Yasen Hao, Xu Xiao, Zhuojun Zhang, Aijing Yan, Zehui Zhao, Tenghui Qiu, Peng Tan. Regulating reaction pathways in Hybrid-electrolyte Li-CO2 batteries via electrocatalytic CO2 reduction reaction paradigm migration[J]. Energy Lab. doi: 10.54227/elab.20250102
Citation: Yasen Hao, Xu Xiao, Zhuojun Zhang, Aijing Yan, Zehui Zhao, Tenghui Qiu, Peng Tan. Regulating reaction pathways in Hybrid-electrolyte Li-CO2 batteries via electrocatalytic CO2 reduction reaction paradigm migration[J]. Energy Lab. doi: 10.54227/elab.20250102

REVIEW ARTICLE

Regulating reaction pathways in Hybrid-electrolyte Li-CO2 batteries via electrocatalytic CO2 reduction reaction paradigm migration

More Information
  • Corresponding authors: xiaoxu@ustc.edu.cn; pengtan@ustc.edu.cn
  • Owing to the high theoretical energy density, rechargeable lithium-carbon dioxide (Li-CO2) batteries attract significant attention for synergistic energy storage and carbon fixation. However, the performance of conventional single organic electrolyte systems is hindered by issues such as the deposition of insulating Li2CO3 and inefficient CO2 mass transport, which makes breakthroughs difficult. Hybrid-electrolyte systems isolate the anode and cathode environments via solid electrolytes, constructing an aqueous cathode to accommodate CO2 reduction reaction (CO2RR). This design enhances CO2 solubility, facilitates proton-coupled electron transfer, and suppresses solid-phase deposition, thereby significantly optimizing battery performance. Nevertheless, the cathode reaction mechanism remains unclear, with the evolution of key intermediates, proton/electron transfer pathways, and catalyst-electrolyte synergies yet to be clarified. This work elucidates the limitations of conventional systems, highlights the advantages of hybrid-electrolyte designs, and integrates established principles from CO2RR electrocatalysis, such as the regulation of reaction pathways by pH, salt concentration, and current density. This study aims to provide a theoretical framework for developing next-generation Li-CO2 batteries with high energy density and long cycle life while emphasizing the critical value of electrocatalytic insights in deepening the mechanistic understanding.


  • 加载中
  • Yasen Hao is a doctoral postgraduate student at the University of Science and Technology of China, with research interests concentrated on the transport mechanism and regulation strategies of hybrid-electrolyte lithium-carbon dioxide batteries.
    Xu Xiao received her Ph.D. degree from the University of Science and Technology of China. She is currently an associate researcher at the University of Science and Technology of China. Her research interest mainly focuses on lithium-carbon dioxide batteries, including mechanism investigation, structure design, and modeling.
    Prof. Peng Tan received his PhD degree from Hong Kong University of Science and Technology. After a postdoctoral fellowship at Hong Kong Polytechnic University, he is currently a professor at University of Science and Technology of China. His research mainly focuses on the coupled species transfer and energy conversion inside batteries, with visualization technology for transport process observation, advanced models and simulations for analysis, and regulation strategies for performance improvement.
  • 1. F. Wang, Y. Li, X. Xia, W. Cai, Q. Chen, M. Chen, Adv. Energy Mater., 2021, 11, 2100667.
    2. X. Mu, H. Pan, P. He, H. Zhou, Adv. Mater., 2020, 32, 1903790.
    3. S. J. Visco, E. Nimon, B. Katz, The Development of High Energy Density Lithium/Air and Lithium/Water Batteries with No Self-Discharge, ECS Meet. Abstr., 2006, MA2006-02, 389.
    4. Y. Wang, H. Zhou, J. Power Sources, 2010, 195, 358.
    5. R. Yang, Z. Peng, J. Xie, Y. Huang, R. A. Borse, X. Wang, M. Wu, Y. Wang, ChemSusChem, 2020, 13, 2621.
    6. I. Bagemihl, C. Bhatraju, J. R. Van Ommen, V. Van Steijn, ACS Sustain. Chem. Eng., 2022, 10, 12580.
    7. X. Xiao, Z. Zhang, P. Tan, Proc. Natl. Acad. Sci., 2023, 120, e2217454120.
    8. Z. Zhang, X. Xiao, A. Yan, K. Sun, J. Yu, P. Tan, Nat. Commun., 2024, 15, 9952.
    9. X. Xiao, Z. Zhang, A. Yan, L. Shi, P. Tan, Adv. Funct. Mater., 2025, 1, 2505676
    10. L. Xiong, N. Q. Su, Inorg. Chem., 2025, 64, 8376.
    11. X. Zhang, Y. Wang, Y. Li, J. Phys. Chem. Lett., 2023, 14, 1604.
    12. X. Zhang, Y. Wang, Y. Li, Chem. Sci., 2024, 15, 4804.
    13. J. M. Garcia-Lastra, J. S. G. Myrdal, R. Christensen, K. S. Thygesen, T. Vegge, DFT+U Study of Polaronic Conduction in Li2O2 and Li2CO3 : Implications for Li-Air Batteries, J. Phys. Chem. C, 2013, 117, 5568.
    14. T. Yang, H. Li, J. Chen, H. Ye, J. Yao, Y. Su, B. Guo, Z. Peng, T. Shen, Y. Tang, L. Zhang, J. Huang, Nanoscale, 2020, 12, 23967.
    15. P. Jia, M. Yu, X. Zhang, T. Yang, D. Zhu, T. Shen, L. Zhang, Y. Tang, J. Huang, Nano Res., 2022, 15, 542.
    16. H. Wang, K. Xie, Y. You, Q. Hou, K. Zhang, N. Li, W. Yu, K. P. Loh, C. Shen, B. Wei, Adv. Energy Mater., 2019, 9, 1901806.
    17. Z. Zhang, W. Bai, Z. Cai, J. Cheng, H. Kuang, B. Dong, Y. Wang, K. Wang, J. Chen, Angew. Chem. Int. Ed., 2021, 133, 16540.
    18. Y. Bai, L. Wei, Y. Lian, Z. Wei, D. Song, Y. Su, X. Zhu, W. Huo, J. Cheng, Y. Peng, Z. Deng, ACS Appl. Mater. Interfaces, 2023, 15, 41457.
    19. K. He, C. Zu, Y. Wang, B. Han, X. Yin, H. Zhao, Y. Liu, J. Chen, Solid State Ion., 2014, 254, 78.
    20. H. Xue, H. Gong, X. Lu, B. Gao, T. Wang, J. He, Y. Yamauchi, T. Sasaki, R. Ma, Adv. Energy Mater., 2021, 11, 2101630.
    21. X. Yang, D. Zhang, L. Zhao, C. Peng, K. Ren, C. Xu, P. Liu, Y. Zhou, Y. Lei, B. Yang, D. Xue, F. Liang, Adv. Energy Mater., 2024, 14, 2304365.
    22. N. Feng, B. Wang, Z. Yu, Y. Gu, L. Xu, J. Ma, Y. Wang, Y. Xia, ACS Appl. Mater. Interfaces, 2021, 13, 7396.
    23. Y. Li, Q. Yin, B. Jia, H. Wang, H. Gu, Q. Hu, H. Yang, T. Guo, P. Hu, L. Li, L. Liu, L. Guo, Angew. Chem. Int. Ed., 2025, 64, e202505668.
    24. H. Ge, W. Shi, J. Liu, Y. Zhang, X. Wang, J. Am. Chem. Soc., 2025, 147, 8367.
    25. J. Wu, F. G. Risalvato, P. P. Sharma, P. J. Pellechia, F. -S. Ke, X. -D. Zhou, J. Electrochem. Soc., 2013, 160, F953
    26. Q. Wang, H. Dong, H. Yu, J. Power Sources, 2014, 271, 278.
    27. J. Wu, P. P. Sharma, B. H. Harris, X. -D. Zhou, J. Power Sources, 2014, 258, 189
    28. Q. Wang, H. Dong, H. Yu, H. Yu, J. Power Sources, 2015, 279, 1.
    29. S. Ma, Y. Lan, G. M. J. Perez, S. Moniri, P. J. A. Kenis, ChemSusChem, 2014, 7, 866.
    30. S. Verma, Y. Hamasaki, C. Kim, W. Huang, S. Lu, H. -R. M. Jhong, A. A. Gewirth, T. Fujigaya, N. Nakashima, P. J. A. Kenis, ACS Energy Lett., 2018, 3, 193
    31. P. Bumroongsakulsawat, G. H. Kelsall, Electrochim. Acta, 2014, 141, 216.
    32. T. T. H. Hoang, S. Verma, S. Ma, T. T. Fister, J. Timoshenko, A. I. Frenkel, P. J. A. Kenis, A. A. Gewirth, J. Am. Chem. Soc., 2018, 140, 5791.
    33. B. Kim, S. Ma, H. -R. Molly Jhong, P. J. A. Kenis, Electrochim. Acta, 2015, 166, 271
    34. X. Lu, D. Y. C. Leung, H. Wang, J. Xuan, Appl. Energy, 2017, 194, 549.
    35. E. J. Dufek, T. E. Lister, M. E. McIlwain, J. Appl. Electrochem., 2011, 41, 623
    36. Z. Jiang, Z. Zhang, H. Li, Y. Tang, Y. Yuan, J. Zao, H. Zheng, Y. Liang, Adv. Energy Mater., 2023, 13, 2203603.
    37. X. Zhang, J. Li, Y. -Y. Li, Y. Jung, Y. Kuang, G. Zhu, Y. Liang, H. Dai, J. Am. Chem. Soc., 2021, 143, 3245
    38. T. Yuan, T. Wang, G. Zhang, W. Deng, D. Cheng, H. Gao, J. Zhao, J. Yu, P. Zhang, J. Gong, Chem. Sci., 2022, 13, 8117.
    39. H. “Molly” Jhong, F. R. Brushett, P. J. A. Kenis, Adv. Energy Mater., 2013, 3, 589.
    40. Y. Kang, Y. Kim, Y. Doh, J. Lee, J. Kim, K. T. Park, Angew. Chem. Int. Ed., 2025, 137, e202504380.
    41. C. G. Vayenas, R. E. White, M. E. Gamboa-Aldeco, Modern Aspects of Electrochemistry, Springer New York, New York, 2008.
    42. G. Seshadri, C. Lin, A. B. Bocarsly, J. Electroanal. Chem., 1994, 372, 145.
    43. A. S. Varela, W. Ju, T. Reier, P. Strasser, ACS Catal., 2016, 6, 2136.
    44. F. P. García De Arquer, C. -T. Dinh, A. Ozden, J. Wicks, C. McCallum, A. R. Kirmani, D. -H. Nam, C. Gabardo, A. Seifitokaldani, X. Wang, Y. C. Li, F. Li, J. Edwards, L. J. Richter, S. J. Thorpe, D. Sinton, E. H. Sargent, Science, 2020, 367, 661
    45. T. Burdyny, W. A. Smith, Energy Environ. Sci., 2019, 12, 1442.
    46. M. König, J. Vaes, E. Klemm, D. Pant, iScience, 2019, 19, 135.
    47. L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang, K. Xu, Science, 2015, 350, 938.
    48. Q. Dong, X. Zhang, D. He, C. Lang, D. Wang, ACS Cent. Sci., 2019, 5, 1461.
    49. A. Martini, D. Hursán, J. Timoshenko, M. Rüscher, F. Haase, C. Rettenmaier, E. Ortega, A. Etxebarria, B. Roldan Cuenya, J. Am. Chem. Soc., 2023, 145, 17351.
    50. H. Mistry, Y. Choi, A. Bagger, F. Scholten, C. S. Bonifacio, I. Sinev, N. J. Divins, I. Zegkinoglou, H. S. Jeon, K. Kisslinger, E. A. Stach, J. C. Yang, J. Rossmeisl, B. Roldan Cuenya, Angew. Chem. Int. Ed., 2017, 129, 11552.
    51. Y. Liu, X. Fan, A. Nayak, Y. Wang, B. Shan, X. Quan, T. J. Meyer, Natl. Acad. Sci., 2019, 116, 26353.
    52. F. Li, A. Thevenon, A. Rosas-Hernández, Z. Wang, Y. Li, C. M. Gabardo, A. Ozden, C. T. Dinh, J. Li, Y. Wang, J. P. Edwards, Y. Xu, C. McCallum, L. Tao, Z. -Q. Liang, M. Luo, X. Wang, H. Li, C. P. O’Brien, C. -S. Tan, D. -H. Nam, R. Quintero-Bermudez, T. -T. Zhuang, Y. C. Li, Z. Han, R. D. Britt, D. Sinton, T. Agapie, J. C. Peters, Nature, 2020, 577, 509
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Information

Article Metrics

Article views(46) PDF downloads(34) Citation(0)

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint