Citation: | Hualin Ye, Yanguang Li. A perspective on sulfur-equivalent cathode materials for lithium-sulfur batteries[J]. Energy Lab, 2023, 1(1): 220003. doi: 10.54227/elab.20220003 |
Elemental sulfur, with low cost and high theoretical capacity, has attracted considerable research interest over the past decade, but its dependence on ether electrolytes with the formation of soluble polysulfides hinders its further application. The use of sulfur-equivalent materials based on covalently bonded sulfur opens a new way to develop polysulfide-free lithium-sulfur batteries through a direct solid-solid conversion pathway. They are also compatible with commercially more reliable carbonate electrolytes to replace the highly volatile ether electrolytes. As three typical types of sulfur-equivalent cathode materials, sulfurized carbons, sulfurized polymers, and metal polysulfides have emerged with great potentials to address the intrinsic issues associated with elemental sulfur cathode and enable truly high-energy-density lithium-sulfur batteries. This perspective attempts to provide insights on the structural, electrochemical reaction mechanism, and energy density analysis of these sulfur-equivalent cathode materials. Emphasis is focused on the current technical challenges of these sulfur-equivalent materials and possible solutions for their future development.
1. | X. Yu, A. Manthiram, Adv. Energy Sustainability Res., 2021, 2, 2000102 |
2. | Y. Liang, C. Z. Zhao, H. Yuan, Y. Chen, W. Zhang, J. Q. Huang, D. Yu, Y. Liu, M. M. Titirici, Y. L. Chueh, H. Yu, Q. Zhang, InfoMat, 2019, 1, 6 |
3. | H. Ye, Y. Li, Energy Fuels, 2021, 35, 7624 |
4. | Q. Pang, X. Liang, C. Y. Kwok, L. F. Nazar, Nat. Energy, 2016, 1, 16132 |
5. | J. Sun, T. Wang, Y. Gao, Z. Pan, R. Hu, J. Wang, InfoMat, 2022, 4, e12359 |
6. | H. Ye, Y. Li, InfoMat, 2022, 4, e12291 |
7. | X. Li, M. Banis, A. Lushington, X. Yang, Q. Sun, Y. Zhao, C. Liu, Q. Li, B. Wang, W. Xiao, C. Wang, M. Li, J. Liang, R. Li, Y. Hu, L. Goncharova, H. Zhang, T. K. Sham, X. Sun, Nat. Commun., 2018, 9, 4509 |
8. | S. Y. Qiu, C. Wang, L. L. Gu, K. X. Wang, X. T. Gao, J. Gao, Z. Jiang, J. Gu, X. D. Zhu, Dalton Trans., 2022, 51, 2855 |
9. | H. Ye, Y. Li, Nano Res. Energy, 2022, 1, e9120012 |
10. | Z. Wei, Y. Ren, J. Sokolowski, X. Zhu, G. Wu, InfoMat, 2020, 2, 483 |
11. | H. Ye, L. Ma, Y. Zhou, L. Wang, N. Han, F. Zhao, J. Deng, T. Wu, Y. Li, J. Lu, Proc. Natl. Acad. Sci., 2017, 114, 13091 |
12. | X.-T. Gao, X.-D. Zhu, L.-L. Gu, C. Wang, K.-N. Sun, Y.-L. Hou, Chem. Eng. J., 2019, 378, 122189 |
13. | H. Ye, J. Y. Lee, Small Methods, 2020, 4, 1900864 |
14. | S. Y. Qiu, C. Wang, Z. X. Jiang, L. S. Zhang, L. L. Gu, K. X. Wang, J. Gao, X. D. Zhu, G. Wu, Nanoscale, 2020, 12, 16678 |
15. | H. Li, Y. Li, L. Zhang, SusMat, 2022, 2, 34 |
16. | H. Ye, J. Sun, S. Zhang, H. Lin, T. Zhang, Q. Yao, J. Y. Lee, ACS Nano, 2019, 13, 14208 |
17. | H. Ye, M. Li, T. Liu, Y. Li, J. Lu, ACS Energy Lett., 2020, 5, 2234 |
18. | M. Zhao, B. Q. Li, X. Q. Zhang, J. Q. Huang, Q. Zhang, ACS Cent. Sci., 2020, 6, 1095 |
19. | C. Jin, O. Sheng, W. Zhang, J. Luo, H. Yuan, T. Yang, H. Huang, Y. Gan, Y. Xia, C. Liang, J. Zhang, X. Tao, Energy Storage Mater., 2018, 15, 218 |
20. | Y. Liu, Y. Elias, J. Meng, D. Aurbach, R. Zou, D. Xia, Q. Pang, Joule, 2021, 5, 2323 |
21. | H. Ye, J. Sun, Y. Zhao, J. Y. Lee, J. Energy Chem., 2022, 67, 585 |
22. | H. Ye, J. Sun, X. F. Lim, Y. Zhao, J. Y. Lee, Energy Storage Mater., 2021, 38, 338 |
23. | L.-L. Gu, J. Gao, C. Wang, S.-Y. Qiu, K.-X. Wang, X.-T. Gao, K.-N. Sun, P.-J. Zuo, X.-D. Zhu, J. Mater. Chem. A, 2020, 8, 20604 |
24. | A. Rafie, J. W. Kim, K. K. Sarode, V. Kalra, Energy Storage Mater., 2022, 50, 197 |
25. | W. Guo, Y. Fu, Energy Environ. Mater., 2018, 1, 20 |
26. | H. C. Chin, Carbon, 1981, 19, 175 |
27. | S. S. Zhang, Front. Energy Res., 2013, 1, 10 |
28. | C. Luo, E. Hu, K. J. Gaskell, X. Fan, T. Gao, C. Cui, S. Ghose, X. Q. Yang, C. Wang, Proc. Natl. Acad. Sci., 2020, 117, 14712 |
29. | J. Kim, D.-J. Lee, H.-G. Jung, Y.-K. Sun, J. Hassoun, B. Scrosati, Adv. Funct. Mater., 2013, 23, 1076 |
30. | D.-W. Wang, Q. Zeng, G. Zhou, L. Yin, F. Li, H.-M. Cheng, I. R. Gentle, G. Q. M. Lu, J. Mater. Chem. A, 2013, 1, 9382 |
31. | B. R. Puri, R. S. Hazra, Carbon, 1971, 9, 123 |
32. | J. Zhou, Y. Guo, C. Liang, J. Yang, J. Wang, Y. Nuli, Electrochim. Acta, 2018, 273, 127 |
33. | C. Lai, X. P. Gao, B. Zhang, T. Y. Yan, Z. Zhou, J. Phys. Chem. C, 2009, 113, 4712 |
34. | B. Duan, W. Wang, A. Wang, K. Yuan, Z. Yu, H. Zhao, J. Qiu, Y. Yang, J. Mater. Chem. A, 2013, 1, 13261 |
35. | Y. Xu, Y. Wen, Y. Zhu, K. Gaskell, K. A. Cychosz, B. Eichhorn, K. Xu, C. Wang, Adv. Funct. Mater., 2015, 25, 4312 |
36. | Z. Li, L. Yuan, Z. Yi, Y. Sun, Y. Liu, Y. Jiang, Y. Shen, Y. Xin, Z. Zhang, Y. Huang, Adv. Energy Mater., 2014, 4, 1301473 |
37. | B. Zhang, X. Qin, G. R. Li, X. P. Gao, Energy Environ. Sci., 2010, 3, 1531 |
38. | H. Kang, H. Kim, M. J. Park, Adv. Energy Mater., 2018, 8, 1802423 |
39. | S. Xin, L. Gu, N. H. Zhao, Y. X. Yin, L. J. Zhou, Y. G. Guo, L. J. Wan, J. Am. Chem. Soc., 2012, 134, 18510 |
40. | W. Zhang, D. Qiao, J. Pan, Y. Cao, H. Yang, X. Ai, Electrochim. Acta, 2013, 87, 497 |
41. | E. Markevich, G. Salitra, A. Rosenman, Y. Talyosef, F. Chesneau, D. Aurbach, J. Mater. Chem. A, 2015, 3, 19873 |
42. | L. Wang, Y. Lin, S. DeCarlo, Y. Wang, K. Leung, Y. Qi, K. Xu, C. Wang, B. W. Eichhorn, Chem. Mater., 2020, 32, 3765 |
43. | Z. Chen, Y. Zhao, F. Mo, Z. Huang, X. Li, D. Wang, G. Liang, Q. Yang, A. Chen, Q. Li, L. Ma, Y. Guo, C. Zhi, Small Struct., 2020, 1, 2000005 |
44. | A. Abouimrane, D. Dambournet, K. W. Chapman, P. J. Chupas, W. Weng, K. Amine, J. Am. Chem. Soc., 2012, 134, 4505 |
45. | X. Li, J. Liang, K. Zhang, Z. Hou, W. Zhang, Y. Zhu, Y. Qian, Energy Environ. Sci., 2015, 8, 3181 |
46. | F. Sun, B. Zhang, H. Tang, Z. Yue, X. Li, C. Yin, L. Zhou, J. Mater. Chem. A, 2018, 6, 10104 |
47. | J. Fanous, M. Wegner, J. Grimminger, Ä. Andresen, M. R. Buchmeiser, Chem. Mater., 2011, 23, 5024 |
48. | X. Yu, J. Xie, J. Yang, H. Huang, K. Wang, Z. Wen, J. Electroanal. Chem., 2004, 573, 121 |
49. | H. Yang, J. Chen, J. Yang, J. Wang, Angew. Chem. , Int. Ed., 2020, 59, 7306 |
50. | J. Fanous, M. Wegner, J. Grimminger, M. Rolff, M. B. M. Spera, M. Tenzer, M. R. Buchmeiser, J. Mater. Chem., 2012, 22, 23240 |
51. | S. Wei, L. Ma, K. E. Hendrickson, Z. Tu, L. A. Archer, J. Am. Chem. Soc., 2015, 137, 12143 |
52. | X. Yu, J. Xie, Y. Li, H. Huang, C. Lai, K. Wang, J. Power Sources, 2005, 146, 335 |
53. | L. Wang, X. He, J. Li, J. Gao, J. Guo, C. Jiang, C. Wan, J. Mater. Chem., 2012, 22, 22077 |
54. | W. Wang, Z. Cao, G. A. Elia, Y. Wu, W. Wahyudi, E. Abou-Hamad, A.-H. Emwas, L. Cavallo, L.-J. Li, J. Ming, ACS Energy Lett., 2018, 3, 2899 |
55. | X. Wang, Y. Qian, L. Wang, H. Yang, H. Li, Y. Zhao, T. Liu, Adv. Funct. Mater., 2019, 29, 1902929 |
56. | Z.-Q. Jin, Y.-G. Liu, W.-K. Wang, A.-B. Wang, B.-W. Hu, M. Shen, T. Gao, P.-C. Zhao, Y.-S. Yang, Energy Storage Mater., 2018, 14, 272 |
57. | L. Yin, J. Wang, F. Lin, J. Yang, Y. Nuli, Energy Environ. Sci., 2012, 5, 6966 |
58. | B. Liu, R. Fang, D. Xie, W. Zhang, H. Huang, Y. Xia, X. Wang, X. Xia, J. Tu, Energy Environ. Mater., 2018, 1, 196 |
59. | X. Chen, L. Peng, L. Wang, J. Yang, Z. Hao, J. Xiang, K. Yuan, Y. Huang, B. Shan, L. Yuan, J. Xie, Nat. Commun., 2019, 10, 1021 |
60. | B. He, Z. Rao, Z. Cheng, D. Liu, D. He, J. Chen, Z. Miao, L. Yuan, Z. Li, Y. Huang, Adv. Energy Mater., 2021, 11, 2003690 |
61. | M. Jiang, K. Wang, S. Gao, R. Wang, J. Han, J. Yan, S. Cheng, K. Jiang, ChemElectroChem, 2019, 6, 1365 |
62. | R. Zou, W. Liu, F. Ran, InfoMat, 2022, 4, e12319 |
63. | C.-H. Chang, A. Manthiram, ACS Energy Lett., 2018, 3, 72 |
64. | R. Fang, J. Xu, D.-W. Wang, Energy Environ. Sci., 2020, 13, 432 |
65. | P. T. Dirlam, A. G. Simmonds, R. C. Shallcross, K. J. Arrington, W. J. Chung, J. J. Griebel, L. J. Hill, R. S. Glass, K. Char, J. Pyun, ACS Macro Lett., 2015, 4, 111 |
66. | B. Oschmann, J. Park, C. Kim, K. Char, Y.-E. Sung, R. Zentel, Chem. Mater., 2015, 27, 7011 |
67. | J. Chen, H. Lu, X. Zhang, Y. Zhang, J. Yang, Y. Nuli, Y. Huang, J. Wang, Energy Storage Mater., 2022, 50, 387 |
68. | L. Wang, X. He, J. Li, M. Chen, J. Gao, C. Jiang, Electrochim. Acta, 2012, 72, 114 |
69. | J. Chen, H. Zhang, H. Yang, J. Lei, A. Naveed, J. Yang, Y. Nuli, J. Wang, Energy Storage Mater., 2020, 27, 307 |
70. | W. J. Chung, J. J. Griebel, E. T. Kim, H. Yoon, A. G. Simmonds, H. J. Ji, P. T. Dirlam, R. S. Glass, J. J. Wie, N. A. Nguyen, B. W. Guralnick, J. Park, A. Somogyi, P. Theato, M. E. Mackay, Y. E. Sung, K. Char, J. Pyun, Nat. Chem., 2013, 5, 518 |
71. | A. Bhargav, M. E. Bell, J. Karty, Y. Cui, Y. Fu, ACS Appl. Mater. Interfaces, 2018, 10, 21084 |
72. | M. Wu, Y. Cui, A. Bhargav, Y. Losovyj, A. Siegel, M. Agarwal, Y. Ma, Y. Fu, Angew. Chem. , Int. Ed., 2016, 55, 10027 |
73. | E. D. Grayfer, E. M. Pazhetnov, M. N. Kozlova, S. B. Artemkina, V. E. Fedorov, ChemSusChem, 2017, 10, 4805 |
74. | X. Fang, X. Guo, Y. Mao, C. Hua, L. Shen, Y. Hu, Z. Wang, F. Wu, L. Chen, Chem. Asian J., 2012, 7, 1013 |
75. | M. S. Whittingham, Prog. Solid State Chem., 1978, 12, 41 |
76. | A. Sakuda, K. Ohara, K. Fukuda, K. Nakanishi, T. Kawaguchi, H. Arai, Y. Uchimoto, T. Ohta, E. Matsubara, Z. Ogumi, T. Okumura, H. Kobayashi, H. Kageyama, M. Shikano, H. Sakaebe, T. Takeuchi, J. Am. Chem. Soc., 2017, 139, 8796 |
77. | X. Li, J. Liang, W. Li, J. Luo, X. Li, X. Yang, Y. Hu, Q. Xiao, W. Zhang, R. Li, T.-K. Sham, X. Sun, Chem. Mater., 2019, 31, 2002 |
78. | S. S. Zhang, J. Mater. Chem. A, 2015, 3, 7689 |
79. | Y. Chen, J. Li, Z. Lei, Y. Huo, L. Yang, S. Zeng, H. Ding, Y. Qin, Y. Jie, F. Huang, Q. Li, J. Zhu, R. Cao, G. Zhang, S. Jiao, D. Xu, Adv. Energy Mater., 2020, 10, 1903401 |
80. | S. Wu, Y. Du, S. Sun, Chem. Eng. J., 2017, 307, 189 |
81. | P. Li, L. Ma, T. Wu, H. Ye, J. Zhou, F. Zhao, N. Han, Y. Wang, Y. Wu, Y. Li, J. Lu, Adv. Energy Mater., 2018, 8, 1800624 |
82. | A. Yano, K. Yoshii, T. Takeuchi, H. Sakaebe, Electrochemistry, 2021, 89, 167 |
83. | K. Koganei, A. Sakuda, T. Takeuchi, H. Sakaebe, H. Kobayashi, H. Kageyama, T. Kawaguchi, H. Kiuchi, K. Nakanishi, M. Yoshimura, T. Ohta, T. Fukunaga, E. Matsubara, Solid State Ionics, 2018, 323, 32 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Structural evolution of elemental sulfur and its covalent compounds with carbons, polymers, and metals as sulfur-equivalent materials.
Comparison of charge-discharge curves of a conventional sulfur cathode in ether-based electrolytes and b sulfur-equivalent cathode material in carbonate electrolytes. [7] Copyright 2018, Nature Publishing Group.
a, Schematic diagram of the preparation of sulfurized carbon. [28] Copyright 2020, National Academy of Sciences. b, Structural evolution of sulfurized polyacrylonitrile in Li–S batteries. [39] Copyright 2018, American Chemical Society.
Proposed a structures and b reaction mechanisms of SPAN. [51] Copyright 2015, American Chemical Society. c, Structure models of radical SPAN and ionic SPAN. [54] Copyright 2015, American Chemical Society. d, Proposed two-electron reaction pathway of SPAN. [55] Copyright 2019, Wiley.
Schematic comparison of the reaction pathway between Li-SAN and Li-SexSPAN batteries.[59] Copyright 2019, Nature Publishing Group.
a, XRD pattern and b morphology of amorphous MoS3. c, Fourier-transformed Mo K-edge EXAFS spectrum and d X-ray absorption near-edge structure spectrum of MoS3 during lithiation and delithiation. [11] Copyright 2017, National Academy of Science. Schematic local structures of e TiS4 and f Li4TiS4. [76] Copyright 2017, American Chemical Society.
Voltage versus capacity of sulfurized carbon and sulfurized polyacrylonitrile in comparison with various metal oxides and polysulfides.