| Citation: | Yanan Li, Ruopian Fang, Jiangtao Xu, Da-Wei Wang, Lixue Jiang. Surface reconstruction of CoAl hydroxide electrodes for accelerated oxygen evolution reaction[J]. Energy Lab. doi: 10.54227/elab.20250003 |
Water electrolysis powered by renewable energy is recognized as a sustainable approach for green hydrogen production. Rational design of efficient and low-cost electrocatalysts especially for the sluggish oxygen evolution reaction (OER) remains a significant challenge. Here, we report a two-step surface reconstruction strategy, alkaline etching and anodic activation on CoAl hydroxide electrodes which remarkably enhance the OER performance. A low overpotential of 269 mV at 10 mA cm−2 is achieved in 1 M KOH electrolyte, along with a notably reduced
| 1. | S. Chu, A. Majumdar, Nature, 2012, 488, 294 |
| 2. | M. Wang, Z. Wang, X. Gong, Z. Guo, Renew. Sust. Energ. Rev., 2014, 29, 573 |
| 3. | W. Wang, Y. Liu, S. Chen, Acta Physico-Chimica Sinica, 2024, 40, 2303059 |
| 4. | J. Ding, D. Zhang, A. Riaz, H. Gu, J. Z. Soo, P. R. Narangari, C. Jagadish, H. H. Tan, S. Karuturi, CCS Chemistry, 2024, 6, 2692 |
| 5. | N. Wen, X. Jiao, Y. Xia, D. Chen, Mater. Chem. Front., 2023, 7, 4833 |
| 6. | F. Zeng, C. Mebrahtu, L. Liao, A. K. Beine, R. Palkovits, J. Energy Chem., 2022, 69, 301 |
| 7. | F. Liu, Z. Fan, Chem. Soc. Rev., 2023, 52, 1723 |
| 8. | Z. Kou, X. Li, L. Zhang, W. Zang, X. Gao, J. Wang, Small Sci., 2021, 1, 2100011 |
| 9. | L. Wu, Z. Guan, D. Guo, L. Yang, X. a. Chen, S. Wang, Small, 2023, 19, 2304007 |
| 10. | L. Gao, X. Cui, C. D. Sewell, J. Li, Z. Lin, Chem. Soc. Rev., 2021, 50, 8428 |
| 11. | H. Li, L. Zhang, S. Wang, J. Yu, Int. J. Hydrog. Energy, 2019, 44, 28556 |
| 12. | Q. Xie, Z. Cai, P. Li, D. Zhou, Y. Bi, X. Xiong, E. Hu, Y. Li, Y. Kuang, X. Sun, Nano Res., 2018, 11, 4524 |
| 13. | H. Jiang, Q. He, X. Li, X. Su, Y. Zhang, S. Chen, S. Zhang, G. Zhang, J. Jiang, Y. Luo, P. M. Ajayan, L. Song, Adv. Mater., 2019, 31, 1805127 |
| 14. | P. Guo, S. Cao, Y. Wang, X. Lu, Y. Zhang, X. Xin, X. Chi, X. Yu, I. Tojiboyev, H. Salari, A. J. Sobrido, M. Titirici, X. Li, Appl. Catal. B, 2022, 310, 121355 |
| 15. | G. R. Zhang, L. L. Shen, P. Schmatz, K. Krois, B. J. M. Etzold, J. Energy Chem. , 2020, 49, 153 |
| 16. | K. Wu, F. Chu, Y. Meng, K. Edalati, Q. Gao, W. Li, H. J. Lin, J. Mater. Chem. A. , 2021, 9, 12152 |
| 17. | B. Dong, M. -X. Li, X. Shang, Y. N. Zhou, W. H. Hu, Y. M. Chai, J. Mater. Chem. A. , 2022, 10, 17477 |
| 18. | J. Huang, Y. Li, Y. Zhang, G. Rao, C. Wu, Y. Hu, X. Wang, R. Lu, Y. Li, J. Xiong, Angew. Chem. Int. Ed., 2019, 131, 17619 |
| 19. | H. Bode, K. Dehmelt, J. Witte, Z. Anorg. Allg. Chem., 1969, 366, 1 |
| 20. | F. Dionigi, P. Strasser, Adv. Energy Mater., 2016, 6, 1600621 |
| 21. | B. S. Yeo, A. T. Bell, J. Phys. Chem. C., 2012, 116, 8394 |
| 22. | S. L. Medway, C. A. Lucas, A. Kowal, R. J. Nichols, D. Johnson, J. Electroanal. Chem., 2006, 587, 172 |
| 23. | H. Huang, C. Yu, H. Huang, C. Zhao, B. Qiu, X. Yao, S. Li, X. Han, W. Guo, L. Dai, J. Qiu, Nano Energy, 2019, 58, 778 |
| 24. | Z. Cai, Y. Bi, E. Hu, W. C. Liu, N. S. Dwarica, Y. Tian, X. Li, Y. Kuang, Y. Li, X. Q. Yang, H. Wang, X. Sun, Adv. Energy Mater., 2018, 8, 1701694 |
| 25. | L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo, S. Wang, L. Dai, Angew. Chem. Int. Ed., 2016, 55, 5277 |
| 26. | R. Zhang, C. Tang, R. Kong, G. Du, A. M. Asiri, L. Chen, X. Sun, Nanoscale, 2017, 9, 4793 |
| 27. | M. C. Biesinger, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, Phys. Chem. Chem. Phys., 2012, 14, 2434 |
| 28. | M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, Appl. Surf. Sci., 2011, 257, 2717 |
| 29. | B. Payne, M. Biesinger, N. McIntyre, J. Electron. Spectrosc. Relat. Phenom., 2009, 175, 55 |
| 30. | F. Song, X. Hu, Nat. Commun., 2014, 5, 4477 |
| 31. | F. Song, X. Hu, J. Am. Chem. Soc., 2014, 136, 16481 |
| 32. | H. S. Jadhav, A. Roy, B. Z. Desalegan, J. G. Seo, Sustain. Energy Fuels, 2020, 4, 312 |
| 33. | J. Yang, H. Liu, W. N. Martens, R. L. Frost, J. Phys. Chem. C., 2010, 114, 111 |
| 34. | F. Nasirpouri, Electrodeposition of Nanostructured Materials, Springer International Publishing AG, Germany, 2017. |
| 35. | M. Shao, R. Zhang, Z. Li, M. Wei, D. G. Evans, X. Duan, Chem. Commun., 2015, 51, 15880 |
| 36. | D. Zhou, P. Li, X. Lin, A. McKinley, Y. Kuang, W. Liu, W. F. Lin, X. Sun, X. Duan, Chem. Soc. Rev. ,, 2021, 50, 8790 |
| 37. | N. McIntyre, M. Cook, Anal. Chem., 1975, 47, 2208 |
| 38. | X. Wang, Y. He, Y. Zhou, R. Li, W. Lu, K. Wang, W. Liu, Int. J. Hydrog. Energy, 2022, 47, 23644 |
| 39. | M. Duraivel, S. Nagappan, K. H. Park, K. Prabakar, Electrochim. Acta, 2022, 411, 140071 |
| 40. | Y. Han, S. Axnanda, E. J. Crumlin, R. Chang, B. Mao, Z. Hussain, P. N. Ross, Y. Li, Z. Liu, J. Phys. Chem. B, 2018, 122, 666 |
| 41. | M. Bajdich, M. García-Mota, A. Vojvodic, J. K. Nørskov, A. T. Bell, J. Am. Chem. Soc., 2013, 135, 13521 |
| 42. | Y. -C. Liu, J. A. Koza, J. A. Switzer, Electrochim. Acta,, 2014, 140, 359 |
| 43. | T. E. Rosser, J. P. S. Sousa, Y. Ziouani, O. Bondarchuk, D. Y. Petrovykh, X. K. Wei, J. J. L. Humphrey, M. Heggen, Y. V. Kolen'Ko, A. J. Wain, Catal. Sci. Technol. , 2020, 10, 2398 |
| 44. | A. Sivanantham, P. Ganesan, A. Vinu, S. Shanmugam, ACS Catal., 2020, 10, 463 |
| 45. | A. Moysiadou, S. Lee, C. S. Hsu, H. M. Chen, X. Hu, J. Am. Chem. Soc. , 2020, 142, 11901 |
| 46. | N. Weidler, J. Schuch, F. Knaus, P. Stenner, S. Hoch, A. Maljusch, R. Schäfer, B. Kaiser, W. Jaegermann, J. Phys. Chem. C., 2017, 121, 6455 |
| 47. | D. Delgado, M. Minakshi, D. J. Kim, C. Kyeong W, Anal. Lett. , 2017, 50, 2386 |
| 48. | C. W. Hu, Y. Yamada, K. Yoshimura, J. Mater. Chem. C, 2016, 4, 5390 |
| 49. | S. R. Mellsop, A. Gardiner, B. Johannessen, A. T. Marshall, Electrochim. Acta, 2015, 168, 356 |
| 50. | H. B. Li, P. Liu, Y. Liang, J. Xiao, G. W. Yang, RSC Advances, 2013, 3, 26412 |
| 51. | Z. Chen, L. Cai, X. Yang, C. Kronawitter, L. Guo, S. Shen, B. E. Koel, ACS Catal., 2018, 8, 1238 |
| 52. | N. Kornienko, N. Heidary, G. Cibin, E. Reisner, Chem. Sci., 2018, 9, 5322 |
| 53. | Y. L. Lo, B. J. Hwang, Langmuir, 1998, 14, 944 |
| 54. | Z. Qiu, C. W. Tai, G. A. Niklasson, T. Edvinsson, Energy Environ. Sci. , 2019, 12, 572 |
| 55. | D. Tyndall, M. J. Craig, L. Gannon, C. McGuinness, N. McEvoy, A. Roy, M. García-Melchor, M. P. Browne, V. Nicolosi, J. Mater. Chem. A., 2023, 11, 4067 |
| 56. | J. M. Wagner, X-ray photoelectron spectroscopy, Nova Science Publishers, United States, 2011. |
| 57. | X. Bo, Y. Li, R. K. Hocking, C. Zhao, ACS Appl. Mater. Interfaces, 2017, 9, 41239 |
| 58. | Q. Liang, L. Zhong, C. Du, Y. Luo, J. Zhao, Y. Zheng, J. Xu, J. Ma, C. Liu, S. Li, Q. Yan, ACS Nano, 2019, 13, 7975 |
| 59. | Y. l. Wang, T. h. Yang, S. Yue, H. b. Zheng, X. p. Liu, P. z. Gao, H. Qin, H. n. Xiao, ACS Appl. Mater. Interfaces, 2023, 15, 11631 |
| 60. | K. Wan, J. Luo, C. Zhou, T. Zhang, J. Arbiol, X. Lu, B. W. Mao, X. Zhang, J. Fransaer, Adv. Funct. Mater., 2019, 29, 1900315 |
| 61. | H. -b. Zheng, Y. -l. Wang, P. Zhang, F. Ma, P. -z. Gao, W. -m. Guo, H. Qin, X. -p. Liu, H. -n. Xiao, Chem. Eng. J. , 2021, 426, 130785 |
| 62. | D. Delgado, F. Bizzotto, A. Zana, M. Arenz, ChemPhysChem, 2019, 20, 3147 |
| 63. | X. Lu, C. Zhao, Nat. Commun., 2015, 6, 6616 |
| 64. | Z. Yan, H. Sun, X. Chen, H. Liu, Y. Zhao, H. Li, W. Xie, F. Cheng, J. Chen, Nat. Commun., 2018, 9, 2373 |
| 65. | Y. Zhang, H. Liu, S. Zhao, C. Xie, Z. Huang, S. Wang, Adv. Mater., 2023, 35, 2209680 |
| 66. | D. Yan, C. Xia, W. Zhang, Q. Hu, C. He, B. Y. Xia, S. Wang, Adv. Energy Mater., 2022, 12, 2202317 |
| 67. | L. Peng, N. Yang, Y. Yang, Q. Wang, X. Xie, D. Sun-Waterhouse, L. Shang, T. Zhang, G. I. N. Waterhouse, Angew. Chem. Int. Ed., 2021, 60, 24612 |
| 68. | M. S. Burke, M. G. Kast, L. Trotochaud, A. M. Smith, S. W. Boettcher, J. Am. Chem. Soc., 2015, 137, 3638 |
| 69. | D. K. Bediako, C. Costentin, E. C. Jones, D. G. Nocera, J. M. Savéant, J. Am. Chem. Soc., 2013, 135, 10492 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Schematic illustrations of the synthesis of A-CoAl/NF.
Characterization analysis of CoAl/NF, D-CoAl/NF and A-CoAl/NF. SEM images of a CoAl/NF, b D-CoAl/NF, c A-CoAl/NF. d Co, Ni, Al atomic ratio (Co at% + Ni at% + Al at% = 100%). High-resolution XPS of CoAl/NF, D-CoAl/NF and A-CoAl/NF e Co 2p, f Al 2p, g O 1s, h Ni 2p. i Ex situ Raman spectra.
Mechanism analysis of anodic activation processes. a The evolution of polarization curves during anodic activation process. b The corresponding Nyquist plots with the LSV polarization curves in a. c Polarization curves of A-Co(OH)2/NF before and after CVs. CV curves and its zoom-in image of d A-CoAl/NF and e A-Co(OH)2/NF. f The overpotential of original, used and recovered A-CoAl/NF.
Electrocatalytic OER performance of A-CoAl/NF and reference samples. a Polarization curves of A-CoAl/NF in 1 M KOH, with that of Co(OH)2/NF, and CoAl/NF for comparison. b Comparison of overpotentials required for current density j = 10 mA. c The corresponding Tafel plots. d The corresponding Nyquist plots. e The corresponding double-layer capacitance measurements (Cdl values). f Chronopotentiometry curves of A-CoAl/NF at constant current densities of 10 mA cm−2, inset: OER performance before and after 50h CP test.