Hassina Tabassum, Shreya Mukherjee, Thomas O'Carroll, Tianjie Qiu, Xiaoxuan Yang, Ruqiang Zou, Gang Wu. High-entropy nanomaterials for electrochemical energy conversion and storage[J]. Energy Lab, 2023, 1(1): 220006. doi: 10.54227/elab.20220006
Citation: Hassina Tabassum, Shreya Mukherjee, Thomas O'Carroll, Tianjie Qiu, Xiaoxuan Yang, Ruqiang Zou, Gang Wu. High-entropy nanomaterials for electrochemical energy conversion and storage[J]. Energy Lab, 2023, 1(1): 220006. doi: 10.54227/elab.20220006

REVIEW ARTICLE

High-entropy nanomaterials for electrochemical energy conversion and storage

More Information
  • Corresponding authors: hassinat@buffalo.edu; rzou@pku.edu.cn; gangwu@buffalo.edu
  • High entropy materials (HEMs) with a single-phase structure have introduced a brand-new area of research in electrochemical energy conversion and storage devices. The fusion of divergent elements has been found to produce synergistic effects with advanced physicochemical phenomena. As such, heterometallic equiatomic proportion-based nanomaterials with stabilized configurational mixed entropy exhibit distinguished characteristics to enhance electrode catalytic activity and storage capability. This critical review summarizes the recent advances in developing HEMs at the nanoscale using different synthetic technologies. The most popular types of HEMs are high entropy alloys (HEAs) and high entropy oxides (HEOs), both of which present tunable structural properties. This review pays particular attention to recapitulating the necessary considerations to obtain HEAs effective for water splitting, fuel cell operation, CO2 reduction reactions, and energy storage applications. The demonstrated examples bestow a deep understanding of efficient HEM utilization as electrocatalysts and electrodes for charge storage devices. Finally, challenges and future perspectives pertaining to HEMs adoption as desirable materials for electrochemical energy conversion and storage devices will be discussed.


  • 加载中
  • Hassina Tabassum is a Postdoctoral Associate at the University at Buffalo, the State University of New York (SUNY), USA. Before this, she was a Boya Postdoctoral fellow at Peking university. She has published several high-quality research articles. Her publications have been cited more than 3400 times with H-index of 29. She is several award recipients, including Peking University’s best academic award 2016, Top Ten Best Young Researchers Award of Peking University 2017, Joule Star Talk Award 2019, and the International young scientist funding award 2020. Her research interests are based on the fabrication of advanced nanomaterials for electrochemical energy conversion and storage devices.
    Xiaoxuan Yang was a visiting Ph.D. student at the University at Buffalo, the State University of New York (SUNY). She obtained her Ph.D. at Northeast Normal University in 2021. Currently, she is a postdoc at Zhejiang University. Her research interests mainly focus on the design, synthesis, and characterization of functional nanomaterials for electrochemical energy storage and conversion.
    Ruqiang Zou is currently a full professor and dean of School of Materials Science and Engineering, Peking University, P. R. China. He received his Ph.D. in engineering in 2008 from Kobe University and the National Institute of Advanced Industrial Science and Technology, Japan. He held the JSPS younger scientist during his doctoral course and was a director's postdoc fellow at Los Alamos National Laboratory from 2008 to 2010. He was awarded the Outstanding Young Scientist Foundation of NSFC and Changjiang Scholar. His research interests focus on the controllable preparation of hierarchically porous functional materials for energy and environmental applications.
    Gang Wu is a Professor of Chemical Engineering at the University at Buffalo (UB), SUNY. He obtained his B.S. in 1997 and Ph.D. in 2004 at the Harbin Institute of Technology. After postdoctoral training at Tsinghua University, the University of South Carolina, and Los Alamos National Laboratory (LANL), he became a staff scientist at LANL in 2010. He joined UB in 2014 as an assistant professor and was promoted to tenured associate professor in 2018 and a full professor in 2020. He has published more than 300 papers with 39000 citations, leading an H-index of 106. He is a Highly Cited Researcher ranked by Thomson Reuters, Clarivate Analytics since 2018. His research interests are electrochemical energy science and technology, with an emphasis on advanced electrocatalysis for fuel cells, water electrolzyers, CO2 reduction, and chemical electrosynthesis.
  • 1. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Advanced Engineering Materials, 2004, 6, 299
    2. T. A. A. Batchelor, J. K. Pedersen, S. H. Winther, I. E. Castelli, K. W. Jacobsen, J. Rossmeisl, Joule, 2019, 3, 834
    3. B. E. MacDonald, Z. Fu, B. Zheng, W. Chen, Y. Lin, F. Chen, L. Zhang, J. Ivanisenko, Y. Zhou, H. Hahn, E. J. Lavernia, JOM, 2017, 69, 2024
    4. L. Tao, M. Sun, Y. Zhou, M. Luo, F. Lv, M. Li, Q. Zhang, L. Gu, B. Huang, S. Guo, Journal of the American Chemical Society, 2022, 144, 10582
    5. D. Zhang, H. Zhao, X. Wu, Y. Deng, Z. Wang, Y. Han, H. Li, Y. Shi, X. Chen, S. Li, J. Lai, B. Huang, L. Wang, Advanced Functional Materials, 2021, 31, 2006939
    6. A. Amiri, R. Shahbazian-Yassar, Journal of Materials Chemistry A, 2021, 9, 782
    7. Y. Cui, Y. Zhang, Z. Cao, J. Gu, Z. Du, B. Li, S. Yang, SusMat, 2022, 2, 65
    8. H. Liu, L. Syama, L. Zhang, C. Lee, C. Liu, Z. Dai, Q. Yan, SusMat, 2021, 1, 482
    9. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, The Journal of Physical Chemistry B, 2004, 108, 17886
    10. C. M. Rost, E. Sachet, T. Borman, A. Moballegh, E. C. Dickey, D. Hou, J. L. Jones, S. Curtarolo, J. P. Maria, Nature Communications, 2015, 6, 8485
    11. D. Raabe, C. C. Tasan, H. Springer, M. Bausch, Steel Research International, 2015, 86, 1127
    12. C.-J. Tong, Y.-L. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Metallurgical and Materials Transactions A, 2005, 36, 881
    13. X. Cui, B. Zhang, C. Zeng, S. Guo, MRS Communications, 2018, 8, 1230
    14. R. M. Arán-Ais, F. Dionigi, T. Merzdorf, M. Gocyla, M. Heggen, R. E. Dunin-Borkowski, M. Gliech, J. Solla-Gullón, E. Herrero, J. M. Feliu, P. Strasser, Nano Letters, 2015, 15, 7473
    15. E. P. George, W. A. Curtin, C. C. Tasan, Acta Materialia, 2020, 188, 435
    16. B. Cantor, I. T. H. Chang, P. Knight, A. J. B. Vincent, Materials Science and Engineering: A, 2004, 375−377,213
    17. K. B. Kim, Y. Zhang, P. J. Warren, B. Cantor, Philosophical Magazine, 2003, 83, 2371
    18. B. Cantor, Entropy, 2014, 16, 4749
    19. J. W. Yeh, Annales de Chimie Science des Materiaux (Paris), 2006, 31, 633
    20. J. W. Yeh, Y. L. Chen, S. J. Lin, S. K. Chen, Materials Science Forum, 2007, 560, 1
    21. C.-J. Tong, M.-R. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, S.-Y. Chang, Metallurgical and Materials Transactions A, 2005, 36, 1263
    22. S. Ranganathan, In Alloyed pleasures: Multimetallic cocktails, 2003
    23. L. J. Santodonato, Y. Zhang, M. Feygenson, C. M. Parish, M. C. Gao, R. J. K. Weber, J. C. Neuefeind, Z. Tang, P. K. Liaw, Nature Communications, 2015, 6, 5964
    24. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nature, 2000, 407, 496
    25. Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, Y. Yang, Scripta Materialia, 2015, 104, 53
    26. Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, Z. P. Lu, Progress in Materials Science, 2014, 61, 1
    27. M. C. Gao, JOM, 2015, 67, 2251
    28. R. A. Swalin, American Journal of Physics, 1962, 30, 778
    29. Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, Y. Yang, Intermetallics, 2015, 59, 75
    30. Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, Y. Yang, Materials Today, 2016, 19, 349
    31. U. Mizutani, MRS Bulletin, 2012, 37, 169
    32. S. Guo, C. Ng, J. Lu, C. T. Liu, Journal of Applied Physics, 2011, 109, 103505
    33. S. Guo, C. Ng, C. T. Liu, Journal of Alloys and Compounds, 2013, 557, 77
    34. M. G. Poletti, L. Battezzati, Acta Materialia, 2014, 75, 297
    35. H. Y. Ding, K. F. Yao, Journal of Non-Crystalline Solids, 2013, 364, 9
    36. O. N. Senkov, J. D. Miller, D. B. Miracle, C. Woodward, Nature Communications, 2015, 6, 6529
    37. Y. Zou, H. Ma, R. Spolenak, Nature Communications, 2015, 6, 7748
    38. O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang, P. K. Liaw, Intermetallics, 2010, 18, 1758
    39. A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, JOM, 2014, 66, 1984
    40. G. A. Mansoori, N. F. Carnahan, K. E. Starling, T. W. Leland Jr, The Journal of Chemical Physics, 1971, 54, 1523
    41. X. Yang, Y. Zhang, Materials Chemistry and Physics, 2012, 132, 233
    42. J.-W. Yeh, S.-Y. Chang, Y.-D. Hong, S.-K. Chen, S.-J. Lin, Materials Chemistry and Physics, 2007, 103, 41
    43. L. Liu, J. B. Zhu, L. Li, J. C. Li, Q. Jiang, Materials & Design, 2013, 44, 223
    44. Y. Zhang, Z. P. Lu, S. G. Ma, P. K. Liaw, Z. Tang, Y. Q. Cheng, M. C. Gao, MRS Communications, 2014, 4, 57
    45. M. J. Yao, K. G. Pradeep, C. C. Tasan, D. Raabe, Scripta Materialia, 2014, 72−73, 5
    46. Y. Deng, C. C. Tasan, K. G. Pradeep, H. Springer, A. Kostka, D. Raabe, Acta Materialia, 2015, 94, 124
    47. O. N. Senkov, S. V. Senkova, C. Woodward, D. B. Miracle, Acta Materialia, 2013, 61, 1545
    48. N. D. Stepanov, D. G. Shaysultanov, G. A. Salishchev, M. A. Tikhonovsky, Materials Letters, 2015, 142, 153
    49. K. Lu, Science, 2014, 345, 1455
    50. K. Lu, L. Lu, S. Suresh, Science, 2009, 324, 349
    51. H. Kou, J. Lu, Y. Li, Advanced Materials, 2014, 26, 5518
    52. P. L. Sun, Y. H. Zhao, T. Y. Tseng, J. R. Su, E. J. Lavernia, Materials Science and Engineering: A, 2010, 527, 5287
    53. A. J. Zaddach, C. Niu, C. C. Koch, D. L. Irving, JOM, 2013, 65, 1780
    54. Y. L. Gong, C. E. Wen, Y. C. Li, X. X. Wu, L. P. Cheng, X. C. Han, X. K. Zhu, Materials Science and Engineering: A, 2013, 569, 144
    55. F. Otto, Y. Yang, H. Bei, E. P. George, Acta Materialia, 2013, 61, 2628
    56. S. Guo, C. T. Liu, Progress in Natural Science:Materials International, 2011, 21, 433
    57. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E. P. George, Acta Materialia, 2013, 61, 5743
    58. T. Löffler, H. Meyer, A. Savan, P. Wilde, A. Garzón Manjón, Y.-T. Chen, E. Ventosa, C. Scheu, A. Ludwig, W. Schuhmann, Advanced Energy Materials, 2018, 8, 1802269
    59. H. Meyer, M. Meischein, A. Ludwig, ACS Combinatorial Science, 2018, 20, 243
    60. M. Schwartzkopf, G. Santoro, C. J. Brett, A. Rothkirch, O. Polonskyi, A. Hinz, E. Metwalli, Y. Yao, T. Strunskus, F. Faupel, P. Müller-Buschbaum, S. V. Roth, ACS Applied Materials & Interfaces, 2015, 7, 13547
    61. M. Meischein, A. Garzón-Manjón, T. Frohn, H. Meyer, S. Salomon, C. Scheu, A. Ludwig, ACS Combinatorial Science, 2019, 21, 743
    62. M. T. Nguyen, T. Yonezawa, Science and Technology of Advanced Materials, 2018, 19, 883
    63. D. Sugioka, T. Kameyama, S. Kuwabata, T. Yamamoto, T. Torimoto, ACS Applied Materials & Interfaces, 2016, 8, 10874
    64. D. König, K. Richter, A. Siegel, A.-V. Mudring, A. Ludwig, Advanced Functional Materials, 2014, 24, 2049
    65. Y. Zhang, X. Yan, J. Ma, Z. Lu, Y. Zhao, Journal of Materials Research, 2018, 33, 3330
    66. S. Reichenberger, G. Marzun, M. Muhler, S. Barcikowski, ChemCatChem, 2019, 11, 4489
    67. F. Waag, Y. Li, A. R. Ziefuß, E. Bertin, M. Kamp, V. Duppel, G. Marzun, L. Kienle, S. Barcikowski, B. Gökce, RSC Advances, 2019, 9, 18547
    68. Y. Yao, Q. Dong, L. Hu, Matter, 2019, 1, 1451
    69. Y. Yao, Z. Huang, P. Xie, L. Wu, L. Ma, T. Li, Z. Pang, M. Jiao, Z. Liang, J. Gao, Y. He, D. J. Kline, M. R. Zachariah, C. Wang, J. Lu, T. Wu, T. Li, C. Wang, R. Shahbazian-Yassar, L. Hu, Nature Nanotechnology, 2019, 14, 851
    70. S. Gao, S. Hao, Z. Huang, Y. Yuan, S. Han, L. Lei, X. Zhang, R. Shahbazian-Yassar, J. Lu, Nature Communications, 2020, 11, 2016
    71. Y. Yao, Z. Huang, P. Xie, S. D. Lacey, R. J. Jacob, H. Xie, F. Chen, A. Nie, T. Pu, M. Rehwoldt, D. Yu, M. R. Zachariah, C. Wang, R. Shahbazian-Yassar, J. Li, L. Hu, Science, 2018, 359, 1489
    72. P. Xie, Y. Yao, Z. Huang, Z. Liu, J. Zhang, T. Li, G. Wang, R. Shahbazian-Yassar, L. Hu, C. Wang, Nature Communications, 2019, 10, 4011
    73. Z. Peng, H. Yang, Nano Today, 2009, 4, 143
    74. Y. Li, Y. Liao, J. Zhang, E. Huang, L. Ji, Z. Zhang, R. Zhao, Z. Zhang, B. Yang, Y. Zhang, B. Xu, G. Qin, X. Zhang, Angewandte Chemie International Edition, 2021, 60, 27113
    75. W. Shi, H. Liu, Z. Li, C. Li, J. Zhou, Y. Yuan, F. Jiang, K. Fu, Y. Yao, SusMat, 2022, 2, 186
    76. T. Löffler, A. Ludwig, J. Rossmeisl, W. Schuhmann, Angewandte Chemie International Edition, 2021, 60, 26894
    77. M. W. Glasscott, J. E. Dick, Analytical Chemistry, 2018, 90, 7804
    78. J. E. Dick, E. Lebègue, L. M. Strawsine, A. J. Bard, Electroanalysis, 2016, 28, 2320
    79. J. E. Dick, C. Renault, B.-K. Kim, A. J. Bard, Angewandte Chemie International Edition, 2014, 53, 11859
    80. X. Huang, G. Yang, S. Li, H. Wang, Y. Cao, F. Peng, H. Yu, Journal of Energy Chemistry, 2022, 68, 721
    81. B. Wang, Y. Yao, X. Yu, C. Wang, C. Wu, Z. Zou, Journal of Materials Chemistry A, 2021, 9, 19410
    82. M. W. Glasscott, A. D. Pendergast, S. Goines, A. R. Bishop, A. T. Hoang, C. Renault, J. E. Dick, Nature Communications, 2019, 10, 2650
    83. B. Niu, F. Zhang, H. Ping, N. Li, J. Zhou, L. Lei, J. Xie, J. Zhang, W. Wang, Z. Fu, Scientific Reports, 2017, 7, 3421
    84. F. Okejiri, Z. Zhang, J. Liu, M. Liu, S. Yang, S. Dai, ChemSusChem, 2020, 13, 111
    85. K. Gu, D. Wang, C. Xie, T. Wang, G. Huang, Y. Liu, Y. Zou, L. Tao, S. Wang, Angewandte Chemie International Edition, 2021, 60, 20253
    86. P.-C. Chen, M. Liu, J. S. Du, B. Meckes, S. Wang, H. Lin, V. P. Dravid, C. Wolverton, C. A. Mirkin, Science, 2019, 363, 959
    87. D. Zhang, Y. Shi, H. Zhao, W. Qi, X. Chen, T. Zhan, S. Li, B. Yang, M. Sun, J. Lai, B. Huang, L. Wang, Journal of Materials Chemistry A, 2021, 9, 889
    88. C. Zhan, Y. Xu, L. Bu, H. Zhu, Y. Feng, T. Yang, Y. Zhang, Z. Yang, B. Huang, Q. Shao, X. Huang, Nature Communications, 2021, 12, 6261
    89. N. K. Katiyar, S. Nellaiappan, R. Kumar, K. D. Malviya, K. G. Pradeep, A. K. Singh, S. Sharma, C. S. Tiwary, K. Biswas, Materials Today Energy, 2020, 16, 100393
    90. H. Tabassum, R. Zou, A. Mahmood, Z. Liang, S. Guo, Journal of Materials Chemistry A, 2016, 4, 16469
    91. V. Tripkovic, H. A. Hansen, J. Rossmeisl, T. Vegge, Physical Chemistry Chemical Physics, 2015, 17, 11647
    92. T. Löffler, A. Savan, H. Meyer, M. Meischein, V. Strotkötter, A. Ludwig, W. Schuhmann, Angewandte Chemie International Edition, 2020, 59, 5844
    93. K. D. Jensen, J. Tymoczko, J. Rossmeisl, A. S. Bandarenka, I. Chorkendorff, M. Escudero-Escribano, I. E. L. Stephens, Angewandte Chemie International Edition, 2018, 57, 2800
    94. X. Ji, P. Gao, L. Zhang, X. Wang, F. Wang, H. Zhu, J. Yu, ChemElectroChem, 2019, 6, 3065
    95. Y. Yao, Z. Huang, T. Li, H. Wang, Y. Liu, H. S. Stein, Y. Mao, J. Gao, M. Jiao, Q. Dong, J. Dai, P. Xie, H. Xie, S. D. Lacey, I. Takeuchi, J. M. Gregoire, R. Jiang, C. Wang, A. D. Taylor, R. Shahbazian-Yassar, L. Hu, Proc. Natl. Acad. Sci. U. S. A., 2020, 117, 6316
    96. S. Li, X. Tang, H. Jia, H. Li, G. Xie, X. Liu, X. Lin, H.-J. Qiu, Journal of Catalysis, 2020, 383, 164
    97. A. Sarkar, A. Vadivel Murugan, A. Manthiram, Fuel Cells, 2010, 10, 375
    98. H. Li, Y. Han, H. Zhao, W. Qi, D. Zhang, Y. Yu, W. Cai, S. Li, J. Lai, B. Huang, L. Wang, Nature Communications, 2020, 11, 5437
    99. J. K. Pedersen, C. M. Clausen, O. A. Krysiak, B. Xiao, T. A. A. Batchelor, T. Löffler, V. A. Mints, L. Banko, M. Arenz, A. Savan, W. Schuhmann, A. Ludwig, J. Rossmeisl, Angewandte Chemie International Edition, 2021, 60, 24144
    100. W. Dai, T. Lu, Y. Pan, Journal of Power Sources, 2019, 430, 104
    101. Z. Ding, J. Bian, S. Shuang, X. Liu, Y. Hu, C. Sun, Y. Yang, Advanced Sustainable Systems, 2020, 4, 1900105
    102. D. Wang, Z. Liu, S. Du, Y. Zhang, H. Li, Z. Xiao, W. Chen, R. Chen, Y. Wang, Y. Zou, S. Wang, Journal of Materials Chemistry A, 2019, 7, 24211
    103. H.-J. Qiu, G. Fang, J. Gao, Y. Wen, J. Lv, H. Li, G. Xie, X. Liu, S. Sun, ACS Materials Letters, 2019, 1, 526
    104. X. Zhao, Z. Xue, W. Chen, X. Bai, R. Shi, T. Mu, Journal of Materials Chemistry A, 2019, 7, 26238
    105. M. Liu, Z. Zhang, F. Okejiri, S. Yang, S. Zhou, S. Dai, Advanced Materials Interfaces, 2019, 6, 1900015
    106. H. Tabassum, W. Guo, W. Meng, A. Mahmood, R. Zhao, Q. Wang, R. Zou, Advanced Energy Materials, 2017, 7, 1601671
    107. G. Zhang, K. Ming, J. Kang, Q. Huang, Z. Zhang, X. Zheng, X. Bi, Electrochimica Acta, 2018, 279, 19
    108. G. Fang, J. Gao, J. Lv, H. Jia, H. Li, W. Liu, G. Xie, Z. Chen, Y. Huang, Q. Yuan, X. Liu, X. Lin, S. Sun, H.-J. Qiu, Applied Catalysis B:Environmental, 2020, 268, 118431
    109. P. Edalati, Q. Wang, H. Razavi-Khosroshahi, M. Fuji, T. Ishihara, K. Edalati, Journal of Materials Chemistry A, 2020, 8, 3814
    110. H.-J. Qiu, G. Fang, Y. Wen, P. Liu, G. Xie, X. Liu, S. Sun, Journal of Materials Chemistry A, 2019, 7, 6499
    111. A. Sahasrabudhe, H. Dixit, R. Majee, S. Bhattacharyya, Nature Communications, 2018, 9, 2014
    112. S. D. Lacey, Q. Dong, Z. Huang, J. Luo, H. Xie, Z. Lin, D. J. Kirsch, V. Vattipalli, C. Povinelli, W. Fan, R. Shahbazian-Yassar, D. Wang, L. Hu, Nano Letters, 2019, 19, 5149
    113. Z. Jin, J. Lv, H. Jia, W. Liu, H. Li, Z. Chen, X. Lin, G. Xie, X. Liu, S. Sun, H.-J. Qiu, Small, 2019, 15, 1904180
    114. H. Tabassum, X. Yang, R. Zou, G. Wu, Chem Catalysis, 2022, 2, 1561
    115. Y. Li, W. Shan, M. J. Zachman, M. Wang, S. Hwang, H. Tabassum, J. Yang, X. Yang, S. Karakalos, Z. Feng, G. Wang, G. Wu, Angewandte Chemie International Edition, 2022, 61, e202205632
    116. S. Nellaiappan, N. K. Katiyar, R. Kumar, A. Parui, K. D. Malviya, K. G. Pradeep, A. K. Singh, S. Sharma, C. S. Tiwary, K. Biswas, ACS Catalysis, 2020, 10, 3658
    117. H. Tabassum, S. Mukherjee, J. Chen, D. Holiharimanana, S. Karakalos, X. Yang, S. Hwang, T. Zhang, B. Lu, M. Chen, Z. Tang, E. A. Kyriakidou, Q. Ge, G. Wu, Energy & Environmental Science, 2022, 15, 4190
    118. L. Spiridigliozzi, C. Ferone, R. Cioffi, G. Accardo, D. Frattini, G. Dell'Agli, Materials (Basel), 2020, 13, 558
    119. A. Sarkar, Q. Wang, A. Schiele, M. R. Chellali, S. S. Bhattacharya, D. Wang, T. Brezesinski, H. Hahn, L. Velasco, B. Breitung, Advanced Materials, 2019, 31, 1806236
    120. D. A. Vinnik, E. A. Trofimov, V. E. Zhivulin, S. A. Gudkova, O. V. Zaitseva, D. A. Zherebtsov, A. Y. Starikov, D. P. Sherstyuk, A. A. Amirov, A. V. Kalgin, S. V. Trukhanov, F. V. Podgornov, Nanomaterials (Basel), 2020, 10, 268
    121. M. Lim, Z. Rak, J. L. Braun, C. M. Rost, G. N. Kotsonis, P. E. Hopkins, J.-P. Maria, D. W. Brenner, Journal of Applied Physics, 2019, 125, 055105
    122. A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. de Biasi, C. Kübel, T. Brezesinski, S. S. Bhattacharya, H. Hahn, B. Breitung, Nature Communications, 2018, 9, 3400
    123. R. Djenadic, A. Sarkar, O. Clemens, C. Loho, M. Botros, V. S. K. Chakravadhanula, C. Kübel, S. S. Bhattacharya, A. S. Gandhi, H. Hahn, Materials Research Letters, 2017, 5, 102
    124. H. Chen, J. Fu, P. Zhang, H. Peng, C. W. Abney, K. Jie, X. Liu, M. Chi, S. Dai, Journal of Materials Chemistry A, 2018, 6, 11129
    125. A. Sarkar, C. Loho, L. Velasco, T. Thomas, S. S. Bhattacharya, H. Hahn, R. Djenadic, Dalton Transactions, 2017, 46, 12167
    126. K. Walczak, A. Plewa, C. Ghica, W. Zając, A. Trenczek-Zając, M. Zając, J. Toboła, J. Molenda, Energy Storage Materials, 2022, 47, 500
    127. J. Dąbrowa, M. Stygar, A. Mikuła, A. Knapik, K. Mroczka, W. Tejchman, M. Danielewski, M. Martin, Materials Letters, 2018, 216, 32
    128. W. Hong, F. Chen, Q. Shen, Y.-H. Han, W. G. Fahrenholtz, L. Zhang, Journal of the American Ceramic Society, 2019, 102, 2228
    129. H. Tabassum, C. Zhi, T. Hussain, T. Qiu, W. Aftab, R. Zou, Advanced Energy Materials, 2019, 9, 1901778
    130. H. Tabassum, C. Zhi, Y. Wu, R. Zhong, T. Hussain, T. Qiu, Y. Tang, Z. Liang, W. Guo, R. Zou, Chemical Engineering Journal, 2021, 411, 128420
    131. H. Tabassum, R. Zou, A. Mahmood, Z. Liang, Q. Wang, H. Zhang, S. Gao, C. Qu, W. Guo, S. Guo, Advanced materials, 2018, 30, 1705441
    132. A. Mahmood, S. Li, Z. Ali, H. Tabassum, B. Zhu, Z. Liang, W. Meng, W. Aftab, W. Guo, H. Zhang, M. Yousaf, S. Gao, R. Zou, Y. Zhao, Advanced Materials, 2019, 31, 1805430
    133. C. Zhao, F. Ding, Y. Lu, L. Chen, Y. S. Hu, Angewandte Chemie International Edition, 2020, 59, 264
    134. D. Bérardan, S. Franger, A. K. Meena, N. Dragoe, Journal of Materials Chemistry A, 2016, 4, 9536
    135. A. Sarkar, R. Djenadic, N. J. Usharani, K. P. Sanghvi, V. S. K. Chakravadhanula, A. S. Gandhi, H. Hahn, S. S. Bhattacharya, Journal of the European Ceramic Society, 2017, 37, 747
    136. X. Wang, X. Li, H. Fan, M. Miao, Y. Zhang, W. Guo, Y. Fu, Journal of Energy Chemistry, 2022, 67, 276
    137. L. Lin, K. Wang, A. Sarkar, C. Njel, G. Karkera, Q. Wang, R. Azmi, M. Fichtner, H. Hahn, S. Schweidler, B. Breitung, Advanced Energy Materials, 2022, 12, 2103090
    138. H. Li, H. Zhu, S. Zhang, N. Zhang, M. Du, Y. Chai, Small Structures, 2020, 1, 2000033
    139. X. Liu, X. Li, Y. Li, H. Zhang, Q. Jia, S. Zhang, W. Lei, EcoMat, 2022, e12261
    140. H. Tabassum, C. Qu, K. Cai, W. Aftab, Z. Liang, T. Qiu, A. Mahmood, W. Meng, R. Zou, Journal of Materials Chemistry A, 2018, 6, 21225
    141. X. Xu, Y. Du, C. Wang, Y. Guo, J. Zou, K. Zhou, Z. Zeng, Y. Liu, L. Li, Journal of Alloys and Compounds, 2020, 822, 153642
    142. K. Kong, J. Hyun, Y. Kim, W. Kim, D. Kim, Journal of Power Sources, 2019, 437, 226927
    143. M. S. Lal, R. Sundara, ACS applied materials & interfaces, 2019, 11, 30846
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(20)

Information

Article Metrics

Article views(4681) PDF downloads(840) Citation(0)

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint