| Citation: | Quan Zhang, Pengcheng Liu, Wenxian Liu, Zhiwei Wang, Jia He, Guangzhi Hu, Xijun Liu. Strong 3d–4d orbital coupling mechanism in high-entropy alloys enables industrial-level alkaline seawater electrolysis[J]. Energy Lab. doi: 10.54227/elab.20250009 |
Continuous seawater electrolysis for mass production of hydrogen suffers drawbacks from electrode corrosion and low efficiency due to the presence of multivalent ions in feed seawater. Herein, a strong 3d–4d orbital coupling mechanism is discovered in a FeNiCoMnRh high-entropy alloy (HEA), which can optimize the electron structure near the Fermi energy and reduce the universal reaction energy barrier. The HEA catalyst shows excellent hydrogen/oxygen evolution reactions with overpotentials of 21 and 297 mV at 10 mA cm−2, respectively, better than those of Pt/C and RuO2. Accordingly, it delivers 500 mA cm−2 at 2.02 V and superior durability over 250 hours in an anion exchange membrane (AEM) seawater electrolyzer. More importantly, the AEM electrolyzer only requires 0.66 V to deliver 500 mA cm−2 when it coupling with hydrazine oxidation. Thus, the 3d–4d orbital coupling mechanism in HEA can guide the development of green hydrogen fuel production.
| 1. | Q. Zhang, K. Lian, G. Qi, S. Zhang, Q. Liu, Y. Luo, J. Luo, X. Liu, Sci. China Mater., 2023, 66, 1681 |
| 2. | W. Tong, M. Forster, F. Dionigi, S. Dresp, R. Sadeghi Erami, P. Strasser, A. J. Cowan, P. Farràs, Nat. Energy, 2020, 5, 367 |
| 3. | H. Jin, X. Liu, A. Vasileff, Y. Jiao, Y. Zhao, Y. Zheng, S. -Z. Qiao, ACS Nano, 2018, 12, 12761 |
| 4. | Y. Wu, Y. Xie, S. Niu, Y. Zang, J. Cai, Z. Bian, X. Yin, Y. Fang, D. Sun, D. Niu, Z. Lu, A. Mosallanezhad, H. Wang, D. Rao, H. Pan, G. Wang, Nano Res., 2021, 14, 3458 |
| 5. | C. Fan, X. Wang, X. Wu, Y. Chen, Z. Wang, M. Li, D. Sun, Y. Tang, G. Fu, Adv. Energy Mater., 2023, 13, 2203244 |
| 6. | D. B. Miracle, O. N. Senkov, Acta Mater., 2017, 122, 448 |
| 7. | H. -J. Qiu, G. Fang, J. Gao, Y. Wen, J. Lv, H. Li, G. Xie, X. Liu, S. Sun, ACS Mater. Lett., 2019, 1, 526 |
| 8. | B. J. Kim, J. Yu, H. Koh, I. Nagai, S. I. Ikeda, S. -J. Oh, C. Kim, Phys. Rev. Lett., 2006, 97, 106401 |
| 9. | Y. Mei, Y. Feng, C. Zhang, Y. Zhang, Q. Qi, J. Hu, ACS Catal., 2022, 12, 10808 |
| 10. | Y. -T. Xu, Z. -M. Ye, J. -W. Ye, L. -M. Cao, R. -K. Huang, J. -X. Wu, D. -D. Zhou, X. -F. Zhang, C. -T. He, J. -P. Zhang, X. -M. Chen, Angew. Chem. Int. Ed., 2019, 58, 139 |
| 11. | Z. Jia, Y. Yuan, Y. Zhang, X. Lyu, C. Liu, X. Yang, Z. Bai, H. Wang, L. Yang, Carbon Energy, 2024, 6, e418 |
| 12. | B. Peng, H. She, Z. Wei, Z. Sun, Z. Deng, Z. Sun, W. Chen, Nat. Commun., 2025, 16, 2217 |
| 13. | X. Zhou, Y. Tian, J. Luo, B. Jin, Z. Wu, X. Ning, L. Zhan, X. Fan, T. Zhou, S. Zhang, X. Zhou, Adv. Funct. Mater., 2022, 32, 2201518 |
| 14. | M. Wei, Y. Sun, J. Zhang, F. Ai, S. Xi, J. Wang, Energy Environ. Sci., 2023, 16, 4009 |
| 15. | L. Yin, S. Zhang, M. Sun, S. Wang, B. Huang, Y. Du, Nano Res., 2024, 17, 4753 |
| 16. | Z. Jin, J. Lyu, Y. -L. Zhao, H. Li, Z. Chen, X. Lin, G. Xie, X. Liu, J. -J. Kai, H. -J. Qiu, Chem. Mater., 2021, 33, 1771 |
| 17. | Z. W. Chen, J. Li, P. Ou, J. E. Huang, Z. Wen, L. Chen, X. Yao, G. Cai, C. C. Yang, C. V. Singh, Q. Jiang, Nat. Commun., 2024, 15, 359 |
| 18. | S. Sohn, Y. Liu, J. Liu, P. Gong, S. Prades-Rodel, A. Blatter, B. E. Scanley, C. C. Broadbridge, J. Schroers, Scr. Mater., 2017, 126, 29 |
| 19. | J. Hao, Z. Zhuang, K. Cao, G. Gao, C. Wang, F. Lai, S. Lu, P. Ma, W. Dong, T. Liu, M. Du, H. Zhu, Nat. Commun., 2022, 13, 2662 |
| 20. | H. Y. Diao, R. Feng, K. A. Dahmen, P. K. Liaw, Curr. Opin. Solid State Mater. Sci., 2017, 21, 252 |
| 21. | E. P. George, D. Raabe, R. O. Ritchie, Nat. Rev. Mater., 2019, 4, 515 |
| 22. | Y. Xin, S. Li, Y. Qian, W. Zhu, H. Yuan, P. Jiang, R. Guo, L. Wang, ACS Catal., 2020, 10, 11280 |
| 23. | Y. Teng, X. -D. Wang, J. -F. Liao, W. -G. Li, H. -Y. Chen, Y. -J. Dong, D. -B. Kuang, Adv. Funct. Mater., 2018, 28, 1802463 |
| 24. | H. Yuan, B. T. Kusema, Z. Yan, S. Streiff, F. Shi, RSC Adv., 2019, 9, 38877 |
| 25. | X. Li, Y. Wang, J. Wang, Y. Da, J. Zhang, L. Li, C. Zhong, Y. Deng, X. Han, W. Hu, Adv. Mater., 2020, 32, 2003414 |
| 26. | T. Tang, W. -J. Jiang, S. Niu, N. Liu, H. Luo, Y. -Y. Chen, S. -F. Jin, F. Gao, L. -J. Wan, J. -S. Hu, J. Am. Chem. Soc., 2017, 139, 8320 |
| 27. | M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, Appl. Surf. Sci., 2011, 257, 2717 |
| 28. | P. Chen, T. -Y. Xiao, Y. -H. Qian, S. -S. Li, S. -H. Yu, Adv. Mater., 2013, 25, 3192 |
| 29. | C. Dong, X. Yuan, X. Wang, X. Liu, W. Dong, R. Wang, Y. Duan, F. Huang, J. Mater. Chem. A, 2016, 4, 11292 |
| 30. | K. Srinivas, Y. Chen, B. Wang, B. Yu, Y. Lu, Z. Su, W. Zhang, D. Yang, ACS Appl. Mater. Interfaces, 2020, 12, 55782 |
| 31. | Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, Y. Yang, Mater. Today, 2016, 19, 349 |
| 32. | L. Jiang, JOM, 2020, 72, 2949 |
| 33. | R. He, L. Yang, Y. Zhang, D. Jiang, S. Lee, S. Horta, Z. Liang, X. Lu, A. Ostovari Moghaddam, J. Li, M. Ibáñez, Y. Xu, Y. Zhou, A. Cabot, Adv. Mater., 2023, 35, 2303719 |
| 34. | R. Nafria, A. Genç, M. Ibáñez, J. Arbiol, P. Ramírez De La Piscina, N. Homs, A. Cabot, Langmuir, 2016, 32, 2267 |
| 35. | J. Fan, X. Cui, S. Yu, L. Gu, Q. Zhang, F. Meng, Z. Peng, L. Ma, J. -Y. Ma, K. Qi, Q. Bao, W. Zheng, ACS Nano, 2019, 13, 12987 |
| 36. | J. Zhang, Z. Zhao, Z. Xia, L. Dai, Nat. Nanotechnol, 2015, 10, 444 |
| 37. | F. Yu, L. Yu, I. K. Mishra, Y. Yu, Z. F. Ren, H. Q. Zhou, Mater. Today Phys., 2018, 7, 121 |
| 38. | R. N. Singh, M. Kumar, A. S. K. Sinha, Int. J. Hydrog. Energy, 2012, 37, 15117 |
| 39. | K. Huang, D. Peng, Z. Yao, J. Xia, B. Zhang, H. Liu, Z. Chen, F. Wu, J. Wu, Y. Huang, Chem. Eng. J., 2021, 425, 131533 |
| 40. | A. J. Esswein, Y. Surendranath, S. Y. Reece, D. G. Nocera, Energy Environ. Sci., 2011, 4, 499 |
| 41. | W. D. Chemelewski, H. -C. Lee, J. -F. Lin, A. J. Bard, C. B. Mullins, J. Am. Chem. Soc., 2014, 136, 2843 |
| 42. | J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, X. Feng, Nat. Commun., 2017, 8, 15437 |
| 43. | M. Lin, Y. Yang, Y. Song, D. Guo, L. Yang, L. Liu, Nano Res., 2023, 16, 2094 |
| 44. | Y. Luo, P. Wang, G. Zhang, S. Wu, Z. Chen, H. Ranganathan, S. Sun, Z. Shi, Chem. Eng. J., 2023, 454, 140061 |
| 45. | T. Yang, H. Lv, Q. Quan, X. Li, H. Lu, X. Cui, G. Liu, L. Jiang, Appl. Surf. Sci., 2023, 615, 156360 |
| 46. | W. Liu, W. Que, R. Yin, J. Dai, D. Zheng, J. Feng, X. Xu, F. Wu, W. Shi, X. Liu, X. Cao, Appl. Catal. B, 2023, 328, 122488 |
| 47. | W. Yu, H. Liu, Y. Zhao, Y. Fu, W. Xiao, B. Dong, Z. Wu, Y. Chai, L. Wang, Nano Res., 2023, 16, 6517 |
| 48. | P. Muangtong, A. Rodchanarowan, D. Chaysuwan, N. Chanlek, R. Goodall, Corros. Sci., 2020, 172, 108740 |
| 49. | J. Li, Y. Li, J. Wang, C. Zhang, H. Ma, C. Zhu, D. Fan, Z. Guo, M. Xu, Y. Wang, H. Ma, Adv. Funct. Mater., 2022, 32, 2109439 |
| 50. | Y. Hu, T. Chao, Y. Li, P. Liu, T. Zhao, G. Yu, C. Chen, X. Liang, H. Jin, S. Niu, W. Chen, D. Wang, Y. Li, Angew. Chem. Int. Ed., 2023, 62, e202308800 |
| 51. | M. Zheng, R. Cheng, X. Chen, N. Li, L. Li, X. Wang, T. Zhang, Int. J. Hydrog. Energy, 2005, 30, 1081 |
| 52. | S. Fu, Y. Li, Y. Wang, Chin. Powder Sci. Technol., 2024, 30, 27 |
| 53. | K. Yamada, K. Yasuda, H. Tanaka, Y. Miyazaki, T. Kobayashi, J. Power Sources, 2003, 122, 132 |
| 54. | X. Xu, H. -C. Chen, L. Li, M. Humayun, X. Zhang, H. Sun, D. P. Debecker, W. Zhang, L. Dai, C. Wang, ACS Nano, 2023, 17, 10906 |
| 55. | X. Yan, J. Biemolt, K. Zhao, Y. Zhao, X. Cao, Y. Yang, X. Wu, G. Rothenberg, N. Yan, Nat. Commun., 2021, 12, 4143 |
| 56. | L. Deng, F. Hu, M. Ma, S. Huang, Y. Xiong, H. Chen, L. Li, S. Peng, Angew. Chem. Int. Ed., 2021, 60, 22276 |
| 57. | K. Wang, C. Liang, Z. Yi, F. Xu, Y. Wang, L. Lei, L. Zhuang, Z. Xu, Sci. China Mater., 2023, 66, 3846 |
| 58. | Q. Wang, Z. Jia, J. Li, Y. He, Y. Yang, Y. Li, L. Sun, B. Shen, Small, 2022, 18, 2204135 |
| 59. | N. A. Khan, Z. Hasan, S. H. Jhung, Coord. Chem. Rev., 2018, 376, 20 |
| 60. | K. Wang, Y. Wang, B. Yang, Z. Li, X. Qin, Q. Zhang, L. Lei, M. Qiu, G. Wu, Y. Hou, Energy Environ. Sci., 2022, 15, 2356 |
| 61. | L. Tao, M. Sun, Y. Zhou, M. Luo, F. Lv, M. Li, Q. Zhang, L. Gu, B. Huang, S. Guo, J. Am. Chem. Soc., 2022, 144, 10582 |
| 62. | Z. Sun, X. Luo, H. Shang, Z. Wang, L. Zhang, W. Chen, Angew. Chem. Int. Ed., 2024, 63, e202405778 |
| 63. | J. Chen, J. Yang, Y. Han, Y. Huang, N. Tian, J. Li, Z. Wang, ACS Catal., 2025, 15, 14882 |
| 64. | X. Wang, W. Zhang, Q. Yu, X. Liu, Q. Liang, X. Meng, X. Wang, L. Wang, Chem. Eng. J., 2022, 446, 136987 |
| 65. | X. Ma, Y. Zhou, S. Zhang, W. Lei, Y. Zhao, C. Shan, Small, 2025, 21, 2411394 |
| 66. | X. Liu, M. Chen, J. Ma, J. Liang, C. Li, C. Chen, H. He, Chin. Powder Sci. Technol., 2024, 30, 35 |
| 67. | M. D. Esrafili, V. Mokhtar Teymurian, R. Nurazar, Surf. Sci, 2015, 632, 118 |
| 68. | J. Ding, Z. Peng, Z. Wang, C. Zeng, Y. Feng, M. Yang, G. Hu, J. Luo, X. Liu, J. Mater. Chem. A, 2024, 12, 28023 |
| 69. | C. Zhan, Y. Xu, L. Bu, H. Zhu, Y. Feng, T. Yang, Y. Zhang, Z. Yang, B. Huang, Q. Shao, X. Huang, Nat. Commun., 2021, 12, 6261 |
| 70. | J. Yang, F. Zhang, J. Chen, Chin. Powder Sci. Technol., 2024, 30, 161 |
| 71. | G. Kresse, J. Furthmüller, Comp. Mater. Sci., 1996, 6, 15 |
| 72. | J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865 |
| 73. | J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B, 2004, 108, 17886 |
| 74. | V. Wang, N. Xu, J. -C. Liu, G. Tang, W. -T. Geng, Comput. Phys. Commun., 2021, 267, 108033 |
| 75. | J. J. P. Stewart, J. Mol. Model, 2007, 13, 1173 |
| 76. | J. Hutter, M. Iannuzzi, F. Schiffmann, J. VandeVondele, WIREs Comput. Mol. Sci., 2014, 4, 15 |
| 77. | J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, J. Hutter, Comput. Phys. Commun., 2005, 167, 103 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
| enlab-2025-0009-Supporting Information |
|
Theoretical analyses and preparation of HEAs. a Schematic of 3d- and 4d-orbits metal element atomic orbital profile. b pCOHP profiles of FeNiCoMn, FeNiCoMnCu, and FeNiCoMnRh. c SEM image and partial enlarged SEM image, d and e TEM and High-resolution TEM (HRTEM) images of FeNiCoMnRh/NC. f HRTEM image corresponding to different crystal faces spacing (inset: corresponding FFT pattern and line profile). g HR-STEM image (inset: corresponding FFT pattern and line profile) and h HAADF-STEM image and elemental mapping of FeNiCoMnRh/NC.
HER and OER performance in alkaline seawater. a LSV curves of HER. b Tafel slope of HER. c Durability test of FeNiCoMnRh/NC at 10 mA cm−2 (inset: LSV in HER before and after stability). d LSV curves of OER. e Tafel slope of OER. f Durability test of FeNiCoMnRh/NC at 10 mA cm−2 (inset: LSV in OER before and after stability). g Performance of different catalysts in HER and OER (the corresponding references are listed in Supplementary Tables 3 and 5).
SWE performance in two-electrode electrolyzer. a LSV curves. b Voltage–time curves for FeNiCoMnRh/NC||FeNiCoMnRh/NC at j = 10, 50, 100 mA cm−2. c Overpotentials of different catalysts at j = 10 mA cm−2 in SWE. d Multiple chronoamperometry test in alkaline seawater. e Volumes of gaseous H2 and O2 (reaction products) at j = 50 mA cm−2. f j–V characteristics of solar panels.
Hydrazine-assisted seawater electrolysis. a LSV curves of all the tested electrocatalysts in alkaline seawater with 0.5 M N2H4. b LSV curves for SWE and OHzS using FeNiCoMnRh/NC. c Timing voltage curves for FeNiCoMnRh/NC at j = 10, 50, 100 mA cm−2 in alkaline seawater with 0.5 M N2H4. d Schematic image of AEM water electrolyzer. e, f Polarization curves of the AEM electrolyzer for SWE and hydrazine-assisted SWE. g Comparison of SWE performance between FeNiCoMnRh/NC and the reported catalysts. h Durability tests of FeNiCoMnRh/NC toward SWE and hydrazine-assisted SWE (inset shows FE throughout the test of H2 produced in SWE and hydrazine-assisted SWE).
Theoretical calculation of HER, OER, and HzOR activation energy on FeNiCoMnRh alloy catalysts. a Schematic of HER, OER, and HzOR processes catalyzed by FeNiCoMnRh HEA. b−d Schematic of free energy changes during the HER, OER, and HzOR. e Schematic of the HzOR progress with time for FeNiCoMnRh based on Ab-initio molecular dynamics simulations (AIMD).