Citation: | Yang Geng, Yaru Gong, Wei Dou, Pubao Peng, Pan Ying, Guodong Tang. Polycrystalline SnSe thermoelectrics: new opportunity and challenge[J]. Materials Lab, 2025, 4(1): 240013. doi: 10.54227/mlab.20240013 |
Polycrystalline SnSe is considered as a highly promising candidates for thermoelectric application due to facile processing, machinability and scale-up application. Developing high-performance polycrystalline SnSe has become a critical research direction. Unfortunately, ZT values in polycrystalline SnSe are far less than that of single crystal because polycrystalline SnSe show much lower electrical conductivity and relatively higher thermal conductivity. Here, we presents our recent research progress on polycrystalline SnSe. We demonstrated that thermoelectric performance have been significantly enhanced in polycrystalline SnSe through proposed strategy. Finally, we discusses the future challenges facing polycrystalline SnSe thermoelectric materials.
1. | L. E. Bell, Science, 2008, 321, 1457 |
2. | G. J. Snyder and E. S. Toberer, Nature Materials, 2008, 7, 105 |
3. | X.-L. Shi, J. Zou and Z.-G. Chen, Chemical Reviews, 2020, 120, 7399 |
4. | J. Mao, Z. Liu and Z. Ren, npj Quantum Materials, 2016, 1, 16028 |
5. | Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen and G. J. Snyder, Nature, 2011, 473, 66 |
6. | A. Banik, T. Ghosh, R. Arora, M. Dutta, J. Pandey, S. Acharya, A. Soni, U. V. Waghmare and K. Biswas, Energy & Environmental Science, 2019, 12, 589 |
7. | R. Deng, X. Su, S. Hao, Z. Zheng, M. Zhang, H. Xie, W. Liu, Y. Yan, C. Wolverton, C. Uher, M. G. Kanatzidis and X. Tang, Energy & Environmental Science, 2018, 11, 1520 |
8. | J. Dong, F.-H. Sun, H. Tang, J. Pei, H.-L. Zhuang, H.-H. Hu, B.-P. Zhang, Y. Pan and J.-F. Li, Energy & Environmental Science, 2019, 12, 1396 |
9. | M. Hong, Z.-G. Chen, L. Yang, T. C. Chasapis, S. D. Kang, Y. Zou, G. J. Auchterlonie, M. G. Kanatzidis, G. J. Snyder and J. Zou, Journal of Materials Chemistry A, 2017, 5, 10713 |
10. | L.-D. Zhao, S. Hao, S.-H. Lo, C.-I. Wu, X. Zhou, Y. Lee, H. Li, K. Biswas, T. P. Hogan, C. Uher, C. Wolverton, V. P. Dravid and M. G. Kanatzidis, Journal of the American Chemical Society, 2013, 135, 7364 |
11. | X. Hu, P. Jood, M. Ohta, M. Kunii, K. Nagase, H. Nishiate, M. G. Kanatzidis and A. Yamamoto, Energy & Environmental Science, 2016, 9, 517 |
12. | K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid and M. G. Kanatzidis, Nature, 2012, 489, 414 |
13. | Y. Zheng, C. Liu, L. Miao, C. Li, R. Huang, J. Gao, X. Wang, J. Chen, Y. Zhou and E. Nishibori, Nano Energy, 2019, 59, 311 |
14. | H. J. Wu, L. D. Zhao, F. S. Zheng, D. Wu, Y. L. Pei, X. Tong, M. G. Kanatzidis and J. Q. He, Nature Communications, 2014, 5, 4515 |
15. | G. Tang, W. Wei, J. Zhang, Y. Li, X. Wang, G. Xu, C. Chang, Z. Wang, Y. Du and L.-D. Zhao, Journal of the American Chemical Society, 2016, 138, 13647 |
16. | F. Zhang, D. Wu and J. J. M. L. He, Materials Lab, 2022, 1, 220012 |
17. | Z. Chen, Z. Jian, W. Li, Y. Chang, B. Ge, R. Hanus, J. Yang, Y. Chen, M. Huang, G. J. Snyder and Y. Pei, Advanced Materials, 2017, 29, 1606768 |
18. | W. Li, L. Zheng, B. Ge, S. Lin, X. Zhang, Z. Chen, Y. Chang and Y. Pei, Advanced Materials, 2017, 29, 1605887 |
19. | E. K. Chere, Q. Zhang, K. Dahal, F. Cao, J. Mao and Z. Ren, Journal of Materials Chemistry A, 2016, 4, 1848 |
20. | S. Li, Y. Hou, D. Li, B. Zou, Q. Zhang, Y. Cao and G. Tang, Journal of Materials Chemistry A, 2022, 10, 12429 |
21. | C.-L. Chen, H. Wang, Y.-Y. Chen, T. Day and G. J. Snyder, J. Mater. Chem. A, 2014, 2, 11171 |
22. | B. Jiang, Y. Yu, J. Cui, X. Liu, L. Xie, J. Liao, Q. Zhang, Y. Huang, S. Ning and B. J. S. Jia, Science, 2021, 371, 830 |
23. | R. Liu, H. Chen, K. Zhao, Y. Qin, B. Jiang, T. Zhang, G. Sha, X. Shi, C. Uher, W. Zhang and L. Chen, Advanced Materials, 2017, 29, 1702712 |
24. | L. Hu, Y. Zhang, H. Wu, J. Li, Y. Li, M. McKenna, J. He, F. Liu, S. J. Pennycook and X. Zeng, Advanced Energy Materials, 2018, 8, 1802116 |
25. | X.-L. Shi, W.-Y. Chen, X. Tao, J. Zou and Z.-G. Chen, Materials Horizons, 2020, 7, 3065 |
26. | X. L. Shi, X. Tao, J. Zou and Z. G. Chen, Advanced Science, 2020, 7, 1902923 |
27. | L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid and M. G. Kanatzidis, Nature, 2014, 508, 373 |
28. | T. Chattopadhyay, J. Pannetier, H. G. Von Schnering, J. Phys. Chem. Solids, 1986, 47, 879 |
29. | B. Qin, M. G. Kanatzidis and L.-D. Zhao, Science, 2024, 386, eadp2444 |
30. | C. Chang, M. Wu, D. He, Y. Pei, C.-F. Wu, X. Wu, H. Yu, F. Zhu, K. Wang and Y. J. S. Chen, Science, 2018, 360, 778 |
31. | B. Qin, D. Wang, X. Liu, Y. Qin, J.-F. Dong, J. Luo, J.-W. Li, W. Liu, G. Tan, X. Tang, J.-F. Li, J. He and L.-D. Zhao, Science, 2021, 373, 556 |
32. | D. Liu, D. Wang, T. Hong, Z. Wang, Y. Wang, Y. Qin, L. Su, T. Yang, X. Gao and Z. J. S. Ge, Science, 2023, 380, 841 |
33. | Y. Li, X. Shi, D. Ren, J. Chen and L. Chen, Energies, 2015, 8, 6275 |
34. | N. Lin, S. Han, T. Ghosh, C. F. Schön, D. Kim, J. Frank, F. Hoff, T. Schmidt, P. Ying, Y. Zhu, M. Häser, M. Shen, M. Liu, J. Sui, O. Cojocaru‐Mirédin, C. Zhou, R. He, M. Wuttig and Y. Yu, Advanced Functional Materials, 2024, 34, 2315652 |
35. | X. Shi, Z.-G. Chen, W. Liu, L. Yang, M. Hong, R. Moshwan, L. Huang and J. Zou, Energy Storage Materials, 2018, 10, 130 |
36. | C. Wu, X. L. Shi, M. Li, Z. Zheng, L. Zhu, K. Huang, W. D. Liu, P. Yuan, L. Cheng, Z. G. Chen and X. Yao, Advanced Functional Materials, 2024, 34, 2402317 |
37. | X. Yang, C.-Y. Wang, W.-Q. Bao, Z. Li, Z.-Y. Wang, J. Feng and Z.-H. Ge, Journal of Materials Science & Technology, 2025, 217, 18 |
38. | C. Chang, Q. Tan, Y. Pei, Y. Xiao, X. Zhang, Y.-X. Chen, L. Zheng, S. Gong, J.-F. Li, J. He and L.-D. Zhao, RSC Advances, 2016, 6, 98216 |
39. | S. Chen, K. Cai and W. Zhao, Physica B: Condensed Matter, 2012, 407, 4154 |
40. | W.-H. Gu, Y.-X. Zhang, J. Guo, J.-F. Cai, Y.-K. Zhu, F. Zheng, L. Jin, J. Xu, J. Feng and Z.-H. Ge, Journal of Alloys and Compounds, 2021, 864, 158401 |
41. | G. Han, S. R. Popuri, H. F. Greer, L. F. Llin, J. W. G. Bos, W. Zhou, D. J. Paul, H. Ménard, A. R. Knox, A. Montecucco, J. Siviter, E. A. Man, W. g. Li, M. C. Paul, M. Gao, T. Sweet, R. Freer, F. Azough, H. Baig, T. K. Mallick and D. H. Gregory, Advanced Energy Materials, 2017, 7, 1602328 |
42. | S. Li, L. Yin, Y. Liu, X. Wang, C. Chen and Q. Zhang, Journal of Materials Science & Technology, 2023, 143, 234 |
43. | X.-Y. Mao, X.-L. Shi, L.-C. Zhai, W.-D. Liu, Y.-X. Chen, H. Gao, M. Li, D.-Z. Wang, H. Wu, Z.-H. Zheng, Y.-F. Wang, Q. Liu and Z.-G. Chen, Journal of Materials Science & Technology, 2022, 114, 55 |
44. | M. Nisar, A. Abbas, J. Zhang, F. Li, Z. Zheng, G. Liang, P. Fan and Y. X. Chen, Small, 2024, 20, 2312003 |
45. | X. L. Shi, K. Zheng, W. D. Liu, Y. Wang, Y. Z. Yang, Z. G. Chen and J. Zou, Advanced Energy Materials, 2018, 8, 1800775 |
46. | S. Chandra, A. Banik and K. J. A. E. L. Biswas, ACS Energy Letters, 2018, 3, 1153 |
47. | B. Qin, D. Wang, T. Hong, Y. Wang, D. Liu, Z. Wang, X. Gao, Z.-H. Ge and L.-D. Zhao, Nature Communications, 2023, 14, 1366 |
48. | S. Byun, B. Ge, H. Song, S.-P. Cho, M. S. Hong, J. Im and I. Chung, Joule, 2024, 8, 1520 |
49. | Y. Liu, M. Calcabrini, Y. Yu, S. Lee, C. Chang, J. David, T. Ghosh, M. C. Spadaro, C. Xie, O. Cojocaru-Mirédin, J. Arbiol and M. Ibáñez, ACS Nano, 2021, 16, 78 |
50. | X. Shi, A. Wu, W. Liu, R. Moshwan, Y. Wang, Z.-G. Chen and J. Zou, ACS Nano, 2018, 12, 11417 |
51. | S. Chandra and K. Biswas, Journal of the American Chemical Society, 2019, 141, 6141 |
52. | E. Kaxiras, Atomic and Electronic Structure of Solids, Cambridge University Press, England, 2003. |
53. | W. Wei, C. Chang, T. Yang, J. Liu, H. Tang, J. Zhang, Y. Li, F. Xu, Z. Zhang, J.-F. Li and G. Tang, Journal of the American Chemical Society, 2017, 140, 499 |
54. | Y. Gong, P. Ying, Q. Zhang, Y. Liu, X. Huang, W. Dou, Y. Zhang, D. Li, D. Zhang, T. Feng, M. Wang, G. Chen and G. Tang, Energy & Environmental Science, 2024, 17, 1612 |
55. | Y. Gong, W. Dou, B. Lu, X. Zhang, H. Zhu, P. Ying, Q. Zhang, Y. Liu, Y. Li, X. Huang, M. F. Iqbal, S. Zhang, D. Li, Y. Zhang, H. Wu and G. Tang, Nature Communications, 2024, 15, 4231 |
56. | J. He and T. M. Tritt, Science, 2017, 357, eaak9997 |
57. | J. P. Heremans, B. Wiendlocha and A. M. Chamoire, Energy Environ. Sci., 2012, 5, 5510 |
58. | R. Liang, G. Yan, Y. Geng, L. Hu, F. Liu, W. Ao and C. Zhang, Advanced Functional Materials, 2024, 34, 2404021 |
59. | R. Xu, L. Huang, J. Zhang, D. Li, J. Liu, J. Liu, J. Fang, M. Wang and G. Tang, Journal of Materials Chemistry A, 2019, 7, 15757 |
60. | D. Ding, C. Lu and Z. Tang, Advanced Materials Interfaces, 2017, 4, 1700517 |
61. | J. Zhou and R. Yang, Journal of Applied Physics, 2011, 110, 084317 |
62. | D. A. Molodov, S. Bhaumik, X. Molodova and G. Gottstein, Scripta Materialia, 2006, 54, 2161 |
63. | S. Li, Y. Hou, S. Zhang, Y. Gong, S. Siddique, D. Li, J. Fang, P. Nan, B. Ge and G. Tang, Chemical Engineering Journal, 2023, 451, 138637 |
64. | S. Li, X. Lou, B. Zou, Y. Hou, J. Zhang, D. Li, J. Fang, T. Feng, D. Zhang, Y. Liu, J. Liu and G. Tang, Materials Today Physics, 2021, 21, 100542 |
65. | Y. Yu, C. Zhou, S. Zhang, M. Zhu, M. Wuttig, C. Scheu, D. Raabe, G. J. Snyder, B. Gault and O. Cojocaru-Mirédin, Materials Today, 2020, 32, 260 |
66. | W. Dou, Y. Gong, X. Huang, Y. Li, Q. Zhang, Y. Liu, Q. Xia, Q. Jian, D. Xiang, D. Li, D. Zhang, S. Zhang, P. Ying and G. Tang, Small, 2024, 20, 2311153 |
67. | Y. Wu, Z. Chen, P. Nan, F. Xiong, S. Lin, X. Zhang, Y. Chen, L. Chen, B. Ge and Y. Pei, Joule, 2019, 3, 1276 |
68. | Y. Xiao, C. Chang, Y. Pei, D. Wu, K. Peng, X. Zhou, S. Gong, J. He, Y. Zhang, Z. Zeng and L.-D. Zhao, Physical Review B, 2016, 94, 125203 |
69. | X. Lou, S. Li, X. Chen, Q. Zhang, H. Deng, J. Zhang, D. Li, X. Zhang, Y. Zhang, H. Zeng and G. Tang, ACS Nano, 2021, 15, 8204 |
70. | T. Hong, C. Guo, D. Wang, B. Qin, C. Chang, X. Gao and L.-D. Zhao, Materials Today Energy, 2022, 25, 100985 |
71. | J. Guo, J. Jian, J. Liu, B. Cao, R. Lei, Z. Zhang, B. Song and H. Zhao, Nano Energy, 2017, 38, 569 |
72. | J. Chen, Q. Sun, D. Bao, B.-Z. Tian, Z. Wang, J. Tang, D. Zhou, L. Yang and Z.-G. Chen, Acta Materialia, 2021, 220, 117335 |
73. | Z. Liu, W. Gao, X. Meng, X. Li, J. Mao, Y. Wang, J. Shuai, W. Cai, Z. Ren and J. Sui, Scripta Materialia, 2017, 127, 72 |
74. | Y. K. Zhu, Y. Sun, J. Zhu, K. Song, Z. Liu, M. Liu, M. Guo, X. Dong, F. Guo, X. Tan, B. Yu, W. Cai, J. Jiang and J. Sui, Small, 2022, 18, 2201352 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Comparison of thermoelectric properties between single crystal SnSe and polycrystalline SnSe. a κLmin,[15,27,30,33–37] b μH,[30–32,38–47] c PF, d ZT.[30,31,34,37,42,48,49]
HAADF-STEM images of Sn0.95Se along the b-axis: a low-magnification image of grain interior; b vacancy domains; c atomic-resolution image showing the projection of atomic columns; d intensity line scanning profile along the green boxed atomic layer, taken directly from the digital readout of the detector. The arrows indicate Sn poor column.[53]
Modulation mechanism of WCl6 doping on SnSe electron-phonon transport.[54]
a Electronic band structures of SnSe. b Crystal structures of Sn0.963W0.028Se0.92. Unfolding band structures of c SnSe0.92 and d Sn0.963W0.027Se0.92. The scale bar is the magnitude of the spectral weight, which characterizes the probability of the primitive cell eigenstates contributing to a particular supercell eigenstate of the same energy. Density of states of e SnSe0.92 and f Sn0.963W0.027Se0.92. The dashed line represents the Fermi energy level.[55]
a μW/κL, b quality factor (B), c ZT along the pressing direction. d Comparisons of ZT for SnSe0.92 + 0.03WCl6 with n-type polycrystalline SnSe-based systems.[55]
Schematic diagram of the effect of the magnetic field on the grain growth. Enhanced energy filtering effects and density of states were induced by the smaller nano grains and Se quantum dots.[59]
a UPS spectra. b Density of valence electronic states (DOVS) at the Fermi level for 0 T-Sn0.975Ga0.025Se sample and 5 T-NP/QD Sn0.975Ga0.025Se sample.
Microstructural characterizations of sintered 5 T-NP/QD Sn0.975Ga0.025Se sample a-d HAADF-STEM image and corresponding EDS mappings, showing Sn quantum dots e-h HAADF-STEM image and corresponding EDS mappings, showing Se quan tum dots. i Medium magnification Bright-field STEM (BF-STEM) image of the dense linear defects (dislo cations), which intertwining into dislocation networks j high magnification BF-STEM image of the linear defect, k HAADF-STEM image and l GPA strain mapping of the zone in the red dashed box in j, showing the lattice distortion and lattice strain of the kinking area in linear defect, respectively.[63]
Microstructural characterizations of Sn0.96Ga0.04Se. a Typical TEM image of a plenty of dislocations and stacking fault. b HRTEM patterns of Sn0.96Ga0.04Se to show nanoprecipitates. c, e Images showing details of dislocations and the corresponding strain mapping. d, f Images showing details of stacking fault and the corresponding strain mapping.[69]
a Total thermal conductivity κT as a function of temperature. b Lattice thermal conductivity κL as a function of temperature.[69]
SEM images of a Sn0.96Ge0.04Se0.96S0.04 nanorods tightly arranged in a cluster structure, b Sn0.96Ge0.04Se0.96S0.04 nanorods enlarged in different regions, and c-d a single nanorod and its elemental mapping.[54]
The temperature dependence of a total thermal conductivity (κT) and comparison of the b κL of Sn1−xGexSe1−xSx nanorods with those of SnSe-based systems. The temperature dependence of c ZT, d comparison of ZTmax and ZTavg of Sn1−xGexSe1−xSx nanorods with those of SnSe-based systems. Mechanical performance of SnSe and Sn0.96Ge0.04Se0.96S0.04.[54]