Citation: | Hai Yang, Fuxiang He, Jialong Shen, Zhihao Chen, Yu Yao, Lixin He, Yan Yu. 2D Nb2O5@2D metallic RuO2 heterostructures as highly reversible anode materials for lithium-ion batteries[J]. Energy Lab, 2023, 1(1): 220007. doi: 10.54227/elab.20220007 |
Constructing two-dimensional (2D) heterostructured materials by stacking different 2D materials could combine the merits of the individual building blocks while getting rid of the associated shortcomings. Orthorhombic Nb2O5 (T-Nb2O5) is one of the greatly promising candidates for durable and safety anode for Li-ion batteries (LIBs), but it usually exhibits poor electrochemical performance due to the low electronic conductivity. Herein, we realize excellent lithium storage performance of T-Nb2O5 by designing 2D Nb2O5@2D metallic RuO2 heterostructures (Nb2O5@RuO2). The presence of 2D metallic RuO2 leads to enhanced electronic conductivity. The 2D Nb2O5@RuO2 heterostructures possess very short diffusion length of ions/electrons, easy penetration of liquid electrolyte, and high conductivity transport of electrons through the 2D metallic RuO2 to 2D Nb2O5. The Nb2O5@RuO2 delivers remarkable rate performance (133 mAh g−1 and 106 mAh g−1 at 50 C and 100 C) and excellent long-life capacity (97 mAh g−1 after
1. | B. Dunn, H. Kamath, J.-M. Tarascon, Science, 2011, 334, 928 |
2. | M. Armand, J.-M. Tarascon, Nature, 2008, 451, 652 |
3. | M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater., 2018, 30, 1800561 |
4. | W. Cai, C. Yan, Y. X. Yao, L. Xu, X. R. Chen, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed., 2021, 60, 13007 |
5. | L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Energy Environ. Sci., 2011, 4, 2682 |
6. | L. Shen, E. Uchaker, X. Zhang, G. Cao, Adv. Mater., 2012, 24, 6502 |
7. | L. Shen, S. Chen, J. Maier, Y. Yu, Adv. Mater., 2017, 29, 1701571 |
8. | J.-T. Han, Y.-H. Huang, J. B. Goodenough, Chem. Mater., 2011, 23, 2027 |
9. | H. Zhang, Y. Yang, H. Xu, L. Wang, X. Lu, X. He, InfoMat, 2022, 4, e12228 |
10. | M. M. Thackeray, K. Amine, Nat. Energy, 2021, 6, 683 |
11. | S. Li, X. Cao, C. N. Schmidt, Q. Xu, E. Uchaker, Y. Pei, G. Cao, J. Mater. Chem. A, 2016, 4, 4242 |
12. | Y. Zhang, C. Kang, W. Zhao, B. Sun, X. Xiao, H. Huo, Y. Ma, P. Zuo, S. Lou, G. Yin, Energy Storage Mater., 2022, 47, 178 |
13. | V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P.-L. Taberna, S. H. Tolbert, H. D. Abruña, P. Simon, B. Dunn, Nat. Mater., 2013, 12, 518 |
14. | Y. Zheng, Z. Yao, Z. Shadike, M. Lei, J. Liu, C. Li, Adv. Funct. Mater., 2022, 32, 2107060 |
15. | F. Su, J. Qin, P. Das, F. Zhou, Z.-S. Wu, Energy Environ. Sci., 2021, 14, 2269 |
16. | K. J. Woung, A. Veronica, D. Bruce, Adv. Energy Mater., 2012, 2, 141 |
17. | J. Y. Cheong, C. Kim, J.-W. Jung, K. R. Yoon, S.-H. Cho, D.-Y. Youn, H.-Y. Jang, I.-D. Kim, Small, 2017, 13, 1603610 |
18. | H. Sun, L. Mei, J. Liang, Z. Zhao, C. Lee, H. Fei, M. Ding, J. Lau, M. Li, C. Wang, X. Xu, G. Hao, B. Papandrea, I. Shakir, B. Dunn, Y. Huang, X. Duan, Science, 2017, 356, 599 |
19. | C. Zhang, S. J. Kim, M. Ghidiu, M.-Q. Zhao, M. W. Barsoum, V. Nicolosi, Y. Gogotsi, Adv. Funct. Mater., 2016, 26, 4143 |
20. | Y. S. Hu, Y. G. Guo, R. Dominko, M. Gaberscek, J. Jamnik, J. Maier, Adv. Mater., 2007, 19, 1963 |
21. | Y. Li, M. Bettge, J. Bareño, S. E. Trask, D. P. Abraham, J. Electrochem. Soc., 2015, 162, 7049 |
22. | E. C. Gay, D. R. Vissers, F. J. Martino, K. E. Anderson, J. Electrochem. Soc., 1976, 123, 1591 |
23. | M. Liu, C. Yan, Y. Zhang, Sci. Rep., 2015, 5, 8326 |
24. | M. Wei, K. Wei, M. Ichihara, H. Zhou, Electrochem. Commun., 2008, 10, 980 |
25. | M. M. Rahman, R. Abdul Rani, A. Z. Sadek, A. S. Zoolfakar, M. R. Field, T. Ramireddy, K. Kalantar-zadeh, Y. Chen, J. Mater. Chem. A, 2013, 1, 11019 |
26. | S.-q. Guo, X. Zhang, Z. Zhou, G.-d. Gao, L. Liu, J. Mater. Chem. A, 2014, 2, 9236 |
27. | A. Le Viet, M. V. Reddy, R. Jose, B. V. R. Chowdari, S. Ramakrishna, J. Phys. Chem. C, 2010, 114, 664 |
28. | L. Kong, C. Zhang, S. Zhang, J. Wang, R. Cai, C. Lv, W. Qiao, L. Ling, D. Long, J. Mater. Chem. A, 2014, 2, 17962 |
29. | X. Wang, L. Ge, Z. Chen, V. Augustyn, X. Ma, G. Wang, B. Dunn, Y. Lu, Adv. Energy Mater., 2011, 1, 1089 |
30. | Y. Tang, L. Yang, Y. Zhu, F. Zhang, H. Zhang, J. Mater. Chem. A, 2022, 10, 5620 |
31. | T. Li, K. Liu, G. Nam, M. G. Kim, Y. Ding, B. Zhao, Z. Luo, Z. Wang, W. Zhang, C. Zhao, J.-H. Wang, Y. Song, M. Liu, Small, 2022, 18, 2200972 |
32. | B. P. G., S. Bruno, T. Jean-Marie, Angew. Chem. Int. Ed., 2008, 47, 2930 |
33. | L. Wang, X. Bi, S. Yang, Adv. Mater., 2016, 28, 7672 |
34. | C. Chi, X. Xiuqiang, A. Babak, S. Asya, M. Taron, Z. Mengqiang, U. Patrick, M. Ling, J. Jianjun, G. Yury, Angew. Chem. Int. Ed., 2018, 57, 1846 |
35. | K. Liao, X. Wang, Y. Sun, D. Tang, M. Han, P. He, X. Jiang, T. Zhang, H. Zhou, Energy Environ. Sci., 2015, 8, 1992 |
36. | C. Seon-Jin, J. Ji-Soo, P. H. Jung, K. Il-Doo, Adv. Funct. Mater., 2017, 27, 1606026 |
37. | S. Liang, L. Wen, S. Lin, J. Bi, P. Feng, X. Fu, L. Wu, Angew. Chem. Int. Ed., 2014, 53, 2951 |
38. | P. Li, X. Liu, M. Chen, P. Lin, X. Ren, L. Lin, C. Yang, L. He, Comp. Mater. Sci., 2016, 112, 503 |
39. | M. Ernzerhof, G. E. Scuseria, J. Chem. Phys., 1999, 110, 5029 |
40. | M. Schlipf, F. Gygi, Comput. Phys. Commun., 2015, 196, 36 |
41. | D. G. Smith, L. A. Burns, K. Patkowski, C. D. Sherrill, J. Phys. Chem. Lett., 2016, 7, 2197 |
42. | D. Chen, J.-H. Wang, T.-F. Chou, B. Zhao, M. A. El-Sayed, M. Liu, J. Am. Chem. Soc., 2017, 139, 7071 |
43. | H. Yang, R. Xu, Y. Gong, Y. Yao, L. Gu, Y. Yu, Nano Energy, 2018, 48, 448 |
44. | S. H. Jung, D. H. Kim, P. Bruner, H. Lee, H. J. Hah, S. K. Kim, Y. S. Jung, Electrochim. Acta, 2017, 232, 236 |
45. | E. Lim, J. Lee, C. Jo, Y. Mun, J. Chun, Y. Ye, J. Hwang, J. Lee, H. Kim, K. Kang, M.-H. Kim, K. C. Roh, K.-S. Ha, K. Kang, S. Yoon, ACS Nano, 2015, 9, 7497 |
46. | Z. Hu, Q. He, Z. Liu, X. Liu, M. Qin, B. Wen, W. Shi, Y. Zhao, Q. Li, L. Mai, Sci. Bull., 2020, 65, 1154 |
47. | Y. G. Guo, Y. S. Hu, W. Sigle, J. Maier, Adv. Mater., 2007, 19, 2087 |
48. | Y. Zhang, P. Chen, Q. Wang, Q. Wang, K. Zhu, K. Ye, G. Wang, D. Cao, J. Yan, Q. Zhang, Adv. Energy Mater., 2021, 11, 2101712 |
49. | X. Wang, H. Li, H. Li, S. Lin, W. Ding, X. Zhu, Z. Sheng, H. Wang, X. Zhu, Y. Sun, Adv. Funct. Mater., 2020, 30, 1910302 |
50. | K. E. Gregorczyk, A. C. Kozen, X. Chen, M. A. Schroeder, M. Noked, A. Cao, L. Hu, G. W. Rubloff, ACS Nano, 2015, 9, 464 |
51. | Z.-S. Wu, D.-W. Wang, W. Ren, J. Zhao, G. Zhou, F. Li, H.-M. Cheng, Adv. Funct. Mater., 2010, 20, 3595 |
52. | R. M. Pittman, A. T. Bell, J. Phys. Chem., 1993, 97, 12178 |
53. | L. Yang, Y. E. Zhu, J. Sheng, F. Li, B. Tang, Y. Zhang, Z. Zhou, Small, 2017, 13, 1702588 |
54. | C. Zhao, C. Yu, M. N. Banis, Q. Sun, M. Zhang, X. Li, Y. Liu, Y. Zhao, H. Huang, S. Li, X. Han, B. Xiao, Z. Song, R. Li, J. Qiu, X. Sun, Nano Energy, 2017, 34, 399 |
55. | T. Liu, J.-J. Xu, Q.-C. Liu, Z.-W. Chang, Y.-B. Yin, X.-Y. Yang, X.-B. Zhang, Small, 2017, 13, 1602952 |
56. | S. Fu, Q. Yu, Z. Liu, P. Hu, Q. Chen, S. Feng, L. Mai, L. Zhou, J. Mater. Chem. A, 2019, 7, 11234 |
57. | Q. Deng, M. Li, J. Wang, K. Jiang, Z. Hu, J. Chu, Nanotechnology, 2018, 29, 185401 |
58. | X. Wang, C. Yan, J. Yan, A. Sumboja, P. S. Lee, Nano Energy, 2015, 11, 765 |
59. | D. Cao, Z. Yao, J. Liu, J. Zhang, C. Li, Energy Storage Mater., 2018, 11, 152 |
60. | M. Y. Song, N. R. Kim, H. J. Yoon, S. Y. Cho, H.-J. Jin, Y. S. Yun, ACS Appl. Mater. Interfaces, 2017, 9, 2267 |
61. | E. Lim, H. Kim, C. Jo, J. Chun, K. Ku, S. Kim, H. I. Lee, I.-S. Nam, S. Yoon, K. Kang, J. Lee, ACS Nano, 2014, 8, 8968 |
62. | B. Deng, T. Lei, W. Zhu, L. Xiao, J. Liu, Adv. Funct. Mater., 2018, 28, 1704330 |
63. | K. Brezesinski, J. Wang, J. Haetge, C. Reitz, S. O. Steinmueller, S. H. Tolbert, B. M. Smarsly, B. Dunn, T. Brezesinski, J. Am. Chem. Soc., 2010, 132, 6982 |
64. | T. Brezesinski, J. Wang, S. H. Tolbert, B. Dunn, Nat. Mater., 2010, 9, 146 |
65. | D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen, X. Liu, X. Xia, Y. Zhao, S. V. Savilov, J. Lin, Z. X. Shen, ACS Nano, 2016, 10, 10211 |
66. | D. Chao, C. Zhu, P. Yang, X. Xia, J. Liu, J. Wang, X. Fan, S. V. Savilov, J. Lin, H. J. Fan, Z. X. Shen, Nat. Commun., 2016, 7, 12122 |
67. | H. J. Liang, Z. Y. Gu, X. X. Zhao, J. Z. Guo, J. L. Yang, W. H. Li, B. Li, Z. M. Liu, W. L. Li, X. L. Wu, Angew. Chem. Int. Ed., 2021, 60, 26837 |
68. | Z.-Y. Gu, J.-Z. Guo, Z.-H. Sun, X.-X. Zhao, X.-T. Wang, H.-J. Liang, X.-L. Wu, Y. Liu, Cell Rep. Phys. Sci., 2021, 2, 100665 |
69. | Q. Deng, Y. Fu, C. Zhu, Y. Yu, Small, 2019, 15, 1804884 |
70. | G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys., 2000, 113, 9901 |
71. | A. Heyden, A. T. Bell, F. J. Keil, J. Chem. Phys., 2005, 123, 224101 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Schematic illustrations of a the synthesis process of Nb2O5@RuO2. b, The lithium ions and electrons transportation process. SEM images of c KNb3O8 and d NaRuO2. TEM images of e TBA-Nb3O8 and f TBA-RuO2.
a, b SEM, c, d TEM, e, f HRTEM, g HADDF-STEM images and corresponding h Nb, i Ru and j O elemental mapping of Nb2O5@RuO2.
a, CV curves for first four cycles at a scan rate of 0.1 mV s−1. b, Galvanostatic charge/discharge curves for first three cycles at 1 C. c, Cycling stability at 5 C. d, Long-term cycling stability at 50 C of Nb2O5@RuO2. e, Rate capacity at different rates as indicated of Nb2O5@RuO2 and Nb2O5. f, A comparison of rate performance of Nb2O5@RuO2 with some other reported Nb2O5 anode materials.
a, CV curves of Nb2O5@RuO2 at various scan rates. b, Relationship between the peak currents and scan rates in logarithmic format. c, Capacitive contribution of Nb2O5@RuO2 at a scan rate of 10 mV s−1. d, Contribution ratio of the capacitive and diffusion-controlled capacity versus scan rate.
a, Schematic illustration of the Nb2O5/LiFePO4 full cell. b, The charge/discharge curves of full cells at various current densities. c, Rate performance. d, long cycle performance for 500 cycles at 20 C.
a, Structure of the unlithiated model of Nb2O5 (left) and lithiated Nb2O5 (right). b, Structure of the unlithiated model of Nb2O5@RuO2 (left) and lithiated Nb2O5@RuO2 (right). c, The adsorption energies of Li ions on Nb2O5 and Nb2O5@RuO2 labeled in a and b. The Li ions migration barriers in Nb2O5 and Nb2O5@RuO2 along d path 1 and e path 2.