Yanan Li, Ruopian Fang, Jiangtao Xu, Da-Wei Wang, Lixue Jiang. Surface reconstruction of CoAl hydroxide electrodes for accelerated oxygen evolution reaction[J]. Energy Lab. doi: 10.54227/elab.20250003
Citation: Yanan Li, Ruopian Fang, Jiangtao Xu, Da-Wei Wang, Lixue Jiang. Surface reconstruction of CoAl hydroxide electrodes for accelerated oxygen evolution reaction[J]. Energy Lab. doi: 10.54227/elab.20250003

ORIGINAL ARTICLE

Surface reconstruction of CoAl hydroxide electrodes for accelerated oxygen evolution reaction

More Information
  • Corresponding authors: dawei.wang@siat.ac.cn; lixue.jiang@unsw.edu.au
  • Water electrolysis powered by renewable energy is recognized as a sustainable approach for green hydrogen production. Rational design of efficient and low-cost electrocatalysts especially for the sluggish oxygen evolution reaction (OER) remains a significant challenge. Here, we report a two-step surface reconstruction strategy, alkaline etching and anodic activation on CoAl hydroxide electrodes which remarkably enhance the OER performance. A low overpotential of 269 mV at 10 mA cm−2 is achieved in 1 M KOH electrolyte, along with a notably reduced Tafel slope of 37 mV dec−1, a 16-fold enhanced catalyst intrinsic activity at an overpotential of 300 mV, and excellent stability without noticeable degradation over 50 hours operation. The dynamic surface reconstruction of CoAl hydroxide catalyst is evidenced by physical characterization in the process of alkaline etching and anodic activation. The defective structure and the modulated electronic distribution on the catalyst surface are demonstrated to facilitate electron transfer and OER kinetics. Our work presents a feasible surface reconstruction approach for designing high-efficiency catalytic electrodes in alkaline water electrolysis.


  • 加载中
  • 1. S. Chu, A. Majumdar, Nature, 2012, 488, 294
    2. M. Wang, Z. Wang, X. Gong, Z. Guo, Renew. Sust. Energ. Rev., 2014, 29, 573
    3. W. Wang, Y. Liu, S. Chen, Acta Physico-Chimica Sinica, 2024, 40, 2303059
    4. J. Ding, D. Zhang, A. Riaz, H. Gu, J. Z. Soo, P. R. Narangari, C. Jagadish, H. H. Tan, S. Karuturi, CCS Chemistry, 2024, 6, 2692
    5. N. Wen, X. Jiao, Y. Xia, D. Chen, Mater. Chem. Front., 2023, 7, 4833
    6. F. Zeng, C. Mebrahtu, L. Liao, A. K. Beine, R. Palkovits, J. Energy Chem., 2022, 69, 301
    7. F. Liu, Z. Fan, Chem. Soc. Rev., 2023, 52, 1723
    8. Z. Kou, X. Li, L. Zhang, W. Zang, X. Gao, J. Wang, Small Sci., 2021, 1, 2100011
    9. L. Wu, Z. Guan, D. Guo, L. Yang, X. a. Chen, S. Wang, Small, 2023, 19, 2304007
    10. L. Gao, X. Cui, C. D. Sewell, J. Li, Z. Lin, Chem. Soc. Rev., 2021, 50, 8428
    11. H. Li, L. Zhang, S. Wang, J. Yu, Int. J. Hydrog. Energy, 2019, 44, 28556
    12. Q. Xie, Z. Cai, P. Li, D. Zhou, Y. Bi, X. Xiong, E. Hu, Y. Li, Y. Kuang, X. Sun, Nano Res., 2018, 11, 4524
    13. H. Jiang, Q. He, X. Li, X. Su, Y. Zhang, S. Chen, S. Zhang, G. Zhang, J. Jiang, Y. Luo, P. M. Ajayan, L. Song, Adv. Mater., 2019, 31, 1805127
    14. P. Guo, S. Cao, Y. Wang, X. Lu, Y. Zhang, X. Xin, X. Chi, X. Yu, I. Tojiboyev, H. Salari, A. J. Sobrido, M. Titirici, X. Li, Appl. Catal. B, 2022, 310, 121355
    15. G. R. Zhang, L. L. Shen, P. Schmatz, K. Krois, B. J. M. Etzold, J. Energy Chem. , 2020, 49, 153
    16. K. Wu, F. Chu, Y. Meng, K. Edalati, Q. Gao, W. Li, H. J. Lin, J. Mater. Chem. A. , 2021, 9, 12152
    17. B. Dong, M. -X. Li, X. Shang, Y. N. Zhou, W. H. Hu, Y. M. Chai, J. Mater. Chem. A. , 2022, 10, 17477
    18. J. Huang, Y. Li, Y. Zhang, G. Rao, C. Wu, Y. Hu, X. Wang, R. Lu, Y. Li, J. Xiong, Angew. Chem. Int. Ed., 2019, 131, 17619
    19. H. Bode, K. Dehmelt, J. Witte, Z. Anorg. Allg. Chem., 1969, 366, 1
    20. F. Dionigi, P. Strasser, Adv. Energy Mater., 2016, 6, 1600621
    21. B. S. Yeo, A. T. Bell, J. Phys. Chem. C., 2012, 116, 8394
    22. S. L. Medway, C. A. Lucas, A. Kowal, R. J. Nichols, D. Johnson, J. Electroanal. Chem., 2006, 587, 172
    23. H. Huang, C. Yu, H. Huang, C. Zhao, B. Qiu, X. Yao, S. Li, X. Han, W. Guo, L. Dai, J. Qiu, Nano Energy, 2019, 58, 778
    24. Z. Cai, Y. Bi, E. Hu, W. C. Liu, N. S. Dwarica, Y. Tian, X. Li, Y. Kuang, Y. Li, X. Q. Yang, H. Wang, X. Sun, Adv. Energy Mater., 2018, 8, 1701694
    25. L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo, S. Wang, L. Dai, Angew. Chem. Int. Ed., 2016, 55, 5277
    26. R. Zhang, C. Tang, R. Kong, G. Du, A. M. Asiri, L. Chen, X. Sun, Nanoscale, 2017, 9, 4793
    27. M. C. Biesinger, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, Phys. Chem. Chem. Phys., 2012, 14, 2434
    28. M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, Appl. Surf. Sci., 2011, 257, 2717
    29. B. Payne, M. Biesinger, N. McIntyre, J. Electron. Spectrosc. Relat. Phenom., 2009, 175, 55
    30. F. Song, X. Hu, Nat. Commun., 2014, 5, 4477
    31. F. Song, X. Hu, J. Am. Chem. Soc., 2014, 136, 16481
    32. H. S. Jadhav, A. Roy, B. Z. Desalegan, J. G. Seo, Sustain. Energy Fuels, 2020, 4, 312
    33. J. Yang, H. Liu, W. N. Martens, R. L. Frost, J. Phys. Chem. C., 2010, 114, 111
    34. F. Nasirpouri, Electrodeposition of Nanostructured Materials, Springer International Publishing AG, Germany, 2017.
    35. M. Shao, R. Zhang, Z. Li, M. Wei, D. G. Evans, X. Duan, Chem. Commun., 2015, 51, 15880
    36. D. Zhou, P. Li, X. Lin, A. McKinley, Y. Kuang, W. Liu, W. F. Lin, X. Sun, X. Duan, Chem. Soc. Rev. ,, 2021, 50, 8790
    37. N. McIntyre, M. Cook, Anal. Chem., 1975, 47, 2208
    38. X. Wang, Y. He, Y. Zhou, R. Li, W. Lu, K. Wang, W. Liu, Int. J. Hydrog. Energy, 2022, 47, 23644
    39. M. Duraivel, S. Nagappan, K. H. Park, K. Prabakar, Electrochim. Acta, 2022, 411, 140071
    40. Y. Han, S. Axnanda, E. J. Crumlin, R. Chang, B. Mao, Z. Hussain, P. N. Ross, Y. Li, Z. Liu, J. Phys. Chem. B, 2018, 122, 666
    41. M. Bajdich, M. García-Mota, A. Vojvodic, J. K. Nørskov, A. T. Bell, J. Am. Chem. Soc., 2013, 135, 13521
    42. Y. -C. Liu, J. A. Koza, J. A. Switzer, Electrochim. Acta,, 2014, 140, 359
    43. T. E. Rosser, J. P. S. Sousa, Y. Ziouani, O. Bondarchuk, D. Y. Petrovykh, X. K. Wei, J. J. L. Humphrey, M. Heggen, Y. V. Kolen'Ko, A. J. Wain, Catal. Sci. Technol. , 2020, 10, 2398
    44. A. Sivanantham, P. Ganesan, A. Vinu, S. Shanmugam, ACS Catal., 2020, 10, 463
    45. A. Moysiadou, S. Lee, C. S. Hsu, H. M. Chen, X. Hu, J. Am. Chem. Soc. , 2020, 142, 11901
    46. N. Weidler, J. Schuch, F. Knaus, P. Stenner, S. Hoch, A. Maljusch, R. Schäfer, B. Kaiser, W. Jaegermann, J. Phys. Chem. C., 2017, 121, 6455
    47. D. Delgado, M. Minakshi, D. J. Kim, C. Kyeong W, Anal. Lett. , 2017, 50, 2386
    48. C. W. Hu, Y. Yamada, K. Yoshimura, J. Mater. Chem. C, 2016, 4, 5390
    49. S. R. Mellsop, A. Gardiner, B. Johannessen, A. T. Marshall, Electrochim. Acta, 2015, 168, 356
    50. H. B. Li, P. Liu, Y. Liang, J. Xiao, G. W. Yang, RSC Advances, 2013, 3, 26412
    51. Z. Chen, L. Cai, X. Yang, C. Kronawitter, L. Guo, S. Shen, B. E. Koel, ACS Catal., 2018, 8, 1238
    52. N. Kornienko, N. Heidary, G. Cibin, E. Reisner, Chem. Sci., 2018, 9, 5322
    53. Y. L. Lo, B. J. Hwang, Langmuir, 1998, 14, 944
    54. Z. Qiu, C. W. Tai, G. A. Niklasson, T. Edvinsson, Energy Environ. Sci. , 2019, 12, 572
    55. D. Tyndall, M. J. Craig, L. Gannon, C. McGuinness, N. McEvoy, A. Roy, M. García-Melchor, M. P. Browne, V. Nicolosi, J. Mater. Chem. A., 2023, 11, 4067
    56. J. M. Wagner, X-ray photoelectron spectroscopy, Nova Science Publishers, United States, 2011.
    57. X. Bo, Y. Li, R. K. Hocking, C. Zhao, ACS Appl. Mater. Interfaces, 2017, 9, 41239
    58. Q. Liang, L. Zhong, C. Du, Y. Luo, J. Zhao, Y. Zheng, J. Xu, J. Ma, C. Liu, S. Li, Q. Yan, ACS Nano, 2019, 13, 7975
    59. Y. l. Wang, T. h. Yang, S. Yue, H. b. Zheng, X. p. Liu, P. z. Gao, H. Qin, H. n. Xiao, ACS Appl. Mater. Interfaces, 2023, 15, 11631
    60. K. Wan, J. Luo, C. Zhou, T. Zhang, J. Arbiol, X. Lu, B. W. Mao, X. Zhang, J. Fransaer, Adv. Funct. Mater., 2019, 29, 1900315
    61. H. -b. Zheng, Y. -l. Wang, P. Zhang, F. Ma, P. -z. Gao, W. -m. Guo, H. Qin, X. -p. Liu, H. -n. Xiao, Chem. Eng. J. , 2021, 426, 130785
    62. D. Delgado, F. Bizzotto, A. Zana, M. Arenz, ChemPhysChem, 2019, 20, 3147
    63. X. Lu, C. Zhao, Nat. Commun., 2015, 6, 6616
    64. Z. Yan, H. Sun, X. Chen, H. Liu, Y. Zhao, H. Li, W. Xie, F. Cheng, J. Chen, Nat. Commun., 2018, 9, 2373
    65. Y. Zhang, H. Liu, S. Zhao, C. Xie, Z. Huang, S. Wang, Adv. Mater., 2023, 35, 2209680
    66. D. Yan, C. Xia, W. Zhang, Q. Hu, C. He, B. Y. Xia, S. Wang, Adv. Energy Mater., 2022, 12, 2202317
    67. L. Peng, N. Yang, Y. Yang, Q. Wang, X. Xie, D. Sun-Waterhouse, L. Shang, T. Zhang, G. I. N. Waterhouse, Angew. Chem. Int. Ed., 2021, 60, 24612
    68. M. S. Burke, M. G. Kast, L. Trotochaud, A. M. Smith, S. W. Boettcher, J. Am. Chem. Soc., 2015, 137, 3638
    69. D. K. Bediako, C. Costentin, E. C. Jones, D. G. Nocera, J. M. Savéant, J. Am. Chem. Soc., 2013, 135, 10492
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Information

Article Metrics

Article views(261) PDF downloads(59) Citation(0)

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint