Citation: | Hassina Tabassum, Shreya Mukherjee, Thomas O'Carroll, Tianjie Qiu, Xiaoxuan Yang, Ruqiang Zou, Gang Wu. High-entropy nanomaterials for electrochemical energy conversion and storage[J]. Energy Lab, 2023, 1(1): 220006. doi: 10.54227/elab.20220006 |
High entropy materials (HEMs) with a single-phase structure have introduced a brand-new area of research in electrochemical energy conversion and storage devices. The fusion of divergent elements has been found to produce synergistic effects with advanced physicochemical phenomena. As such, heterometallic equiatomic proportion-based nanomaterials with stabilized configurational mixed entropy exhibit distinguished characteristics to enhance electrode catalytic activity and storage capability. This critical review summarizes the recent advances in developing HEMs at the nanoscale using different synthetic technologies. The most popular types of HEMs are high entropy alloys (HEAs) and high entropy oxides (HEOs), both of which present tunable structural properties. This review pays particular attention to recapitulating the necessary considerations to obtain HEAs effective for water splitting, fuel cell operation, CO2 reduction reactions, and energy storage applications. The demonstrated examples bestow a deep understanding of efficient HEM utilization as electrocatalysts and electrodes for charge storage devices. Finally, challenges and future perspectives pertaining to HEMs adoption as desirable materials for electrochemical energy conversion and storage devices will be discussed.
1. | J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Advanced Engineering Materials, 2004, 6, 299 |
2. | T. A. A. Batchelor, J. K. Pedersen, S. H. Winther, I. E. Castelli, K. W. Jacobsen, J. Rossmeisl, Joule, 2019, 3, 834 |
3. | B. E. MacDonald, Z. Fu, B. Zheng, W. Chen, Y. Lin, F. Chen, L. Zhang, J. Ivanisenko, Y. Zhou, H. Hahn, E. J. Lavernia, JOM, 2017, 69, 2024 |
4. | L. Tao, M. Sun, Y. Zhou, M. Luo, F. Lv, M. Li, Q. Zhang, L. Gu, B. Huang, S. Guo, Journal of the American Chemical Society, 2022, 144, 10582 |
5. | D. Zhang, H. Zhao, X. Wu, Y. Deng, Z. Wang, Y. Han, H. Li, Y. Shi, X. Chen, S. Li, J. Lai, B. Huang, L. Wang, Advanced Functional Materials, 2021, 31, 2006939 |
6. | A. Amiri, R. Shahbazian-Yassar, Journal of Materials Chemistry A, 2021, 9, 782 |
7. | Y. Cui, Y. Zhang, Z. Cao, J. Gu, Z. Du, B. Li, S. Yang, SusMat, 2022, 2, 65 |
8. | H. Liu, L. Syama, L. Zhang, C. Lee, C. Liu, Z. Dai, Q. Yan, SusMat, 2021, 1, 482 |
9. | J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, The Journal of Physical Chemistry B, 2004, 108, 17886 |
10. | C. M. Rost, E. Sachet, T. Borman, A. Moballegh, E. C. Dickey, D. Hou, J. L. Jones, S. Curtarolo, J. P. Maria, Nature Communications, 2015, 6, 8485 |
11. | D. Raabe, C. C. Tasan, H. Springer, M. Bausch, Steel Research International, 2015, 86, 1127 |
12. | C.-J. Tong, Y.-L. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Metallurgical and Materials Transactions A, 2005, 36, 881 |
13. | X. Cui, B. Zhang, C. Zeng, S. Guo, MRS Communications, 2018, 8, 1230 |
14. | R. M. Arán-Ais, F. Dionigi, T. Merzdorf, M. Gocyla, M. Heggen, R. E. Dunin-Borkowski, M. Gliech, J. Solla-Gullón, E. Herrero, J. M. Feliu, P. Strasser, Nano Letters, 2015, 15, 7473 |
15. | E. P. George, W. A. Curtin, C. C. Tasan, Acta Materialia, 2020, 188, 435 |
16. | B. Cantor, I. T. H. Chang, P. Knight, A. J. B. Vincent, Materials Science and Engineering: A, 2004, 375−377,213 |
17. | K. B. Kim, Y. Zhang, P. J. Warren, B. Cantor, Philosophical Magazine, 2003, 83, 2371 |
18. | B. Cantor, Entropy, 2014, 16, 4749 |
19. | J. W. Yeh, Annales de Chimie Science des Materiaux (Paris), 2006, 31, 633 |
20. | J. W. Yeh, Y. L. Chen, S. J. Lin, S. K. Chen, Materials Science Forum, 2007, 560, 1 |
21. | C.-J. Tong, M.-R. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, S.-Y. Chang, Metallurgical and Materials Transactions A, 2005, 36, 1263 |
22. | S. Ranganathan, In Alloyed pleasures: Multimetallic cocktails, 2003 |
23. | L. J. Santodonato, Y. Zhang, M. Feygenson, C. M. Parish, M. C. Gao, R. J. K. Weber, J. C. Neuefeind, Z. Tang, P. K. Liaw, Nature Communications, 2015, 6, 5964 |
24. | P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nature, 2000, 407, 496 |
25. | Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, Y. Yang, Scripta Materialia, 2015, 104, 53 |
26. | Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, Z. P. Lu, Progress in Materials Science, 2014, 61, 1 |
27. | M. C. Gao, JOM, 2015, 67, 2251 |
28. | R. A. Swalin, American Journal of Physics, 1962, 30, 778 |
29. | Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, Y. Yang, Intermetallics, 2015, 59, 75 |
30. | Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, Y. Yang, Materials Today, 2016, 19, 349 |
31. | U. Mizutani, MRS Bulletin, 2012, 37, 169 |
32. | S. Guo, C. Ng, J. Lu, C. T. Liu, Journal of Applied Physics, 2011, 109, 103505 |
33. | S. Guo, C. Ng, C. T. Liu, Journal of Alloys and Compounds, 2013, 557, 77 |
34. | M. G. Poletti, L. Battezzati, Acta Materialia, 2014, 75, 297 |
35. | H. Y. Ding, K. F. Yao, Journal of Non-Crystalline Solids, 2013, 364, 9 |
36. | O. N. Senkov, J. D. Miller, D. B. Miracle, C. Woodward, Nature Communications, 2015, 6, 6529 |
37. | Y. Zou, H. Ma, R. Spolenak, Nature Communications, 2015, 6, 7748 |
38. | O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang, P. K. Liaw, Intermetallics, 2010, 18, 1758 |
39. | A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, JOM, 2014, 66, 1984 |
40. | G. A. Mansoori, N. F. Carnahan, K. E. Starling, T. W. Leland Jr, The Journal of Chemical Physics, 1971, 54, 1523 |
41. | X. Yang, Y. Zhang, Materials Chemistry and Physics, 2012, 132, 233 |
42. | J.-W. Yeh, S.-Y. Chang, Y.-D. Hong, S.-K. Chen, S.-J. Lin, Materials Chemistry and Physics, 2007, 103, 41 |
43. | L. Liu, J. B. Zhu, L. Li, J. C. Li, Q. Jiang, Materials & Design, 2013, 44, 223 |
44. | Y. Zhang, Z. P. Lu, S. G. Ma, P. K. Liaw, Z. Tang, Y. Q. Cheng, M. C. Gao, MRS Communications, 2014, 4, 57 |
45. | M. J. Yao, K. G. Pradeep, C. C. Tasan, D. Raabe, Scripta Materialia, 2014, 72−73, 5 |
46. | Y. Deng, C. C. Tasan, K. G. Pradeep, H. Springer, A. Kostka, D. Raabe, Acta Materialia, 2015, 94, 124 |
47. | O. N. Senkov, S. V. Senkova, C. Woodward, D. B. Miracle, Acta Materialia, 2013, 61, 1545 |
48. | N. D. Stepanov, D. G. Shaysultanov, G. A. Salishchev, M. A. Tikhonovsky, Materials Letters, 2015, 142, 153 |
49. | K. Lu, Science, 2014, 345, 1455 |
50. | K. Lu, L. Lu, S. Suresh, Science, 2009, 324, 349 |
51. | H. Kou, J. Lu, Y. Li, Advanced Materials, 2014, 26, 5518 |
52. | P. L. Sun, Y. H. Zhao, T. Y. Tseng, J. R. Su, E. J. Lavernia, Materials Science and Engineering: A, 2010, 527, 5287 |
53. | A. J. Zaddach, C. Niu, C. C. Koch, D. L. Irving, JOM, 2013, 65, 1780 |
54. | Y. L. Gong, C. E. Wen, Y. C. Li, X. X. Wu, L. P. Cheng, X. C. Han, X. K. Zhu, Materials Science and Engineering: A, 2013, 569, 144 |
55. | F. Otto, Y. Yang, H. Bei, E. P. George, Acta Materialia, 2013, 61, 2628 |
56. | S. Guo, C. T. Liu, Progress in Natural Science:Materials International, 2011, 21, 433 |
57. | F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E. P. George, Acta Materialia, 2013, 61, 5743 |
58. | T. Löffler, H. Meyer, A. Savan, P. Wilde, A. Garzón Manjón, Y.-T. Chen, E. Ventosa, C. Scheu, A. Ludwig, W. Schuhmann, Advanced Energy Materials, 2018, 8, 1802269 |
59. | H. Meyer, M. Meischein, A. Ludwig, ACS Combinatorial Science, 2018, 20, 243 |
60. | M. Schwartzkopf, G. Santoro, C. J. Brett, A. Rothkirch, O. Polonskyi, A. Hinz, E. Metwalli, Y. Yao, T. Strunskus, F. Faupel, P. Müller-Buschbaum, S. V. Roth, ACS Applied Materials & Interfaces, 2015, 7, 13547 |
61. | M. Meischein, A. Garzón-Manjón, T. Frohn, H. Meyer, S. Salomon, C. Scheu, A. Ludwig, ACS Combinatorial Science, 2019, 21, 743 |
62. | M. T. Nguyen, T. Yonezawa, Science and Technology of Advanced Materials, 2018, 19, 883 |
63. | D. Sugioka, T. Kameyama, S. Kuwabata, T. Yamamoto, T. Torimoto, ACS Applied Materials & Interfaces, 2016, 8, 10874 |
64. | D. König, K. Richter, A. Siegel, A.-V. Mudring, A. Ludwig, Advanced Functional Materials, 2014, 24, 2049 |
65. | Y. Zhang, X. Yan, J. Ma, Z. Lu, Y. Zhao, Journal of Materials Research, 2018, 33, 3330 |
66. | S. Reichenberger, G. Marzun, M. Muhler, S. Barcikowski, ChemCatChem, 2019, 11, 4489 |
67. | F. Waag, Y. Li, A. R. Ziefuß, E. Bertin, M. Kamp, V. Duppel, G. Marzun, L. Kienle, S. Barcikowski, B. Gökce, RSC Advances, 2019, 9, 18547 |
68. | Y. Yao, Q. Dong, L. Hu, Matter, 2019, 1, 1451 |
69. | Y. Yao, Z. Huang, P. Xie, L. Wu, L. Ma, T. Li, Z. Pang, M. Jiao, Z. Liang, J. Gao, Y. He, D. J. Kline, M. R. Zachariah, C. Wang, J. Lu, T. Wu, T. Li, C. Wang, R. Shahbazian-Yassar, L. Hu, Nature Nanotechnology, 2019, 14, 851 |
70. | S. Gao, S. Hao, Z. Huang, Y. Yuan, S. Han, L. Lei, X. Zhang, R. Shahbazian-Yassar, J. Lu, Nature Communications, 2020, 11, 2016 |
71. | Y. Yao, Z. Huang, P. Xie, S. D. Lacey, R. J. Jacob, H. Xie, F. Chen, A. Nie, T. Pu, M. Rehwoldt, D. Yu, M. R. Zachariah, C. Wang, R. Shahbazian-Yassar, J. Li, L. Hu, Science, 2018, 359, 1489 |
72. | P. Xie, Y. Yao, Z. Huang, Z. Liu, J. Zhang, T. Li, G. Wang, R. Shahbazian-Yassar, L. Hu, C. Wang, Nature Communications, 2019, 10, 4011 |
73. | Z. Peng, H. Yang, Nano Today, 2009, 4, 143 |
74. | Y. Li, Y. Liao, J. Zhang, E. Huang, L. Ji, Z. Zhang, R. Zhao, Z. Zhang, B. Yang, Y. Zhang, B. Xu, G. Qin, X. Zhang, Angewandte Chemie International Edition, 2021, 60, 27113 |
75. | W. Shi, H. Liu, Z. Li, C. Li, J. Zhou, Y. Yuan, F. Jiang, K. Fu, Y. Yao, SusMat, 2022, 2, 186 |
76. | T. Löffler, A. Ludwig, J. Rossmeisl, W. Schuhmann, Angewandte Chemie International Edition, 2021, 60, 26894 |
77. | M. W. Glasscott, J. E. Dick, Analytical Chemistry, 2018, 90, 7804 |
78. | J. E. Dick, E. Lebègue, L. M. Strawsine, A. J. Bard, Electroanalysis, 2016, 28, 2320 |
79. | J. E. Dick, C. Renault, B.-K. Kim, A. J. Bard, Angewandte Chemie International Edition, 2014, 53, 11859 |
80. | X. Huang, G. Yang, S. Li, H. Wang, Y. Cao, F. Peng, H. Yu, Journal of Energy Chemistry, 2022, 68, 721 |
81. | B. Wang, Y. Yao, X. Yu, C. Wang, C. Wu, Z. Zou, Journal of Materials Chemistry A, 2021, 9, 19410 |
82. | M. W. Glasscott, A. D. Pendergast, S. Goines, A. R. Bishop, A. T. Hoang, C. Renault, J. E. Dick, Nature Communications, 2019, 10, 2650 |
83. | B. Niu, F. Zhang, H. Ping, N. Li, J. Zhou, L. Lei, J. Xie, J. Zhang, W. Wang, Z. Fu, Scientific Reports, 2017, 7, 3421 |
84. | F. Okejiri, Z. Zhang, J. Liu, M. Liu, S. Yang, S. Dai, ChemSusChem, 2020, 13, 111 |
85. | K. Gu, D. Wang, C. Xie, T. Wang, G. Huang, Y. Liu, Y. Zou, L. Tao, S. Wang, Angewandte Chemie International Edition, 2021, 60, 20253 |
86. | P.-C. Chen, M. Liu, J. S. Du, B. Meckes, S. Wang, H. Lin, V. P. Dravid, C. Wolverton, C. A. Mirkin, Science, 2019, 363, 959 |
87. | D. Zhang, Y. Shi, H. Zhao, W. Qi, X. Chen, T. Zhan, S. Li, B. Yang, M. Sun, J. Lai, B. Huang, L. Wang, Journal of Materials Chemistry A, 2021, 9, 889 |
88. | C. Zhan, Y. Xu, L. Bu, H. Zhu, Y. Feng, T. Yang, Y. Zhang, Z. Yang, B. Huang, Q. Shao, X. Huang, Nature Communications, 2021, 12, 6261 |
89. | N. K. Katiyar, S. Nellaiappan, R. Kumar, K. D. Malviya, K. G. Pradeep, A. K. Singh, S. Sharma, C. S. Tiwary, K. Biswas, Materials Today Energy, 2020, 16, 100393 |
90. | H. Tabassum, R. Zou, A. Mahmood, Z. Liang, S. Guo, Journal of Materials Chemistry A, 2016, 4, 16469 |
91. | V. Tripkovic, H. A. Hansen, J. Rossmeisl, T. Vegge, Physical Chemistry Chemical Physics, 2015, 17, 11647 |
92. | T. Löffler, A. Savan, H. Meyer, M. Meischein, V. Strotkötter, A. Ludwig, W. Schuhmann, Angewandte Chemie International Edition, 2020, 59, 5844 |
93. | K. D. Jensen, J. Tymoczko, J. Rossmeisl, A. S. Bandarenka, I. Chorkendorff, M. Escudero-Escribano, I. E. L. Stephens, Angewandte Chemie International Edition, 2018, 57, 2800 |
94. | X. Ji, P. Gao, L. Zhang, X. Wang, F. Wang, H. Zhu, J. Yu, ChemElectroChem, 2019, 6, 3065 |
95. | Y. Yao, Z. Huang, T. Li, H. Wang, Y. Liu, H. S. Stein, Y. Mao, J. Gao, M. Jiao, Q. Dong, J. Dai, P. Xie, H. Xie, S. D. Lacey, I. Takeuchi, J. M. Gregoire, R. Jiang, C. Wang, A. D. Taylor, R. Shahbazian-Yassar, L. Hu, Proc. Natl. Acad. Sci. U. S. A., 2020, 117, 6316 |
96. | S. Li, X. Tang, H. Jia, H. Li, G. Xie, X. Liu, X. Lin, H.-J. Qiu, Journal of Catalysis, 2020, 383, 164 |
97. | A. Sarkar, A. Vadivel Murugan, A. Manthiram, Fuel Cells, 2010, 10, 375 |
98. | H. Li, Y. Han, H. Zhao, W. Qi, D. Zhang, Y. Yu, W. Cai, S. Li, J. Lai, B. Huang, L. Wang, Nature Communications, 2020, 11, 5437 |
99. | J. K. Pedersen, C. M. Clausen, O. A. Krysiak, B. Xiao, T. A. A. Batchelor, T. Löffler, V. A. Mints, L. Banko, M. Arenz, A. Savan, W. Schuhmann, A. Ludwig, J. Rossmeisl, Angewandte Chemie International Edition, 2021, 60, 24144 |
100. | W. Dai, T. Lu, Y. Pan, Journal of Power Sources, 2019, 430, 104 |
101. | Z. Ding, J. Bian, S. Shuang, X. Liu, Y. Hu, C. Sun, Y. Yang, Advanced Sustainable Systems, 2020, 4, 1900105 |
102. | D. Wang, Z. Liu, S. Du, Y. Zhang, H. Li, Z. Xiao, W. Chen, R. Chen, Y. Wang, Y. Zou, S. Wang, Journal of Materials Chemistry A, 2019, 7, 24211 |
103. | H.-J. Qiu, G. Fang, J. Gao, Y. Wen, J. Lv, H. Li, G. Xie, X. Liu, S. Sun, ACS Materials Letters, 2019, 1, 526 |
104. | X. Zhao, Z. Xue, W. Chen, X. Bai, R. Shi, T. Mu, Journal of Materials Chemistry A, 2019, 7, 26238 |
105. | M. Liu, Z. Zhang, F. Okejiri, S. Yang, S. Zhou, S. Dai, Advanced Materials Interfaces, 2019, 6, 1900015 |
106. | H. Tabassum, W. Guo, W. Meng, A. Mahmood, R. Zhao, Q. Wang, R. Zou, Advanced Energy Materials, 2017, 7, 1601671 |
107. | G. Zhang, K. Ming, J. Kang, Q. Huang, Z. Zhang, X. Zheng, X. Bi, Electrochimica Acta, 2018, 279, 19 |
108. | G. Fang, J. Gao, J. Lv, H. Jia, H. Li, W. Liu, G. Xie, Z. Chen, Y. Huang, Q. Yuan, X. Liu, X. Lin, S. Sun, H.-J. Qiu, Applied Catalysis B:Environmental, 2020, 268, 118431 |
109. | P. Edalati, Q. Wang, H. Razavi-Khosroshahi, M. Fuji, T. Ishihara, K. Edalati, Journal of Materials Chemistry A, 2020, 8, 3814 |
110. | H.-J. Qiu, G. Fang, Y. Wen, P. Liu, G. Xie, X. Liu, S. Sun, Journal of Materials Chemistry A, 2019, 7, 6499 |
111. | A. Sahasrabudhe, H. Dixit, R. Majee, S. Bhattacharyya, Nature Communications, 2018, 9, 2014 |
112. | S. D. Lacey, Q. Dong, Z. Huang, J. Luo, H. Xie, Z. Lin, D. J. Kirsch, V. Vattipalli, C. Povinelli, W. Fan, R. Shahbazian-Yassar, D. Wang, L. Hu, Nano Letters, 2019, 19, 5149 |
113. | Z. Jin, J. Lv, H. Jia, W. Liu, H. Li, Z. Chen, X. Lin, G. Xie, X. Liu, S. Sun, H.-J. Qiu, Small, 2019, 15, 1904180 |
114. | H. Tabassum, X. Yang, R. Zou, G. Wu, Chem Catalysis, 2022, 2, 1561 |
115. | Y. Li, W. Shan, M. J. Zachman, M. Wang, S. Hwang, H. Tabassum, J. Yang, X. Yang, S. Karakalos, Z. Feng, G. Wang, G. Wu, Angewandte Chemie International Edition, 2022, 61, e202205632 |
116. | S. Nellaiappan, N. K. Katiyar, R. Kumar, A. Parui, K. D. Malviya, K. G. Pradeep, A. K. Singh, S. Sharma, C. S. Tiwary, K. Biswas, ACS Catalysis, 2020, 10, 3658 |
117. | H. Tabassum, S. Mukherjee, J. Chen, D. Holiharimanana, S. Karakalos, X. Yang, S. Hwang, T. Zhang, B. Lu, M. Chen, Z. Tang, E. A. Kyriakidou, Q. Ge, G. Wu, Energy & Environmental Science, 2022, 15, 4190 |
118. | L. Spiridigliozzi, C. Ferone, R. Cioffi, G. Accardo, D. Frattini, G. Dell'Agli, Materials (Basel), 2020, 13, 558 |
119. | A. Sarkar, Q. Wang, A. Schiele, M. R. Chellali, S. S. Bhattacharya, D. Wang, T. Brezesinski, H. Hahn, L. Velasco, B. Breitung, Advanced Materials, 2019, 31, 1806236 |
120. | D. A. Vinnik, E. A. Trofimov, V. E. Zhivulin, S. A. Gudkova, O. V. Zaitseva, D. A. Zherebtsov, A. Y. Starikov, D. P. Sherstyuk, A. A. Amirov, A. V. Kalgin, S. V. Trukhanov, F. V. Podgornov, Nanomaterials (Basel), 2020, 10, 268 |
121. | M. Lim, Z. Rak, J. L. Braun, C. M. Rost, G. N. Kotsonis, P. E. Hopkins, J.-P. Maria, D. W. Brenner, Journal of Applied Physics, 2019, 125, 055105 |
122. | A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. de Biasi, C. Kübel, T. Brezesinski, S. S. Bhattacharya, H. Hahn, B. Breitung, Nature Communications, 2018, 9, 3400 |
123. | R. Djenadic, A. Sarkar, O. Clemens, C. Loho, M. Botros, V. S. K. Chakravadhanula, C. Kübel, S. S. Bhattacharya, A. S. Gandhi, H. Hahn, Materials Research Letters, 2017, 5, 102 |
124. | H. Chen, J. Fu, P. Zhang, H. Peng, C. W. Abney, K. Jie, X. Liu, M. Chi, S. Dai, Journal of Materials Chemistry A, 2018, 6, 11129 |
125. | A. Sarkar, C. Loho, L. Velasco, T. Thomas, S. S. Bhattacharya, H. Hahn, R. Djenadic, Dalton Transactions, 2017, 46, 12167 |
126. | K. Walczak, A. Plewa, C. Ghica, W. Zając, A. Trenczek-Zając, M. Zając, J. Toboła, J. Molenda, Energy Storage Materials, 2022, 47, 500 |
127. | J. Dąbrowa, M. Stygar, A. Mikuła, A. Knapik, K. Mroczka, W. Tejchman, M. Danielewski, M. Martin, Materials Letters, 2018, 216, 32 |
128. | W. Hong, F. Chen, Q. Shen, Y.-H. Han, W. G. Fahrenholtz, L. Zhang, Journal of the American Ceramic Society, 2019, 102, 2228 |
129. | H. Tabassum, C. Zhi, T. Hussain, T. Qiu, W. Aftab, R. Zou, Advanced Energy Materials, 2019, 9, 1901778 |
130. | H. Tabassum, C. Zhi, Y. Wu, R. Zhong, T. Hussain, T. Qiu, Y. Tang, Z. Liang, W. Guo, R. Zou, Chemical Engineering Journal, 2021, 411, 128420 |
131. | H. Tabassum, R. Zou, A. Mahmood, Z. Liang, Q. Wang, H. Zhang, S. Gao, C. Qu, W. Guo, S. Guo, Advanced materials, 2018, 30, 1705441 |
132. | A. Mahmood, S. Li, Z. Ali, H. Tabassum, B. Zhu, Z. Liang, W. Meng, W. Aftab, W. Guo, H. Zhang, M. Yousaf, S. Gao, R. Zou, Y. Zhao, Advanced Materials, 2019, 31, 1805430 |
133. | C. Zhao, F. Ding, Y. Lu, L. Chen, Y. S. Hu, Angewandte Chemie International Edition, 2020, 59, 264 |
134. | D. Bérardan, S. Franger, A. K. Meena, N. Dragoe, Journal of Materials Chemistry A, 2016, 4, 9536 |
135. | A. Sarkar, R. Djenadic, N. J. Usharani, K. P. Sanghvi, V. S. K. Chakravadhanula, A. S. Gandhi, H. Hahn, S. S. Bhattacharya, Journal of the European Ceramic Society, 2017, 37, 747 |
136. | X. Wang, X. Li, H. Fan, M. Miao, Y. Zhang, W. Guo, Y. Fu, Journal of Energy Chemistry, 2022, 67, 276 |
137. | L. Lin, K. Wang, A. Sarkar, C. Njel, G. Karkera, Q. Wang, R. Azmi, M. Fichtner, H. Hahn, S. Schweidler, B. Breitung, Advanced Energy Materials, 2022, 12, 2103090 |
138. | H. Li, H. Zhu, S. Zhang, N. Zhang, M. Du, Y. Chai, Small Structures, 2020, 1, 2000033 |
139. | X. Liu, X. Li, Y. Li, H. Zhang, Q. Jia, S. Zhang, W. Lei, EcoMat, 2022, e12261 |
140. | H. Tabassum, C. Qu, K. Cai, W. Aftab, Z. Liang, T. Qiu, A. Mahmood, W. Meng, R. Zou, Journal of Materials Chemistry A, 2018, 6, 21225 |
141. | X. Xu, Y. Du, C. Wang, Y. Guo, J. Zou, K. Zhou, Z. Zeng, Y. Liu, L. Li, Journal of Alloys and Compounds, 2020, 822, 153642 |
142. | K. Kong, J. Hyun, Y. Kim, W. Kim, D. Kim, Journal of Power Sources, 2019, 437, 226927 |
143. | M. S. Lal, R. Sundara, ACS applied materials & interfaces, 2019, 11, 30846 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Schematic illustration for the fabrication techniques of HEMs and Electrochemical properties.
a The variation in the total number of equiatomic compositions with the total number of principal elements. The inset illustrates the difference between the design of conventional alloys and high-entropy alloys on a ternary plot.[1] Copyright 2018, Elsevier. b Schematics of the atomic configuration of a multi-component alloy conforming to the ideal-solution model.[29] Copyright 2015, Elsevier. c The contour plot of ΔSmix (J/mol K) on a schematic ternary alloy system. The blue corner regions indicate the conventional alloys based on one or two principal elements, whereas the red center region indicates the ‘high-entropy’ region.[30] Copyright 2016, Elsevier. d The plot of the VEC versus ϕ for different HEAs. The FCC solid solution mainly forms around a VEC of 8.5, BCC around a VEC of 5, and HCP around a VEC of 2.8, each within a narrow band.[30] Copyright 2016, Elsevier.
a The groupings of different-phased HEAs based on their intrinsic root-mean-square (RMS) residual strains. The inset illustrates the atomic size alteration to accommodate close atomic packing atoms in the lattice of a multicomponent alloy, and the dashed cycles indicate the original atomic size.[30] Copyright 2016, Elsevier. b Strength versus ductility properties for low-SFE HEAs such as Fe40Mn27Ni26Co5Cr[45, 46] Fe32Mn30Ni30Co6Cr2, and FeCoNiCrMn are at room temperature and FeCoNiCrMn at 77 K, compared with other conventional alloys.[30] Copyright 2016, Elsevier.
a Strategy for evaluation of the intrinsic activity of multinary alloy NPs. synthesis of NPs by means of combinatorial co-sputtering into an ionic liquid under potential-assisted immobilization at an etched carbon.[58] Copyright 2013, Wiley-VCH. b Vacuum sputtering onto different liquids for obtaining bimetallic/trimetallic NPs/NCs with desired fine structures.[62] Copyrights 2018, Iopscience. c Upper left: schematic (not to scale) of the combinatorial co-deposition from two sputter targets into a cavity array substrate filled with IL. Upper right: Schematic of the proposed formation process of NPs in IL. Lower left: photo EDX screening for the four materials libraries.[63] Copyright 2016, American Chemical Society. d Sequential sputtering of Au followed by Pt to form a monolayer of Au core@Au/Pt alloy shell NPs functionalized on IL.[64] Copyright 2013, Wiley-VCH. e Schematic diagram of multitarget co-sputtering: three-dimensional view co-sputtering and f front view and the process of deposition.[65] Copyright 2018, Materials Research Society.
a General strategy of Laser Synthesis and Processing of Colloids (LSPC) in research on heterogeneous catalysis.[66] Copyright 2013, Wiley-VCH. b Qualitative representation of the laser-based synthesis of high-entropy alloy nanoparticles. Synthetic stages c ultrashort-pulsed laser irradiation of the bulk high-entropy alloy (HEA), the atomization/ionization of the bulk causing the formation of a plume, and subsequent nucleation and condensation of the ablated matter in the vapor phase of the liquid d and the colloidal high-entropy alloy nanoparticles electrostatically stabilized in ethanol. e Scanning electron microscope image (secondary electrons) of an ablation target near the border of an ablation area, elemental maps of Co, Cr, Fe, Mn, and Ni obtained by energy dispersive X-ray spectroscopy of a non-ablated target area f and scanning transmission electron microscopy image and elemental maps of Co, Cr, Fe, Mn, and Ni for a single nanoparticle, the laser ablation area is located on the left side of the image with all scale bars represent 25 nm.[67] Copyright 2013, Wiley-VCH.
a Au-Rh phase diagram showing the immiscibility between the solid phases. b Schematic of the synergistic effect in alloys versus linear/simple addition effect in the immiscible mixture.[68] Copyright 2013, Cell Press. c Schematic comparison of phase-separated heterostructures synthesized by a conventional slow reduction procedure (slow kinetics) versus solid-solution HEA-NPs synthesized by the CTS method (fast kinetics).[71] Copyright 2018, Science. d Thermal shock alloying process using a milliseconds-scale high-temperature synthesis. e High-entropy alloy CoMoFeCoNi (HEA-CoxMoy) nanoparticles, digital image of the samples before and during the thermal shock synthesis. f The intensity of the emitted light from the shock at different wavelengths. g Typical temperature profiles during the thermal shocks as determined from the emission intensities.[72] Copyright 2020, Nature. h The hybrid MD-MC simulation approach for forming an Ru-5 MEA-NP at
a Nodroplet-mediated electrodeposition overview for controlling NP stoichiometry and microstructure. Current transient corresponding to the collision of a single nanodroplet onto a carbon fiber UME (rUME = 4 μm) biased at −0.4 V vs. Ag/AgCl. Nanodroplet contents are fully (>98%) reduced within 100 ms, facilitating disordered co-deposition of various metal precursors. b Epresentation of a nanodroplet collision event highlighting the rapid NP formation at the water/substrate interface and the charge balance ensured by the transfer of TBA+ across the oil/water interface. c Amorphous microstructure is confirmed by a lack of crystallinity at high resolution and the presence of diffuse rings on the SAED pattern. d-f Orrelated ICP-MS and EDX results on Co0.5Ni0.5, Co0.25Ni0.75, and Co0.75Ni0.25 MG-NPs confirming precise control over NP stoichiometry.[82] Copyright 2013, Nature.
a, Schematic illustration of the sol–gel combustion process b, the FTIR pattern for the dried gel).[83] Copyright 2017, Nature, c, Schematic illustration of the sonochemical-based synthesis of HEPO- 5-NPs (BaSr(ZrHfTi)O3).[84] Copyright 2019, Wiley-VCH. The SPBCL-mediated synthesis of multimetallic NPs and a five-element library of unary and multimetallic NPs made via this technique, d, Scheme depicting the process: A polymer loaded with metal ion precursor is deposited onto a substrate in the shape of a hemispherical dome via dip-pen nanolithography, EDS mapping of e Unary NPs, f Binary NPs, g Ternary, h, Quaternary and i, Quinary NPs. [86] Copyright 2016, Science.
a, Schematic illustration of the proposed galvanic exchange, co-reduction, and dealloying pathways in the synthesis of HEA SNRs. b, HAADF-STEM image, EDS element mapping images, and high-resolution HAADF-STEM image of a senary HEA-PtPdIrRuAuAg SNR, c, HEA-PtPdIrRuAuRhAg SNR with the corresponding FFT pattern taken from the white dashed square.[4] Copyright 2022, American Chemical society. d, HAADF-STEM image, e, XRD pattern, f, Crystal structure of HEA nanowires.[88] Copyright 2021, Nature.
a Schematic exemplary illustration of correlations between CSS nanoparticle structure, its effect on the adsorption energy distribution pattern and the respective electrochemical response in the kinetic region.[92] Copyright 2019, Wiley-VCH. TEM image b-c and elemental maps of PtPdFeCoNi with uniform small size and alloy structure, inset is a high-resolution TEM image of PtPdFeCoNi. d-e Electrochemical analysis of PtPdRhNi, PtPdFeCoNi, and a control Pt catalyst for ORR.[95] Copyright 2020, PNAS.
a STEM images of the np-AlCuNiPtMn at two different magnifications is the corresponding HRTEM and SAED image (inset). Dark field STEM-EDS mapping of the quinary np-HEA. The red arrow indicates the formed thin surface oxides. b-c ORR polarization curves of these samples in O2-saturated 0.1 M KOH solution. d-e Free energy profiles of the ORR steps on the CuNiMnPt and the CuNiPt.[96] Copyright 2020, Elsevier. f Hydrodynamic polarization curves of the Pt75Co25, Pt70Pd20Co10 and Pt50Pd30Co20 samples synthesized by the MW-ST method and commercial Pt with the insets showing the Tafel plots.[97] Copyright 2010, Wiley-VCH. g HRTEM image of Pt18Ni26Fe15Co14Cu27 nanoparticles. h HER in 1 M KOH electrolyte, a CV curves and i HER polarization curves.[98] Copyright 2020, Nature.
STEM image of a HEA-NPs/carbon and b HEA-NPs/carbon-700 °C. c Schematic illustration of synthesis of HEA-NPs/carbon (PtAuPdRhRu supported on XC-72 carbon) catalysts and their application in HERs. d Polarization curves and e Tafel plots of HEA-NPs/carbon-700 °C, PtAuPdRh/carbon-700 °C, PtAuPd/carbon-700 °C, and commercial Pt/C (Pt loading = 20 wt%) catalysts in 1.0 M KOH.[105] Copyright 2019, Wiley-VCH.
a TEM images of the dealloyed senary np-HEA at different magnifications. b-d EASA and Pt or Pt+Pd+Au mass activities at 0.9 V and durability after different cycles in O2-saturated 0.1 M HClO4. e High-resolution TEM image of a PdCuFe/C-400 nanoparticle. Inset displays corresponding FFT pattern, f CV and g LSV curves of PdCuM/C-400 (M=non, Fe, Co), Pd/C, and Pt/C catalysts.[110] Copyright 2019, Royal Society of Chemistry.
a Electrocatalytic evaluation of a CoFeLaNiPt HEMG-NP electrocatalyst. Anodic polarization of the HEMG electrocatalyst and its individual components starting from the equilibrium potential of OER, 1.23 V vs. RHE.[82] Copyright 2019, Nature. b STEM images of the dealloyed np-AlNiCoIrMo at different magnifications and STEM-EDS mapping of the quinary np-HEA. c OER polarization and d Tafel curves of all these prepared samples and IrO2. Comparison of Ir mass activities at 1.5 V with literature data, e HER polarization, f corresponding Tafel curves of all these prepared samples and Pt/C. g Identical two-electrode system for overall water splitting, and h the long-term durability test of the np-AlNiCoIrMo sample at 1.52 V in 0.5 M H2SO4 solution.[113] Copyright 2019, Wiley-VCH.
a Schematic of the catalysis reaction demonstrated in current work. b X-ray-diffaraction pattern of HEA alloy NPs (AuAgPtPdCu nanoparticles). c Chemical homogeneity of Au, Ag, Pt, Pd and Cu.[116] Copyright 2019, American Chemical Society. d HAADF-STEM-EDS elemental mappings and Aberration-corrected HR-STEM images. e Polarization curves in H2-saturated 0.1 M KOH. f Tafel plots of f HEA SNWs/C.[88] Copyright 2021, Nature.
a, XRD patterns of HEO systems: b, R-HEO, c, F-HEO, and d, Reversible phase transformation as an indication of the entropy stabilization effect. e, XRD patterns of different types of R-MEOs. [119] Copyright 2019, Wiley-VCH.
a XRD of HEO, b Long-term cycling performance and Coulombic efficiency of R-HEO with nanometer-sized particles. c in-situ XRD and Specific capacity over 100 cycles and d the first lithiation profiles of different compounds.[133] Copyright 2018, Elsevier. e-f Rate performance test of nanometer-sized R-HEO with the specific current given in units of mA g−1.[119] Copyright 2018, Wiley-VCH.
a Stable capacity retention at 50 mA g‒1, while the materials without Zn and Cu reveal severe capacity degradation. The material without Co fails completely after 10 cycles. b Discharge (lithiation) profiles of the first cycle for the different compounds. c Operando XRD on TM-HEO, during the first full lithiation/delithiation cycle. The black lines with arrows indicate the as-prepared, fully lithiated and fully delithiated states as a function of time. d-e HRTEM and f EDX analysis of the active material and g SAED analysis for cycled TM-HEO, respectively.[122] Copyright 2019, Nature.
Schematic illustration of the a half-cell and b full-cell EC, c CV plots of the HEO−CNT nanocomposite-based fc-EC using the [BMIM][TFSI] electrolyte at different scan rates. d GD plots of HEO−CNT-based fc-EC using the [BMIM][TFSI] electrolyte at different current densities. e Corresponding Ragone plot and comparison with previous reports and f lighting one red LED and valuation at a different stage.[143] Copyright 2019, American Chemical Society.