiPF6 and methyl e LiTFSI and methylcarbamate. f FTIR of DEEs and starting materials. g ionic conductivity of DEEs at different temperatures. h cyclic voltammetry of DEEs at 25 mV/s sweep rate with Pt|Li|Li three electrode setup.[82] Copyright, 2022, Wiley-VCH.
a Schematic representation of the replacement of intermolecular hydrogen bonds between NMA molecules by ionic interactions in DESs. b Electronic band structure of gas-phase molecules and clusters around the HOMO−LUMO gap. The HOMO is aligned to zero for all systems.[83] Copyright 2022, Wiley-VCH. c Schematic illustration of electrolyte design. d LUMO/HOMO values of NaClO4, SN, DTD, and their mixtures.[84] Copyright 2024, Wiley-VCH.
The optical images of the dissolution tests and UV spectrum characterizations of the TPA electrodes immersed in a, c DEEs and b, d in carbonate-based electrolytes for 24 h.[85] Copyright 2021, Wiley-VCH. e DSC curves during heating of our DEEs compared with concentrated electrolytes using TMU. Structure analysis of DEEs. Raman spectra of LiFSA+1,3-DMU for g S-N-S stretching mode and h S=O stretching mode regions.[81] Copyright, 2025, J-STAGE.
a Schematic illustration for the configuration of cathode-supported UiO-66@KANF layer. b Cross-section and c top-surface SEM images of cycled anodes collected from Li||LFP batteries.[90] Copyright 2024, Wiley-VCH. d Schematic representation of the synthetic process for the EGPE. e Image showing entire cell stack. f Close-up view of the electrode/EGPE interface.[91] Copyright 2020, The Royal Society of Chemistry.
a schematic illustration of intermolecular interactions of the solid-state electrolyte system. b RDF of Na+ in the PVDF-HFP/SNF@TMPU-DEE electrolyte. c MSD of Na+ and TFSI− in the composite electrolytes with and without DEE. d Cycling performance of the NVP||PVDF-HFP/SNF@TMPU-DEE||Na cell at 3 C and 26 °C.[92] Copyright, 2025, Wiley-VCH. e Illustration of the preparation of the composite electrolyte. f The ionic conductivities of LNPA, LNPA-8F, and LNPA-15F composite electrolytes at room temperature. g Tg curves of the three composite electrolytes.[87] Copyright 2025, American Chemical Society.
a Schematic diagram of the preparation of DMEEs. b Average Zn2+ solvation structure in ZF and DMEE. c Dendrites and side reactions on the Zn anode in ZF and SEI of Zn anode in DMEEs.[63] Copyright 2024, Wiley-VCH. d Schematic illustration. The competitive eutectic coordination chemistry. e Diagram of the energy barriers in step-by-step desolvation process. f Schematic illustration of the hydrogen bond reconstruction using competitive eutectic electrolyte.[101] Copyright 2024, Wiley-VCH. g – i High-resolution XPS spectra at V 2p, Mg 1s, and O 1s regions of the Mn-NVO electrode at different discharged/charged states.[65] Copyright 2024, American Chemical Society.