Citation: | Weiyu Zhang, Yuguang Chao, Shaojun Guo. Electro-(Photo)catalysis for concurrent evolution of hydrogen and high value-added chemicals[J]. Energy Lab, 2023, 1(1): 220004. doi: 10.54227/elab.20220004 |
Green hydrogen (H2) has been identified as a promising alternative to fossil fuel. Compared with traditional methods, such as steam methane reforming and coal gasification, electro-(photo)catalysis of water splitting provides a clean and sustainable way to produce green H2. However, electro-(photo)catalytic water splitting still suffers from sluggish kinetics and high-power consuming. Chemical-assisted electro-(photo)catalytic water splitting, with concurrent evolution of H2 and high value-added chemicals (HVACs), has recently drawn great attention. In such system, oxygen evolution process has been replaced by small organics or other chemicals with low oxidation reaction potential to reduce the energy gap. In this review, we will review recent important advances on how to design the electro-(photo)catalytic systems for concurrent evolution of H2 and HVACs. We first introduce the design principles and fundamentals of chemical-assisted electro-/photocatalytic water splitting. Then we focus on the different reaction types at anode for electro-(photo)catalysis, in which specific chemicals, especially small molecule, can be produced from biomass, alkyl alcohols and so on, with high efficiency and selectivity, coupled with promoted H2 generation. Finally, major challenges and perspectives relevant to the catalyst design, catalytic mechanisms and application of electro-(photo)catalytic concurrent evolution of H2 and HVACs will be provided.
1. | S. Chu, A. Majumdar, Nature, 2012, 488, 294 |
2. | N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci., 2006, 103, 15729 |
3. | Y. Yang, M. Luo, W. Zhang, Y. Sun, X. Chen, S. Guo, Chem, 2018, 4, 2054 |
4. | J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, X. Feng, Nat. Commun., 2017, 8, 15437 |
5. | Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev., 2015, 44, 2060 |
6. | M. Cabán-Acevedo, M. L. Stone, J. R. Schmidt, J. G. Thomas, Q. Ding, H.-C. Chang, M.-L. Tsai, J.-H. He, S. Jin, Nat. Mater., 2015, 14, 1245 |
7. | C. Du, J. Mo, H. Li, Chem. Rev., 2015, 115, 1503 |
8. | H. Wang, X. Gao, Z. Lv, T. Abdelilah, A. Lei, Chem. Rev., 2019, 119, 6769 |
9. | R. M. Navarro, M. A. Peña, J. L. G. Fierro, Chem. Rev., 2007, 107, 3952 |
10. | L. Chen, J. Shi, J. Mater. Chem. A, 2018, 6, 13538 |
11. | A. Fujishima, K. Honda, Nature, 1972, 238, 37 |
12. | M. Liu, W. You, Z. Lei, T. Takata, K. Domen, C. Li, Chin. J. Catal., 2006, 27, 556 |
13. | Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science, 2017, 355, eaad4998 |
14. | J. Lai, B. Huang, Y. Chao, X. Chen, S. Guo, Adv. Mater., 2019, 31, 1805541 |
15. | D. Liu, X. Li, S. Chen, H. Yan, C. Wang, C. Wu, Y. A. Haleem, S. Duan, J. Lu, B. Ge, P. M. Ajayan, Y. Luo, J. Jiang, L. Song, Nat. Energy, 2019, 4, 512 |
16. | W. Zhang, B. Huang, K. Wang, W. Yang, F. Lv, N. Li, Y. Chao, P. Zhou, Y. Yang, Y. Li, J. Zhou, W. Zhang, Y. Du, D. Su, S. Guo, Adv. Energy Mater., 2021, 11, 2003192 |
17. | J. Wang, W. Cui, Q. Liu, Z. Xing, A. M. Asiri, X. Sun, Adv. Mater., 2016, 28, 215 |
18. | K. Zeng, D. Zhang, Prog. Energy Combust. Sci., 2010, 36, 307 |
19. | J. Kang, X. Qiu, Q. Hu, J. Zhong, X. Gao, R. Huang, C. Wan, L.-M. Liu, X. Duan, L. Guo, Nat. Catal., 2021, 4, 1050 |
20. | B. Rausch, M. D. Symes, G. Chisholm, L. Cronin, Science, 2014, 345, 1326 |
21. | A. Berger, R. A. Segalman, J. Newman, Energy Environ. Sci., 2014, 7, 1468 |
22. | X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater., 2009, 8, 76 |
23. | Y. Chao, J. Zheng, H. Zhang, F. Li, F. Yan, Y. Tan, Z. Zhu, Chem. Eng. J., 2018, 346, 281 |
24. | P. Zhou, N. Li, Y. Chao, W. Zhang, F. Lv, K. Wang, W. Yang, P. Gao, S. Guo, Angew. Chem. Int. Ed., 2019, 58, 14184 |
25. | Y. Wang, Y. Kang, H. Zhu, G. Liu, J. T. S. Irvine, X. Xu, Adv. Sci., 2021, 8, 2003343 |
26. | Y. Zhao, X. Jia, G. I. N. Waterhouse, L.-Z. Wu, C. H. Tung, D. O’Hare, T. Zhang, Adv. Energy Mater., 2016, 6, 1501974 |
27. | J. Ran, G. Gao, F.-T. Li, T.-Y. Ma, A. Du, S.-Z. Qiao, Nat. Commun., 2017, 8, 13907 |
28. | Y. Chao, P. Zhou, N. Li, J. Lai, Y. Yang, Y. Zhang, Y. Tang, W. Yang, Y. Du, D. Su, Y. Tan, S. Guo, Adv. Mater., 2019, 31, 1807226 |
29. | C. Bie, H. Yu, B. Cheng, W. Ho, J. Fan, J. Yu, Adv. Mater., 2021, 33, 2003521 |
30. | C. Y. Toe, Z. Zheng, H. Wu, J. Scott, R. Amal, Y. H. Ng, Angew. Chem. Int. Ed., 2018, 57, 13613 |
31. | Y. Chao, P. Zhou, J. Lai, W. Zhang, H. Yang, S. Lu, H. Chen, K. Yin, M. Li, L. Tao, C. Shang, M. Tong, S. Guo, Adv. Funct. Mater., 2021, 31, 2100923 |
32. | Y. Li, X. Wei, L. Chen, J. Shi, Angew. Chem. Int. Ed., 2021, 60, 19550 |
33. | S. Hu, C. Feng, S. Wang, J. Liu, H. Wu, L. Zhang, J. Zhang, ACS Appl. Mater. Interfaces, 2019, 11, 13168 |
34. | X. Wei, S. Wang, Z. Hua, L. Chen, J. Shi, ACS Appl. Mater. Interfaces, 2018, 10, 25422 |
35. | J.-Y. Zhang, H. Wang, Y. Tian, Y. Yan, Q. Xue, T. He, H. Liu, C. Wang, Y. Chen, B. Y. Xia, Angew. Chem. Int. Ed., 2018, 57, 7649 |
36. | H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, ACS Nano, 2010, 4, 380 |
37. | X. Chen, S. Shen, L. Guo, S. S. Mao, Chem. Rev., 2010, 110, 6503 |
38. | T. Kawai, T. Sakata, Nature, 1980, 286, 474 |
39. | C. Marchal, T. Cottineau, M. G. Méndez-Medrano, C. Colbeau-Justin, V. Caps, V. Keller, Adv. Energy Mater., 2018, 8, 1702142 |
40. | Y. Li, X. Wei, L. Chen, J. Shi, M. He, Nat. Commun., 2019, 10, 5335 |
41. | T. Uekert, H. Kasap, E. Reisner, J. Am. Chem. Soc., 2019, 141, 15201 |
42. | D. W. Wakerley, M. F. Kuehnel, K. L. Orchard, K. H. Ly, T. E. Rosser, E. Reisner, Nat. Energy, 2017, 2, 17021 |
43. | M.-Y. Qi, M. Conte, M. Anpo, Z.-R. Tang, Y.-J. Xu, Chem. Rev., 2021, 121, 13051 |
44. | Z. Chai, T.-T. Zeng, Q. Li, L.-Q. Lu, W.-J. Xiao, D. Xu, J. Am. Chem. Soc., 2016, 138, 10128 |
45. | P. Prabhu, Y. Wan, J.-M. Lee, Matter, 2020, 3, 1162 |
46. | H. Luo, J. Barrio, N. Sunny, A. Li, L. Steier, N. Shah, I. E. L. Stephens, M.-M. Titirici, Adv. Energy Mater., 2021, 11, 2101180 |
47. | C. Lamy, T. Jaubert, S. Baranton, C. Coutanceau, J. Power Sources, 2014, 245, 927 |
48. | J. N. Tiwari, A. N. Singh, S. Sultan, K. S. Kim, Adv. Energy Mater., 2020, 10, 2000280 |
49. | Y. Chao, J. Lai, Y. Yang, P. Zhou, Y. Zhang, Z. Mu, S. Li, J. Zheng, Z. Zhu, Y. Tan, Catal. Sci. Technol., 2018, 8, 3372 |
50. | B. Xia, Y. Zhang, B. Shi, J. Ran, K. Davey, S.-Z. Qiao, Small Methods, 2020, 4, 2000063 |
51. | J. Wu, Y. Huang, W. Ye, Y. Li, Adv. Sci., 2017, 4, 1700194 |
52. | P. Zhou, J. Yu, M. Jaroniec, Adv. Mater., 2014, 26, 4920 |
53. | Y.-J. Gao, X.-B. Li, X.-Z. Wang, N.-J. Zhao, Y. Zhao, Y. Wang, Z.-K. Xin, J.-P. Zhang, T. Zhang, C.-H. Tung, L.-Z. Wu, Matter, 2020, 3, 571 |
54. | Y. Chao, W. Zhang, P. Zhou, H. Chen, S. Lu, M. Li, Q. Zhang, L. Gu, S. Guo, Sci. China Chem., 2021, 64, 1716 |
55. | L. Cheng, Q. Xiang, Y. Liao, H. Zhang, Energy Environ. Sci., 2018, 11, 1362 |
56. | O. Casanova, S. Iborra, A. Corma, ChemSusChem, 2009, 2, 1138 |
57. | H. G. Cha, K.-S. Choi, Nat. Chem., 2015, 7, 328 |
58. | B. You, X. Liu, N. Jiang, Y. Sun, J. Am. Chem. Soc., 2016, 138, 13639 |
59. | N. Jiang, B. You, R. Boonstra, I. M. Terrero Rodriguez, Y. Sun, ACS Energy Lett., 2016, 1, 386 |
60. | B. You, N. Jiang, X. Liu, Y. Sun, Angew. Chem. Int. Ed., 2016, 55, 9913 |
61. | G. Yang, Y. Jiao, H. Yan, Y. Xie, A. Wu, X. Dong, D. Guo, C. Tian, H. Fu, Adv. Mater., 2020, 32, 2000455 |
62. | X. Lu, K.-H. Wu, B. Zhang, J. Chen, F. Li, B.-J. Su, P. Yan, J.-M. Chen, W. Qi, Angew. Chem. Int. Ed., 2021, 60, 14528 |
63. | X. Deng, G.-Y. Xu, Y.-J. Zhang, L. Wang, J. Zhang, J.-F. Li, X.-Z. Fu, J.-L. Luo, Angew. Chem. Int. Ed., 2021, 60, 20535 |
64. | B. Zhou, Y. Li, Y. Zou, W. Chen, W. Zhou, M. Song, Y. Wu, Y. Lu, J. Liu, Y. Wang, S. Wang, Angew. Chem. Int. Ed., 2021, 60, 22908 |
65. | T. Wang, L. Tao, X. Zhu, C. Chen, W. Chen, S. Du, Y. Zhou, B. Zhou, D. Wang, C. Xie, P. Long, W. Li, Y. Wang, R. Chen, Y. Zou, X.-Z. Fu, Y. Li, X. Duan, S. Wang, Nat. Catal., 2022, 5, 66 |
66. | Z. Li, Y. Yan, S. M. Xu, H. Zhou, M. Xu, L. Ma, M. Shao, X. Kong, B. Wang, L. Zheng, H. Duan, Nat. Commun., 2022, 13, 147 |
67. | J. Zheng, X. Chen, X. Zhong, S. Li, T. Liu, G. Zhuang, X. Li, S. Deng, D. Mei, J.-G. Wang, Adv. Funct. Mater., 2017, 27, 1704169 |
68. | X. Liu, B. Li, G. Han, X. Liu, Z. Cao, D.-e. Jiang, Y. Sun, Nat. Commun., 2021, 12, 1868 |
69. | H. Huang, C. Yu, X. Han, H. Huang, Q. Wei, W. Guo, Z. Wang, J. Qiu, Ni, Energy Environ. Sci., 2020, 13, 4990 |
70. | K. Xiang, D. Wu, X. Deng, M. Li, S. Chen, P. Hao, X. Guo, J.-L. Luo, X.-Z. Fu, Adv. Funct. Mater., 2020, 30, 1909610 |
71. | Y. Zhu, X. Zhu, L. Bu, Q. Shao, Y. Li, Z. Hu, C.-T. Chen, C.-W. Pao, S. Yang, X. Huang, Adv. Funct. Mater., 2020, 30, 2004310 |
72. | K. Yin, Y. Chao, F. Lv, L. Tao, W. Zhang, S. Lu, M. Li, Q. Zhang, L. Gu, H. Li, S. Guo, J. Am. Chem. Soc., 2021, 143, 10822 |
73. | D. Kawaguchi, H. Ogihara, H. Kurokawa, ChemSusChem, 2021, 14, 4431 |
74. | Y. X. Chen, A. Lavacchi, H. A. Miller, M. Bevilacqua, J. Filippi, M. Innocenti, A. Marchionni, W. Oberhauser, L. Wang, F. Vizza, Nat. Commun., 2014, 5, 4036 |
75. | Y. Li, X. Wei, S. Han, L. Chen, J. Shi, Angew. Chem. Int. Ed., 2021, 60, 21464 |
76. | C. Huang, Y. Huang, C. Liu, Y. Yu, B. Zhang, Angew. Chem. Int. Ed., 2019, 58, 12014 |
77. | Y. Huang, X. Chong, C. Liu, Y. Liang, B. Zhang, Angew. Chem. Int. Ed., 2018, 57, 13163 |
78. | Y. Ding, B.-Q. Miao, S.-N. Li, Y.-C. Jiang, Y.-Y. Liu, H.-C. Yao, Y. Chen, Appl. Catal. B: Environ., 2020, 268, 118393 |
79. | Q. Zhou, Z. Shen, C. Zhu, J. Li, Z. Ding, P. Wang, F. Pan, Z. Zhang, H. Ma, S. Wang, H. Zhang, Adv. Mater., 2018, 30, 1800140 |
80. | S. Zhang, Q. Zhou, Z. Shen, X. Jin, Y. Zhang, M. Shi, J. Zhou, J. Liu, Z. Lu, Y.-N. Zhou, H. Zhang, Adv. Funct. Mater., 2021, 31, 2101922 |
81. | B. Zheng, T. H. Trieu, F.-L. Li, X.-L. Zhu, Y.-G. He, Q.-Q. Fan, X.-X. Shi, ACS Omega, 2018, 3, 8243 |
82. | J. Ziemska, A. Guśpiel, J. Jarosz, A. Nasulewicz-Goldeman, J. Wietrzyk, R. Kawęcki, K. Pypowski, M. Jarończyk, J. Solecka, Bioorg. Med. Chem., 2016, 24, 5302 |
83. | T. Uekert, M. F. Kuehnel, D. W. Wakerley, E. Reisner, Energy Environ. Sci., 2018, 11, 2853 |
84. | G. Han, Y.-H. Jin, R. A. Burgess, N. E. Dickenson, X.-M. Cao, Y. Sun, J. Am. Chem. Soc., 2017, 139, 15584 |
85. | C. Xu, E. Paone, D. Rodríguez-Padrón, R. Luque, F. Mauriello, Chem. Soc. Rev., 2020, 49, 4273 |
86. | W. Liang, R. Zhu, X. Li, J. Deng, Y. Fu, Green Chem., 2021, 23, 6604 |
87. | H.-F. Ye, R. Shi, X. Yang, W.-F. Fu, Y. Chen, Appl. Catal. B: Environ., 2018, 233, 70 |
88. | C. Chen, L. Wang, B. Zhu, Z. Zhou, S. I. El-Hout, J. Yang, J. Zhang, J. Energy Chem., 2021, 54, 528 |
89. | T. Simon, N. Bouchonville, M. J. Berr, A. Vaneski, A. Adrović, D. Volbers, R. Wyrwich, M. Döblinger, A. S. Susha, A. L. Rogach, F. Jäckel, J. K. Stolarczyk, J. Feldmann, Nat. Mater., 2014, 13, 1013 |
90. | J. Zhao, R. Shi, Z. Li, C. Zhou, T. Zhang, Nano Select, 2020, 1, 12 |
91. | Z. Liu, Z. Yin, C. Cox, M. Bosman, X. Qian, N. Li, H. Zhao, Y. Du, J. Li, D. G. Nocera, Sci. Adv., 2016, 2, e1501425 |
92. | S. Xie, W. Ma, X. Wu, H. Zhang, Q. Zhang, Y. Wang, Y. Wang, Energy Environ. Sci., 2021, 14, 37 |
93. | X. Cui, R. Huang, D. Deng, EnergyChem, 2021, 3, 100050 |
94. | H. Lu, J. Zhao, L. Li, L. Gong, J. Zheng, L. Zhang, Z. Wang, J. Zhang, Z. Zhu, Energy Environ. Sci., 2011, 4, 3384 |
95. | N. Luo, T. Montini, J. Zhang, P. Fornasiero, E. Fonda, T. Hou, W. Nie, J. Lu, J. Liu, M. Heggen, L. Lin, C. Ma, M. Wang, F. Fan, S. Jin, F. Wang, Nat. Energy, 2019, 4, 575 |
96. | M. Liu, Y. Wang, X. Kong, R. T. Rashid, S. Chu, C.-C. Li, Z. Hearne, H. Guo, Z. Mi, C.-J. Li, Chem, 2019, 5, 858 |
97. | S. Xie, Z. Shen, J. Deng, P. Guo, Q. Zhang, H. Zhang, C. Ma, Z. Jiang, J. Cheng, D. Deng, Y. Wang, Nat. Commun., 2018, 9, 1181 |
98. | H. Lu, B. Zhao, D. Zhang, Y. Lv, B. Shi, X. Shi, J. Wen, J. Yao, Z. Zhu, J. Photochem. Photobiol. A: Chem., 2013, 272, 1 |
99. | P. Zhou, Y. Chao, F. Lv, K. Wang, W. Zhang, J. Zhou, H. Chen, L. Wang, Y. Li, Q. Zhang, L. Gu, S. Guo, ACS Catal., 2020, 10, 9109 |
100. | M.-Y. Qi, Y.-H. Li, M. Anpo, Z.-R. Tang, Y.-J. Xu, ACS Catal., 2020, 10, 14327 |
101. | H. Zhang, Y. Wu, L. Li, Z. Zhu, Chem Sus Chem, 2015, 8, 1226 |
102. | H. Zhang, Z. Zhu, Y. Wu, T. Zhao, L. Li, Green Chem., 2014, 16, 4076 |
103. | B. Weng, Q. Quan, Y.-J. Xu, J. Mater. Chem. A, 2016, 4, 18366 |
104. | J.-Y. Li, Y.-H. Li, F. Zhang, Z.-R. Tang, Y.-J. Xu, Appl. Catal. B: Environ., 2020, 269, 118783 |
105. | P. Zhou, Q. Zhang, Y. Chao, L. Wang, Y. Li, H. Chen, L. Gu, S. Guo, Chem, 2021, 7, 1033 |
106. | Y. Chao, W. Zhang, X. Wu, N. Gong, Z. Bi, Y. Li, J. Zheng, Z. Zhu, Y. Tan, Chem. - Eur. J., 2019, 25, 189 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Timeline of recent major development of electro-(photo)catalytic concurrent evolution of H2 and HVACs.
General reaction mechanism of a electrocatalytic and b photocatalytic concurrent evolution of H2 and HVACs.
a Electrocatalytic performance of Ni3S2/Ni foam in 1.0 M KOH with and without 10 mM HMF.[58] Copyright 2016, American Chemical Society. b Energy profiles of HMF electrooxidation to FDCA on the NiOOH surface.[62] Copyright 2021, Wiley-VCH. c Electrocatalytic performance of nitrogen-doped carbon@CuCo2Nx/carbon fiber in 1.0 M KOH with and without BA. d Conversion and selectivity under ten successive cycles.[67] Copyright 2017, Wiley-VCH.
a HAADF-STEM image of one nanometer PtIr nanowires. b Schematic diagram of the oxidation of ethanol to high-value added product and hydrogen production. c Electrocatalytic performance of different catalysts. d Possible pathway of ethanol oxidation to DEE.[72] Copyright 2021, American Chemical Society.
a Schematic of the photocatalytic generation of H2 and bioproducts on Ni/CdS, concentration change over time for b furfural alcohol oxidation and c HMF oxidation in alkaline media.[84] Copyright 2018, Royal Society of Chemistry. d Comparison of H2 evolution rates in pure water and HMF aqueous solution photocatalyzed by Zn0.5Cd0.5S-P.[87] Copyright 2018, Elsevier.
a Schematic illustration of light-driven synthesis of EG and H2 from methanol through C-C coupling on MoS2 foam/CdS.[97] Copyright 2018, Springer Nature. b Schematic illustration of concurrent generation of H2 and HDN from acetone on TiO2 photocatalysts loaded with single site noble metal. c HAADF-STEM image of PtSA-TiO2. d Photocatalytic HDN-production activity of different catalysts.[99] Copyright 2020, Elsevier.
a Schematic illustration of photocatalytic ethanol dehydrogenation-acetalization reaction coupled with H2 generation. b Photocatalytic DEE-production activity of different catalysts.[105] Copyright 2021, Elsevier. c Proposed mechanism for photocatalytic methanol conversion to DMM over a CdS/Ni2P photocatalyst. d The rate of photocatalytic H2 evolution and selectivity of DMM with different proton sources.[106] Copyright 2019, Wiley-VCH.