Citation: | Songliang Liu, Shuli Yin, Lin Cui, Hongjie Yu, Kai Deng, Ziqiang Wang, You Xu, Liang Wang, Hongjing Wang. Interface engineering-inspired electron regulation in Pt/Pd hetero-metallene for methanol-assisted hydrogen evolution[J]. Energy Lab, 2023, 1(1): 220005. doi: 10.54227/elab.20220005 |
The small molecule oxidation reaction instead of oxygen evolution reaction coupled with hydrogen evolution reaction can greatly reduce the reaction overpotential of electrochemical water splitting, which is a very efficient and energy-saving hydrogen evolution strategy. Herein, we report an interface engineering constructed two-dimensional ultrathin curled Pt/Pd hetero-metallene for efficient electrocatalytic hydrogen evolution assisted by methanol. The thin-sheet structure of Pt/Pd hetero-metallene provides a large specific surface area and exposes numerous surface atoms that could act as reactive sites, thus accelerating the reaction mass transfer process. More importantly, the constructed Pt/Pd hetero-metallene possesses abundant Pt/Pd heterointerface, which can maximize the strong metal-metal interaction and increase the utilization of metal atoms, thereby optimizing the adsorption and activation of reactants during the reaction. Pt/Pd hetero-metallene can produce hydrogen stably and efficiently in 1 M KOH + 1 M CH3OH, and the voltage only needs 0.83 V at @100 mA cm−2 when used in electrocatalytic hydrogen evolution, which is much lower than the voltage required for the traditional electrochemical water splitting process (1.94 V). This work not only provides a powerful approach to rational design and construction of hetero-metallene through interface engineering, but also builds a bridge between hetero-metallene and methanol-assisted hydrogen evolution.
1. | Z. Zhao, H. Liu, W. Gao, W. Xue, Z. Liu, J. Huang, X. Pan, Y. Huang, J. Am. Chem. Soc., 2018, 140, 9046 |
2. | Y. Li, C. K. Peng, H. Hu, S. Y. Chen, J. H. Choi, Y. G. Lin, J. Lee, M, Nat. Commun., 2022, 13, 1143 |
3. | Z. L. Wang, K. Sun, J. Henzie, X. Hao, C. Li, T. Takei, Y. M. Kang, Y. Yamauchi, Angew. Chem. Int. Ed., 2018, 57, 5848 |
4. | K. Wang, B. Huang, F. Lin, F. Lv, M. Luo, P. Zhou, Q. Liu, W. Zhang, C. Yang, Y. Tang, Y. Yang, W. Wang, H. Wang, S. Guo, Adv. Energy Mater., 2018, 8, 1801891 |
5. | Y. Guo, J. Tang, Z. Wang, Y.-M. Kang, Y. Bando, Y. Yamauchi, Nano Energy, 2018, 47, 494 |
6. | X. Wu, J. Li, Y. Li, Z. Wen, Chem. Eng. J., 2021, 409, 128161 |
7. | M. Zhang, J. Chen, H. Li, P. Cai, Y. Li, Z. Wen, Nano Energy, 2019, 61, 576 |
8. | Y. Xu, X. Chai, T. Ren, S. Yu, H. Yu, Z. Wang, X. Li, L. Wang, H. Wang, Chem. Commun., 2020, 56, 2151 |
9. | S. Fang, X. Zhu, X. Liu, J. Gu, W. Liu, D. Wang, W. Zhang, Y. Lin, J. Lu, S. Wei, Y. Li, T. Yao, Nat. Commun., 2020, 11, 1029 |
10. | A. Ali, P. K. Shen, Carbon Energy, 2019, 2, 99 |
11. | Q. Mao, K. Deng, W. Wang, P. Wang, Y. Xu, Z. Wang, X. Li, L. Wang, H. Wang, J. Mater. Chem. A, 2022, 10, 8364 |
12. | W. Zhang, B. Huang, K. Wang, W. Yang, F. Lv, N. Li, Y. Chao, P. Zhou, Y. Yang, Y. Li, J. Zhou, W. Zhang, Y. Du, D. Su, S. Guo, Adv. Energy Mater., 2020, 11, 2003192 |
13. | J. Xu, I. Amorim, Y. Li, J. Li, Z. Yu, B. Zhang, A. Araujo, N. Zhang, L. Liu, Carbon Energy, 2020, 2, 646 |
14. | H. Huang, Y. Zhao, Y. Bai, F. Li, Y. Zhang, Y. Chen, Adv. Sci., 2020, 7, 2000012 |
15. | G. Zhou, M. Li, Y. Li, H. Dong, D. Sun, X. Liu, L. Xu, Z. Tian, Y. Tang, Adv. Funct. Mater., 2019, 30, 1905252 |
16. | W. Song, M. Li, C. Wang, X. Lu, Carbon Energy, 2020, 3, 101 |
17. | K. Kani, H. Lim, A. E. Whitten, K. Wood, A. J. E. Yago, M. S. A. Hossain, J. Henzie, J. Na, Y. Yamauchi, J. Mater. Chem. A, 2021, 9, 2754 |
18. | W. Zhou, T. Jia, D. Zhang, Z. Zheng, W. Hong, X. Chen, Appl. Catal. B: Environ., 2019, 259, 118067 |
19. | L. Chen, J. Shi, J. Mater. Chem. A, 2018, 6, 13538 |
20. | K. Deng, Q. Mao, W. Wang, P. Wang, Z. Wang, Y. Xu, X. Li, H. Wang, L. Wang, Appl. Catal. B: Environ., 2022, 310, 121338 |
21. | Y. Xu, M. Liu, S. Wang, K. Ren, M. Wang, Z. Wang, X. Li, L. Wang, H. Wang, Appl. Catal. B: Environ., 2021, 298, 120493 |
22. | J. Y. Zhang, H. Wang, Y. Tian, Y. Yan, Q. Xue, T. He, H. Liu, C. Wang, Y. Chen, B. Y. Xia, Angew. Chem. Int. Ed., 2018, 57, 7649 |
23. | C. Lin, P. Zhang, S. Wang, Q. Zhou, B. Na, H. Li, J. Tian, Y. Zhang, C. Deng, L. Meng, J. Wu, C. Liu, J. Hu, L. Zhang, Journal of Alloys and Compounds, 2020, 823, 153784 |
24. | K. Xiang, D. Wu, X. Deng, M. Li, S. Chen, P. Hao, X. Guo, J. L. Luo, X. Z. Fu, Adv. Funct. Mater., 2020, 30, 1909610 |
25. | G. Ma, X. Zhang, G. Zhou, X. Wang, Chem. Eng. J., 2021, 411, 128292 |
26. | S. Yin, S. Liu, Z. Wang, Y. Xu, X. Li, H. Wang, L. Wang, Chem. Eng. J., 2022, 435, 134711 |
27. | Y. Shi, Z. R. Ma, Y. Y. Xiao, Y. C. Yin, W. M. Huang, Z. C. Huang, Y. Z. Zheng, F. Y. Mu, R. Huang, G. Y. Shi, Y. Y. Sun, X. H. Xia, W. Chen, Nat. Commun., 2021, 12, 3021 |
28. | J. Chen, M. Qin, S. Ma, R. Fan, X. Zheng, S. Mao, C. Chen, Y. Wang, Appl. Catal. B: Environ., 2021, 299, 120640 |
29. | H.-S. Chen, T. M. Benedetti, J. Lian, S. Cheong, P. B. O’Mara, K. O. Sulaiman, C. H. W. Kelly, R. W. J. Scott, J. J. Gooding, R. D. Tilley, ACS Catal., 2021, 11, 2235 |
30. | Z. Zhang, J. Liu, J. Wang, Q. Wang, Y. Wang, K. Wang, Z. Wang, M. Gu, Z. Tang, J. Lim, T. Zhao, F. Ciucci, Nat. Commun., 2021, 12, 5235 |
31. | Q. Yang, H. Liu, P. Yuan, Y. Jia, L. Zhuang, H. Zhang, X. Yan, G. Liu, Y. Zhao, J. Liu, S. Wei, L. Song, Q. Wu, B. Ge, L. Zhang, K. Wang, X. Wang, C. R. Chang, X. Yao, J. Am. Chem. Soc., 2022, 144, 2171 |
32. | H. Wang, S. Yin, Y. Xu, X. Li, A. A. Alshehri, Y. Yamauchi, H. Xue, Y. V. Kaneti, L. Wang, J. Mater. Chem. A, 2018, 6, 8662 |
33. | T. J. Wang, Y. C. Jiang, J. W. He, F. M. Li, Y. Ding, P. Chen, Y. Chen, Carbon Energy, 2022, 4, 283 |
34. | X. Zhao, X. Li, D. Xiao, M. Gong, L. An, P. Gao, J. Yang, D. Wang, Appl. Catal. B: Environ, 2021, 295, 120280 |
35. | J. Fan, J. Wu, X. Cui, L. Gu, Q. Zhang, F. Meng, B. H. Lei, D. J. Singh, W. Zheng, J. Am. Chem. Soc., 2020, 142, 3645 |
36. | K. Zhu, J. Ma, L. Chen, F. Wu, X. Xu, M. Xu, W. Ye, Y. Wang, P. Gao, Y. Xiong, ACS Catal., 2022, 12, 4840 |
37. | J. Liang, S. Li, Y. Chen, X. Liu, T. Wang, J. Han, S. Jiao, R. Cao, Q. Li, J. Mater. Chem. A, 2020, 8, 15665 |
38. | J. Zhang, F. Lv, Z. Li, G. Jiang, M. Tan, M. Yuan, Q. Zhang, Y. Cao, H. Zheng, L. Zhang, C. Tang, W. Fu, C. Liu, K. Liu, L. Gu, J. Jiang, G. Zhang, S. Guo, Adv. Mater., 2022, 34, e2105276 |
39. | X. Mu, J. Gu, F. Feng, Z. Xiao, C. Chen, S. Liu, S. Mu, Adv. Sci., 2021, 8, 2002341 |
40. | Q. Mao, P. Wang, Z. Wang, Y. Xu, X. Li, L. Wang, H. Wang, Appl. Mater. Today, 2022, 26, 101400 |
41. | C. Cao, Q. Xu, Q.-L. Zhu, Chem Catal., 2022, 2, 693 |
42. | C. Tang, S.-Z. Qiao, Matter, 2019, 1, 1454 |
43. | F. Lv, B. Huang, J. Feng, W. Zhang, K. Wang, N. Li, J. Zhou, P. Zhou, W. Yang, Y. Du, D. Su, S. Guo, Natl. Sci. Rev., 2021, 8, nwab019 |
44. | M. Luo, Z. Zhao, Y. Zhang, Y. Sun, Y. Xing, F. Lv, Y. Yang, X. Zhang, S. wang, Y. Qin, J. Y. Ma, F. Lin, D. Su, G. Lu, S. Guo, Nature, 2019, 574, 81 |
45. | Q. Yun, Q. Lu, C. Li, B. Chen, Q. Zhang, Q. He, Z. Hu, Z. Zhang, Y. Ge, N. Yang, J. Ge, Y. B. He, L. Gu, H. Zhang, ACS Nano, 2019, 13, 14329 |
46. | L. Y. Zhang, F. Wang, S. Wang, H. Huang, X. Meng, Y. Ouyang, W. Yuan, C. X. Guo, C. M. Li, Adv. Funct. Mater., 2020, 30, 2003933 |
47. | L. Shi, Q. Wang, Q. Ren, Q. Yang, D. Zhao, Y. Feng, H. Chen, Y. Wang, Small, 2022, 18, e2103665 |
48. | B. Zhang, G. Zhao, B. Zhang, L. Xia, Y. Jiang, T. Ma, M. Gao, W. Sun, H. Pan, Adv. Mater., 2021, 33, e2105400 |
49. | Y. Yan, H. Shan, G. Li, F. Xiao, Y. Jiang, Y. Yan, C. Jin, H. Zhang, J. Wu, D. Yang, Nano Lett., 2016, 16, 7999 |
50. | Z. Zhang, Y. Liu, B. Chen, Y. Gong, L. Gu, Z. Fan, N. Yang, Z. Lai, Y. Chen, J. Wang, Y. Huang, M. Sindoro, W. Niu, B. Li, Y. Zong, Y. Yang, X. Huang, F. Huo, W. Huang, H. Zhang, Adv. Mater., 2016, 28, 10282 |
51. | H. Yu, T. Zhou, Z. Wang, Y. Xu, X. Li, L. Wang, H. Wang, Angew. Chem. Int. Ed, 2021, 60, 12027 |
52. | R. Wu, Y. Li, W. Gong, P. K. Shen, ACS Sustainable Chem. Eng., 2019, 7, 8419 |
53. | H. Wang, S. Jiao, S. Liu, S. Wang, T. Zhou, Y. Xu, X. Li, Z. Wang, L. Wang, ACS Appl. Mater. Interfaces, 2021, 13, 30479 |
54. | M. Farsadrooh, J. Torrero, L. Pascual, M. A. Peña, M. Retuerto, S. Rojas, Appl. Catal. B: Environ., 2018, 237, 866 |
55. | K. Deng, T. Zhou, Q. Mao, S. Wang, Z. Wang, Y. Xu, X. Li, H. Wang, L. Wang, Adv. Mater., 2022, 34, e2110680 |
56. | B. Jiang, Y. Guo, J. Kim, A. E. Whitten, K. Wood, K. Kani, A. E. Rowan, J. Henzie, Y. Yamauchi, J. Am. Chem. Soc., 2018, 140, 12434 |
57. | C. Tang, N. Zhang, Y. Ji, Q. Shao, Y. Li, X. Xiao, X. Huang, Nano Lett., 2019, 19, 1336 |
58. | L. Zhai, X. She, L. Zhuang, Y. Li, R. Ding, X. Guo, Y. Zhang, Y. Zhu, K. Xu, H. J. Fan, S. P. Lau, Angew. Chem. Int. Ed., 2022, 61, e202116057 |
59. | Z. Li, Y. Pei, R. Ma, Y. Wang, Y. Zhu, M. Yang, J. Wang, J. Mater. Chem. A, 2021, 9, 13109 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Supporting_Information-2022-0005.R1 |
a Schematic illustration for the synthesis of the Pt/Pd hetero-metallene. b HAADF-STEM and c and d TEM images of the Pt/Pd hetero-metallene. e False-color HRTEM image of the Pt/Pd hetero-metallene. f The particle size distribution of figure 1d. The insets in e display the lattice fringes and corresponding atomic absorption intensity profile of the square region.
a HRTEM image of the Pt/Pd hetero-metallene. b HAADF-STEM and EDS mapping images of the Pt/Pd hetero-metallene.
a XRD patterns of the Pd metallene and Pt/Pd hetero-metallene. b XPS survey spectrum of the Pt/Pd hetero-metallene. c Pt 4f XPS spectra of the Pt/Pd hetero-metallene. d Pd 3d XPS spectra of Pt/Pd hetero-metallene and Pd metallene. e Bader charge of the Pt/Pd hetero-metallene. Negative and positive charge are indicated by red and blue balls, respectively. f Electron density difference on the Pt/Pd hetero-metallene. g, h and i Main side view, side view and top-view of electron density difference on the Pt/Pd hetero-metallene, respectively. The charge accumulation and depletion are indicated by cyan and yellow area, respectively. The isosurface level is 0.007 e Å−3.
a Mass-normalized and b ECSA-normalized CVs of MOR for various catalysts recorded at a scan rate of 50 mV s−1 with 1 M KOH + 1 M CH3OH. c Comparison of mass activities and specific activities for various catalysts. d Chronoamperometric curves for various catalysts recorded at −0.2 V in 1 M KOH + 1 M CH3OH.
a HER polarization curves for various catalysts in 1 M KOH and b the comparison of overpotentials at 10 mA cm−2. c Tafel slope plots for various catalysts. d HER polarization curves for the Pt/Pd hetero-metallene in 1 M KOH with and without 1 M CH3OH. e HER polarization curves for the Pt/Pd hetero-metallene before and after
a Schematic illustration for two-electrode CH3OH-assisted water splitting system. b LSV curves of the Pt/Pd hetero-metallene as anode and cathode in 1 M KOH with and without 1 M CH3OH. c LSV curves of various catalysts in 1 M KOH + 1 M CH3OH in a two-electrode system. d LSV curves of Pt/Pd hetero-metallene || Pt/Pd hetero-metallene in 1 M KOH with different CH3OH concentrations and e corresponding voltages at 100 mA cm−2. f Chronopotentiometry curves of Pt/Pd hetero-metallene || Pt/Pd hetero-metallene at a constant current density of 10 mA cm−2 in 1 M KOH + 1 M CH3OH for 25 h.