Citation: | Lin Sun, Fangrong Yan, Chunxiao Shi, Hang Wei, Yu Liu, Qingjun Yang, Runmei Luo, Guiquan Liu, Weidong Shi. Electrochemical rapid reconstruction of 1D ZIF-L derived hollow hierarchical multiphase NiCo-S for high-performance hybrid supercapacitors[J]. Materials Lab, 2025, 4(1): 240014. doi: 10.54227/mlab.20240014 |
The combination of low electronegative sulfur and common transition metals has obvious advantages in easing volume expansion and improving electrical conductivity for energy storage. Herein, we developed an electrochemically assisted strategy to rapidly reconstruct ZIFs (Zeolitic Imidazolate Frameworks) with Lewis acid to obtain reticulated cross-linked hierarchical electrode NiCo-LDH@CNFs (carbon-nitrogen frameworks) with excellent active specific surface area. Simple vulcanization can effectively optimize the active site and crystal structure, and further improve the conductivity of the multi-phase electrode NiCo-S@CNFs (NiCo2S4, CoS2). Furthermore, the synergistic effect of multi-phase metal sulfides and the reasonable structure can effectually enhance the redox activity, adsorption capacity of OH−, and reduce the volume expansion and of the electrode. The results demonstrate that the specific capacity of the electrode is 433.3 mAh g−1 (6 M KOH). The prepared HSC device (hybrid supercapacitor, NiCo-S@CNFs//AC (activated carbon)) exhibits a maximum energy density of 87.2 Wh kg−1 (800 W kg−1). After 12,000 charge/discharge cycles, the capacity retention rate is still 105.1%, which has excellent cycling stability among ZIF-derived binary metal sulfides. Furthermore, parallel-connected LEDs can be lit by two series-connected HSCs, showing their practicality and great potential.
1. | KH. Wang, X. Gao, Y. Xie, E. Guo, H. Bai, F. Jiang, Q. Li, H. Yue, Adv. Energy Mater., 2024, 14, 2400493 |
2. | H. Hu, C. Yang, F. Chen, J. Li, X. Jia, Y. Wang, X. Zhu, Z. Man, G. Wu, W. Chen, Adv. Mater., 2024, 36, 2406483 |
3. | Y. Ai, C. Yang, Z. Yin, T. Wang, T. Gai, J. Feng, K. Li, W. Zhang, Y. Li, F. Wang, D. Chao, Y. Wang, D. Zhao, W. Li, J. Am. Chem. Soc., 2024, 146, 15496 |
4. | H. Chen, T. Liu, J. Mou, W. Zhang, Z. Jiang, J. Liu, J. Huang, M. Liu, Nano Energy, 2019, 63, 103836 |
5. | Q. Yang, Q. Wang, Y. Long, F. Wang, L. Wu, J. Pan, J. Han, Y. Lei, W. Shi, S. Song, Adv. Energy Mater., 2020, 10, 1903193 |
6. | K. Li, Z. Guo, Q. Sun, X. Dai, Y. Li, K. Yao, X. Liu, Z. Bao, J. Rao, Y. Zhang, Chem. Eng. J., 2023, 454, 140223 |
7. | T. Wang, H. C. Chen, F. Yu, X. S. Zhao, H. Wang, Energy Storage Mater., 2019, 16, 545 |
8. | Q. Yang, K. Y. Chung, X. Liu, L. Sun, J. Han, Y. Yang, T. Chen, W. Shi, B. Xu, Adv. Mater., 2024, 36, 2401375 |
9. | W. Ye, P. Ye, H. Wang, F. Chen, Y. Zhong, Y. Hu, J. Colloid Interf. Sci., 2022, 612, 298 |
10. | H. Wang, Y. Yang, Q. Li, W. Lu, J. Ning, Y. Zhong, Z. Zhang, Y. Hu, Sci. China Mater., 2021, 64, 840 |
11. | Y. Wen, S. Peng, Z. Wang, J. Hao, T. Qin, S. Lu, J. Zhang, D. He, X. Fan, G. Cao, J. Mater. Chem. A, 2017, 5, 7144 |
12. | T.-F. Yi, J.-J. Pan, T.-T. Wei, Y. Li, G. Cao, Nano Today, 2020, 33, 100894 |
13. | M. Liang, M. Zhao, H. Wang, J. Shen, X. Song, J. Mater. Chem. A, 2018, 6, 2482 |
14. | F. Yu, Z. Chang, X. Yuan, F. Wang, Y. Zhu, L. Fu, Y. Chen, H. Wang, Y. Wu, W. Li, J. Mater. Chem. A, 2018, 6, 5856 |
15. | X. Lei, Y. Zhang, J. Han, X. Su, L. Xue, W. Guo, Y. Zhang, Chem. Eng. J., 2024, 493, 152728 |
16. | Y. Li, X. Wei, F. Jiang, Y. Wang, M. Xie, J. Peng, C. Yi, J. Li, M. Zhai, Energy & Environmental Materials, 2025, 8, e12820 |
17. | L. Sun, Y. Liu, B. Luo, F. Yan, X. Liu, F. Zhu, W. Shi, Chem. Eng. J, 2023, 454, 140088 |
18. | Y. Cui, J. Zhang, C. Jin, Y. Liu, W. Luo, W. Zheng, Small, 2019, 15, 1804318 |
19. | K. Li, C. Yin, X. Dai, J. Zhang, S. Yi, J. Rao, Y. Zhang, J. Energy Storage, 2022, 55, 105722 |
20. | C. Zhang, K. Li, T. Sun, X. Liu, X. Dai, Q. Zhou, D. Wang, X. Zhang, J. Ding, X. Huang, J. Rao, Y. Hou, P. Yang, K. Liu, Y. Zhang, ACS Appl. Nano Mater., 2024, 7, 3001 |
21. | Q. Li, W. Lu, Z. Li, J. Ning, Y. Zhong, Y. Hu, Chem. Eng. J., 2020, 380, 122544 |
22. | X. Yin, C. Zhi, W. Sun, L.-P. Lv, Y. Wang, J. Mater. Chem. A, 2019, 7, 7800 |
23. | F. Sun, C. Wu, X. Guan, Z. Huang, X. Han, Y. Zhang, H. Li, Y. Song, T. Ma, Adv. Funct. Mater., 2025, 35, 2415255 |
24. | X. Wang, F. Huang, F. Rong, P. He, R. Que, S. P. Jiang, J. Mater. Chem. A, 2019, 7, 12018 |
25. | L. Sun, Y. Liu, M. Yan, Q. Yang, X. Liu, W. Shi, Chem. Eng. J., 2022, 431, 133472 |
26. | W. Liu, Y. Zhao, J. Zheng, D. Jin, Y. Wang, J. Lian, S. Yang, G. Li, Y. Bu, F. Qiao, J. Colloid Interf. Sci., 2022, 606, 728 |
27. | L. Sun, Y. Liu, Q. Yang, Fangrong Yan, X. Liu, C. Wang, R. Luo, W. Shi, Chem. Eng. Sci., 2023, 278, 118905 |
28. | G. Qu, C. Li, P. Hou, G. Zhao, X. Wang, X. Zhang, X. Xu, Nanoscale, 2020, 12, 4686 |
29. | S. Zhang, B. Guan, X. Lu, S. Xi, Y. Du, X. Lou, Adv. Mater., 2020, 32, 2002235 |
30. | Y. Feng, X. Wang, J. Huang, P. Dong, J. Ji, J. Li, L. Cao, L. Feng, P. Jin, C. Wang, Chem. Eng. J., 2020, 390, 124525 |
31. | H. Li, Y. Su, W. Sun, Y. Wang, Carbon Nanotubes Rooted in Porous Ternary, Adv. Funct. Mater., 2016, 26, 8345 |
32. | F. Yuan, J. Wei, G. Qin, Y. Ni, J. Alloy. Compd., 2020, 830, 154658 |
33. | Y. Zhu, S. An, X. Sun, D. Lan, J. Cui, Y. Zhang, W. He, Chem. Eng. J., 2020, 383, 123206 |
34. | J. Huang, S. Wang, J. Nie, C. Huang, X. Zhang, B. Wang, J. Tang, C. Du, Z. Liu, J. Chen, Chem. Eng. J., 2021, 417, 128055 |
35. | Y. Li, B. Zhang, W. Wang, X. Shi, J. Zhang, R. Wang, B. He, Q. Wang, J. Jiang, Y. Gong, H. Wang, Chem. Eng. J., 2021, 405, 126981 |
36. | K. A. Nirmal, W. Ren, A. C. Khot, D. Y. Kang, T. D. Dongale, T. G. Kim, Adv. Sci., 2023, 10, 2300433 |
37. | X. Wang, T. Song, G. Fu, Y. Yang, ACS Catal., 2023, 13, 11634 |
38. | Q. Cheng, Z. Chen, X. Li, C. Bi, F. Sun, X. Zhang, X. Ma, B. Li, J. Huang, Adv. Energy Mater., 2023, 13, 2301770 |
39. | P. Lv, S. Chang, Q. Hong, J. Mei, S. Yang, Chem. Eng. J., 2024, 483, 148955 |
40. | J. Gao, Y. Hu, Y. Wang, X. Lin, K. Hu, X. Lin, G. Xie, X. Liu, K. M. Reddy, Q. Yuan, H. J. Qiu, Small, 2021, 17, 2104684 |
41. | Y. Fu, H. Y. Yu, C. Jiang, T. H. Zhang, R. Zhan, X. Li, J. F. Li, J. H. Tian, R. Yang, Adv. Funct. Mater., 2017, 28, 1705094 |
42. | X. Yin, Y. Ren, S. Guo, B. Sun, L. Wu, C. Du, J. Wang, G. Yin, H. Huo, Adv. Funct. Mater., 2022, 32, 2110017 |
43. | W. Chen, X. Zhang, L.-E. Mo, Y. Zhang, S. Chen, X. Zhang, L. Hu, Chem. Eng. J., 2020, 388, 124109 |
44. | J. Pu, F. Cui, S. Chu, T. Wang, E. Sheng, Z. Wang, ACS Sustainable Chem. Eng., 2014, 2, 809 |
45. | M. Yan, Y. Yao, J. Wen, L. Long, M. Kong, G. Zhang, X. Liao, G. Yin, Z. Huang, ACS Appl. Mater. Interfaces, 2016, 8, 24525 |
46. | L. Mei, T. Yang, C. Xu, M. Zhang, L. Chen, Q. Li, T. Wang, Nano Energy, 2014, 3, 36 |
47. | M. Gao, K. Le, G. Wang, Z. Wang, F. Wang, W. Liu, J. Liu, Electrochim. Acta, 2019, 323, 134839 |
48. | J. Zhang, J. Luo, Z. Guo, Z. Liu, C. Duan, S. Dou, Q. Yuan, P. Liu, K. Ji, C. Zeng, J. Xu, W. Liu, Y. Chen, W. Hu, Adv. Energy Mater., 2023, 13, 2203061 |
49. | Y. Wang, Z. Chen, T. Lei, Y. Ai, Z. Peng, X. Yan, H. Li, J. Zhang, Z. M. Wang, Y. L. Chueh, Adv. Energy Mater., 2018, 8, 1703453 |
50. | Z. Xu, C. Du, H. Yang, J. Huang, X. Zhang, J. Chen, Chem. Eng. J., 2021, 421, 127871 |
51. | W. Yang, C. Zhang, B. Jiang, P. Wang, L. Yan, L. Hou, F. Yang, Y. Li, Chem. Eng. J., 2022, 434, 134473 |
52. | C. Kang, L. Ma, Y. Chen, L. Fu, Q. Hu, C. Zhou, Q. Liu, Chem. Eng. J., 2022, 427, 131003 |
53. | Z. Liang, C. Qu, W. Zhou, R. Zhao, H. Zhang, B. Zhu, W. Guo, W. Meng, Y. Wu, W. Aftab, Q. Wang, R. Zou, Adv. Sci., 2019, 6, 1802005 |
54. | X. Liu, W. Zang, C. Guan, L. Zhang, Y. Qian, A. M. Elshahawy, D. Zhao, S. J. Pennycook, J. Wang, ACS Energy Lett., 2018, 3, 2462 |
55. | M. S. Javed, X. Zhang, S. Ali, A. Mateen, M. Idrees, M. Sajjad, S. Batool, A. Ahmad, M. Imran, T. Najam, W. Han, Nano Energy, 2022, 101, 107624 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
MATLAB-2024-0014Supplemental_file |
![]() |
The synthesis route illustration of hierarchical electrode NiCo-S@CNFs in-situ grown and regulation on carbon cloth (CC).
a XRD comparison patterns and b XPS survey spectra of the precursor NiCo-LDH and the optimal sample NiCo-S@CNFs, XPS spectra of NiCo-S@CNFs: c Co 2p, d Ni 2p, e S 2p, f C 1s, g N 1s, h O 1s and i BET plots.
SEM images at different magnifications: a ZIF-L, b NiCo-LDH NSs, c NiCo-LDH@CNFs. Morphologies of multiphase electrodes obtained by vulcanization at different times: d1 h, e 2 h, f 3 h.
a-f TEM images, g HRTEM, and h elemental (C, N, O, S, Co, Ni) maps of multiphase electrode NiCo-S@CNFs.
a, d, g, j Electrochemical performance comparison of samples with different steps, b, e, h, k a concentration gradient of vulcanization, c, f, i, l molar ratio regulation of metal (electrochemical deposition): a, b, c CV at a scan rate of 2 mV s−1, d, e, f GCD at a current density of 1 A g−1, g, h, i rate capability at different current densities (1-10 A g−1 ), and j, k, l EIS curves.
a The charge transport model of the multiphase active material NiCo-S@CNFs, b current density difference in the non-Faraday region (0.1 V, 2-8 mV s−1) and c the corresponding histogram of ECSA. d-f The pseudocapacitance contribution diagram: CV curves with marked oxidation/reduction peaks (2-10 mV s−1), the fitting linear regression curve, and the histogram.
a CV curves at 2 mV s−1 of the two electrode NiCo-S@CNFs and AC. b-c CV comparison at 100 mV s−1 and GCD curves at 10 A g−1 (1.0-1.8 V), d-e CV and GCD curve in detailed, f-h rate performance graph, Ragone graph, EIS curve, i 12,000 cycle stability test graph of the HSC (NiCo-S@CNFs//AC).
a Charge transfer model in charge and discharge; b-d multiple LEDs are lit with HSCs.