Hai Yang, Fuxiang He, Jialong Shen, Zhihao Chen, Yu Yao, Lixin He, Yan Yu. 2D Nb2O5@2D metallic RuO2 heterostructures as highly reversible anode materials for lithium-ion batteries[J]. Energy Lab, 2023, 1(1): 220007. doi: 10.54227/elab.20220007
Citation: Hai Yang, Fuxiang He, Jialong Shen, Zhihao Chen, Yu Yao, Lixin He, Yan Yu. 2D Nb2O5@2D metallic RuO2 heterostructures as highly reversible anode materials for lithium-ion batteries[J]. Energy Lab, 2023, 1(1): 220007. doi: 10.54227/elab.20220007

RESEARCH ARTICLE

2D Nb2O5@2D metallic RuO2 heterostructures as highly reversible anode materials for lithium-ion batteries

More Information
  • Corresponding author: yanyumse@ustc.edu.cn
  • § These authors contributed equally to this work.

  • Constructing two-dimensional (2D) heterostructured materials by stacking different 2D materials could combine the merits of the individual building blocks while getting rid of the associated shortcomings. Orthorhombic Nb2O5 (T-Nb2O5) is one of the greatly promising candidates for durable and safety anode for Li-ion batteries (LIBs), but it usually exhibits poor electrochemical performance due to the low electronic conductivity. Herein, we realize excellent lithium storage performance of T-Nb2O5 by designing 2D Nb2O5@2D metallic RuO2 heterostructures (Nb2O5@RuO2). The presence of 2D metallic RuO2 leads to enhanced electronic conductivity. The 2D Nb2O5@RuO2 heterostructures possess very short diffusion length of ions/electrons, easy penetration of liquid electrolyte, and high conductivity transport of electrons through the 2D metallic RuO2 to 2D Nb2O5. The Nb2O5@RuO2 delivers remarkable rate performance (133 mAh g−1 and 106 mAh g−1 at 50 C and 100 C) and excellent long-life capacity (97 mAh g−1 after 10000 cycles at 50 C). Moreover, Nb2O5@RuO2//LiFePO4 full batteries also display high rate capability of 140 mAh g−1 and 90 mAh g−1 at 20 C and 50 C, respectively. Theoretical calculation results show that the 2D Nb2O5@RuO2 heterostructures possess more large adsorption ability for Li+ than that of Nb2O5, indicating an excellent lithium storage performance.


  • 加载中
  • 1. B. Dunn, H. Kamath, J.-M. Tarascon, Science, 2011, 334, 928
    2. M. Armand, J.-M. Tarascon, Nature, 2008, 451, 652
    3. M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater., 2018, 30, 1800561
    4. W. Cai, C. Yan, Y. X. Yao, L. Xu, X. R. Chen, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed., 2021, 60, 13007
    5. L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Energy Environ. Sci., 2011, 4, 2682
    6. L. Shen, E. Uchaker, X. Zhang, G. Cao, Adv. Mater., 2012, 24, 6502
    7. L. Shen, S. Chen, J. Maier, Y. Yu, Adv. Mater., 2017, 29, 1701571
    8. J.-T. Han, Y.-H. Huang, J. B. Goodenough, Chem. Mater., 2011, 23, 2027
    9. H. Zhang, Y. Yang, H. Xu, L. Wang, X. Lu, X. He, InfoMat, 2022, 4, e12228
    10. M. M. Thackeray, K. Amine, Nat. Energy, 2021, 6, 683
    11. S. Li, X. Cao, C. N. Schmidt, Q. Xu, E. Uchaker, Y. Pei, G. Cao, J. Mater. Chem. A, 2016, 4, 4242
    12. Y. Zhang, C. Kang, W. Zhao, B. Sun, X. Xiao, H. Huo, Y. Ma, P. Zuo, S. Lou, G. Yin, Energy Storage Mater., 2022, 47, 178
    13. V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P.-L. Taberna, S. H. Tolbert, H. D. Abruña, P. Simon, B. Dunn, Nat. Mater., 2013, 12, 518
    14. Y. Zheng, Z. Yao, Z. Shadike, M. Lei, J. Liu, C. Li, Adv. Funct. Mater., 2022, 32, 2107060
    15. F. Su, J. Qin, P. Das, F. Zhou, Z.-S. Wu, Energy Environ. Sci., 2021, 14, 2269
    16. K. J. Woung, A. Veronica, D. Bruce, Adv. Energy Mater., 2012, 2, 141
    17. J. Y. Cheong, C. Kim, J.-W. Jung, K. R. Yoon, S.-H. Cho, D.-Y. Youn, H.-Y. Jang, I.-D. Kim, Small, 2017, 13, 1603610
    18. H. Sun, L. Mei, J. Liang, Z. Zhao, C. Lee, H. Fei, M. Ding, J. Lau, M. Li, C. Wang, X. Xu, G. Hao, B. Papandrea, I. Shakir, B. Dunn, Y. Huang, X. Duan, Science, 2017, 356, 599
    19. C. Zhang, S. J. Kim, M. Ghidiu, M.-Q. Zhao, M. W. Barsoum, V. Nicolosi, Y. Gogotsi, Adv. Funct. Mater., 2016, 26, 4143
    20. Y. S. Hu, Y. G. Guo, R. Dominko, M. Gaberscek, J. Jamnik, J. Maier, Adv. Mater., 2007, 19, 1963
    21. Y. Li, M. Bettge, J. Bareño, S. E. Trask, D. P. Abraham, J. Electrochem. Soc., 2015, 162, 7049
    22. E. C. Gay, D. R. Vissers, F. J. Martino, K. E. Anderson, J. Electrochem. Soc., 1976, 123, 1591
    23. M. Liu, C. Yan, Y. Zhang, Sci. Rep., 2015, 5, 8326
    24. M. Wei, K. Wei, M. Ichihara, H. Zhou, Electrochem. Commun., 2008, 10, 980
    25. M. M. Rahman, R. Abdul Rani, A. Z. Sadek, A. S. Zoolfakar, M. R. Field, T. Ramireddy, K. Kalantar-zadeh, Y. Chen, J. Mater. Chem. A, 2013, 1, 11019
    26. S.-q. Guo, X. Zhang, Z. Zhou, G.-d. Gao, L. Liu, J. Mater. Chem. A, 2014, 2, 9236
    27. A. Le Viet, M. V. Reddy, R. Jose, B. V. R. Chowdari, S. Ramakrishna, J. Phys. Chem. C, 2010, 114, 664
    28. L. Kong, C. Zhang, S. Zhang, J. Wang, R. Cai, C. Lv, W. Qiao, L. Ling, D. Long, J. Mater. Chem. A, 2014, 2, 17962
    29. X. Wang, L. Ge, Z. Chen, V. Augustyn, X. Ma, G. Wang, B. Dunn, Y. Lu, Adv. Energy Mater., 2011, 1, 1089
    30. Y. Tang, L. Yang, Y. Zhu, F. Zhang, H. Zhang, J. Mater. Chem. A, 2022, 10, 5620
    31. T. Li, K. Liu, G. Nam, M. G. Kim, Y. Ding, B. Zhao, Z. Luo, Z. Wang, W. Zhang, C. Zhao, J.-H. Wang, Y. Song, M. Liu, Small, 2022, 18, 2200972
    32. B. P. G., S. Bruno, T. Jean-Marie, Angew. Chem. Int. Ed., 2008, 47, 2930
    33. L. Wang, X. Bi, S. Yang, Adv. Mater., 2016, 28, 7672
    34. C. Chi, X. Xiuqiang, A. Babak, S. Asya, M. Taron, Z. Mengqiang, U. Patrick, M. Ling, J. Jianjun, G. Yury, Angew. Chem. Int. Ed., 2018, 57, 1846
    35. K. Liao, X. Wang, Y. Sun, D. Tang, M. Han, P. He, X. Jiang, T. Zhang, H. Zhou, Energy Environ. Sci., 2015, 8, 1992
    36. C. Seon-Jin, J. Ji-Soo, P. H. Jung, K. Il-Doo, Adv. Funct. Mater., 2017, 27, 1606026
    37. S. Liang, L. Wen, S. Lin, J. Bi, P. Feng, X. Fu, L. Wu, Angew. Chem. Int. Ed., 2014, 53, 2951
    38. P. Li, X. Liu, M. Chen, P. Lin, X. Ren, L. Lin, C. Yang, L. He, Comp. Mater. Sci., 2016, 112, 503
    39. M. Ernzerhof, G. E. Scuseria, J. Chem. Phys., 1999, 110, 5029
    40. M. Schlipf, F. Gygi, Comput. Phys. Commun., 2015, 196, 36
    41. D. G. Smith, L. A. Burns, K. Patkowski, C. D. Sherrill, J. Phys. Chem. Lett., 2016, 7, 2197
    42. D. Chen, J.-H. Wang, T.-F. Chou, B. Zhao, M. A. El-Sayed, M. Liu, J. Am. Chem. Soc., 2017, 139, 7071
    43. H. Yang, R. Xu, Y. Gong, Y. Yao, L. Gu, Y. Yu, Nano Energy, 2018, 48, 448
    44. S. H. Jung, D. H. Kim, P. Bruner, H. Lee, H. J. Hah, S. K. Kim, Y. S. Jung, Electrochim. Acta, 2017, 232, 236
    45. E. Lim, J. Lee, C. Jo, Y. Mun, J. Chun, Y. Ye, J. Hwang, J. Lee, H. Kim, K. Kang, M.-H. Kim, K. C. Roh, K.-S. Ha, K. Kang, S. Yoon, ACS Nano, 2015, 9, 7497
    46. Z. Hu, Q. He, Z. Liu, X. Liu, M. Qin, B. Wen, W. Shi, Y. Zhao, Q. Li, L. Mai, Sci. Bull., 2020, 65, 1154
    47. Y. G. Guo, Y. S. Hu, W. Sigle, J. Maier, Adv. Mater., 2007, 19, 2087
    48. Y. Zhang, P. Chen, Q. Wang, Q. Wang, K. Zhu, K. Ye, G. Wang, D. Cao, J. Yan, Q. Zhang, Adv. Energy Mater., 2021, 11, 2101712
    49. X. Wang, H. Li, H. Li, S. Lin, W. Ding, X. Zhu, Z. Sheng, H. Wang, X. Zhu, Y. Sun, Adv. Funct. Mater., 2020, 30, 1910302
    50. K. E. Gregorczyk, A. C. Kozen, X. Chen, M. A. Schroeder, M. Noked, A. Cao, L. Hu, G. W. Rubloff, ACS Nano, 2015, 9, 464
    51. Z.-S. Wu, D.-W. Wang, W. Ren, J. Zhao, G. Zhou, F. Li, H.-M. Cheng, Adv. Funct. Mater., 2010, 20, 3595
    52. R. M. Pittman, A. T. Bell, J. Phys. Chem., 1993, 97, 12178
    53. L. Yang, Y. E. Zhu, J. Sheng, F. Li, B. Tang, Y. Zhang, Z. Zhou, Small, 2017, 13, 1702588
    54. C. Zhao, C. Yu, M. N. Banis, Q. Sun, M. Zhang, X. Li, Y. Liu, Y. Zhao, H. Huang, S. Li, X. Han, B. Xiao, Z. Song, R. Li, J. Qiu, X. Sun, Nano Energy, 2017, 34, 399
    55. T. Liu, J.-J. Xu, Q.-C. Liu, Z.-W. Chang, Y.-B. Yin, X.-Y. Yang, X.-B. Zhang, Small, 2017, 13, 1602952
    56. S. Fu, Q. Yu, Z. Liu, P. Hu, Q. Chen, S. Feng, L. Mai, L. Zhou, J. Mater. Chem. A, 2019, 7, 11234
    57. Q. Deng, M. Li, J. Wang, K. Jiang, Z. Hu, J. Chu, Nanotechnology, 2018, 29, 185401
    58. X. Wang, C. Yan, J. Yan, A. Sumboja, P. S. Lee, Nano Energy, 2015, 11, 765
    59. D. Cao, Z. Yao, J. Liu, J. Zhang, C. Li, Energy Storage Mater., 2018, 11, 152
    60. M. Y. Song, N. R. Kim, H. J. Yoon, S. Y. Cho, H.-J. Jin, Y. S. Yun, ACS Appl. Mater. Interfaces, 2017, 9, 2267
    61. E. Lim, H. Kim, C. Jo, J. Chun, K. Ku, S. Kim, H. I. Lee, I.-S. Nam, S. Yoon, K. Kang, J. Lee, ACS Nano, 2014, 8, 8968
    62. B. Deng, T. Lei, W. Zhu, L. Xiao, J. Liu, Adv. Funct. Mater., 2018, 28, 1704330
    63. K. Brezesinski, J. Wang, J. Haetge, C. Reitz, S. O. Steinmueller, S. H. Tolbert, B. M. Smarsly, B. Dunn, T. Brezesinski, J. Am. Chem. Soc., 2010, 132, 6982
    64. T. Brezesinski, J. Wang, S. H. Tolbert, B. Dunn, Nat. Mater., 2010, 9, 146
    65. D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen, X. Liu, X. Xia, Y. Zhao, S. V. Savilov, J. Lin, Z. X. Shen, ACS Nano, 2016, 10, 10211
    66. D. Chao, C. Zhu, P. Yang, X. Xia, J. Liu, J. Wang, X. Fan, S. V. Savilov, J. Lin, H. J. Fan, Z. X. Shen, Nat. Commun., 2016, 7, 12122
    67. H. J. Liang, Z. Y. Gu, X. X. Zhao, J. Z. Guo, J. L. Yang, W. H. Li, B. Li, Z. M. Liu, W. L. Li, X. L. Wu, Angew. Chem. Int. Ed., 2021, 60, 26837
    68. Z.-Y. Gu, J.-Z. Guo, Z.-H. Sun, X.-X. Zhao, X.-T. Wang, H.-J. Liang, X.-L. Wu, Y. Liu, Cell Rep. Phys. Sci., 2021, 2, 100665
    69. Q. Deng, Y. Fu, C. Zhu, Y. Yu, Small, 2019, 15, 1804884
    70. G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys., 2000, 113, 9901
    71. A. Heyden, A. T. Bell, F. J. Keil, J. Chem. Phys., 2005, 123, 224101
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Information

Article Metrics

Article views(3807) PDF downloads(1124) Citation(0)

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint