Hualin Ye, Yanguang Li. A perspective on sulfur-equivalent cathode materials for lithium-sulfur batteries[J]. Energy Lab, 2023, 1(1): 220003. doi: 10.54227/elab.20220003
Citation: Hualin Ye, Yanguang Li. A perspective on sulfur-equivalent cathode materials for lithium-sulfur batteries[J]. Energy Lab, 2023, 1(1): 220003. doi: 10.54227/elab.20220003


A perspective on sulfur-equivalent cathode materials for lithium-sulfur batteries

More Information
  • Corresponding author:
  • Elemental sulfur, with low cost and high theoretical capacity, has attracted considerable research interest over the past decade, but its dependence on ether electrolytes with the formation of soluble polysulfides hinders its further application. The use of sulfur-equivalent materials based on covalently bonded sulfur opens a new way to develop polysulfide-free lithium-sulfur batteries through a direct solid-solid conversion pathway. They are also compatible with commercially more reliable carbonate electrolytes to replace the highly volatile ether electrolytes. As three typical types of sulfur-equivalent cathode materials, sulfurized carbons, sulfurized polymers, and metal polysulfides have emerged with great potentials to address the intrinsic issues associated with elemental sulfur cathode and enable truly high-energy-density lithium-sulfur batteries. This perspective attempts to provide insights on the structural, electrochemical reaction mechanism, and energy density analysis of these sulfur-equivalent cathode materials. Emphasis is focused on the current technical challenges of these sulfur-equivalent materials and possible solutions for their future development.

  • 加载中
  • Hualin Ye received his M.S. degree from the Institute of Functional Nano & Soft Materials (FUNSOM) at Soochow University and PhD degree at National University of Singapore. His current research focuses on the mechanistic understanding of sulfur conversion chemistry and structural design of the sulfur cathode for metal–sulfur batteries.
    Yanguang Li is a professor at Soochow University. He earned his PhD degree in chemistry at The Ohio State University in 2010 and completed his postdoctoral training at Stanford University in 2013. His research focuses on the development of nanostructured materials for energy applications, including batteries and electrocatalysis.
  • 1. X. Yu, A. Manthiram, Adv. Energy Sustainability Res., 2021, 2, 2000102
    2. Y. Liang, C. Z. Zhao, H. Yuan, Y. Chen, W. Zhang, J. Q. Huang, D. Yu, Y. Liu, M. M. Titirici, Y. L. Chueh, H. Yu, Q. Zhang, InfoMat, 2019, 1, 6
    3. H. Ye, Y. Li, Energy Fuels, 2021, 35, 7624
    4. Q. Pang, X. Liang, C. Y. Kwok, L. F. Nazar, Nat. Energy, 2016, 1, 16132
    5. J. Sun, T. Wang, Y. Gao, Z. Pan, R. Hu, J. Wang, InfoMat, 2022, 4, e12359
    6. H. Ye, Y. Li, InfoMat, 2022, 4, e12291
    7. X. Li, M. Banis, A. Lushington, X. Yang, Q. Sun, Y. Zhao, C. Liu, Q. Li, B. Wang, W. Xiao, C. Wang, M. Li, J. Liang, R. Li, Y. Hu, L. Goncharova, H. Zhang, T. K. Sham, X. Sun, Nat. Commun., 2018, 9, 4509
    8. S. Y. Qiu, C. Wang, L. L. Gu, K. X. Wang, X. T. Gao, J. Gao, Z. Jiang, J. Gu, X. D. Zhu, Dalton Trans., 2022, 51, 2855
    9. H. Ye, Y. Li, Nano Res. Energy, 2022, 1, e9120012
    10. Z. Wei, Y. Ren, J. Sokolowski, X. Zhu, G. Wu, InfoMat, 2020, 2, 483
    11. H. Ye, L. Ma, Y. Zhou, L. Wang, N. Han, F. Zhao, J. Deng, T. Wu, Y. Li, J. Lu, Proc. Natl. Acad. Sci., 2017, 114, 13091
    12. X.-T. Gao, X.-D. Zhu, L.-L. Gu, C. Wang, K.-N. Sun, Y.-L. Hou, Chem. Eng. J., 2019, 378, 122189
    13. H. Ye, J. Y. Lee, Small Methods, 2020, 4, 1900864
    14. S. Y. Qiu, C. Wang, Z. X. Jiang, L. S. Zhang, L. L. Gu, K. X. Wang, J. Gao, X. D. Zhu, G. Wu, Nanoscale, 2020, 12, 16678
    15. H. Li, Y. Li, L. Zhang, SusMat, 2022, 2, 34
    16. H. Ye, J. Sun, S. Zhang, H. Lin, T. Zhang, Q. Yao, J. Y. Lee, ACS Nano, 2019, 13, 14208
    17. H. Ye, M. Li, T. Liu, Y. Li, J. Lu, ACS Energy Lett., 2020, 5, 2234
    18. M. Zhao, B. Q. Li, X. Q. Zhang, J. Q. Huang, Q. Zhang, ACS Cent. Sci., 2020, 6, 1095
    19. C. Jin, O. Sheng, W. Zhang, J. Luo, H. Yuan, T. Yang, H. Huang, Y. Gan, Y. Xia, C. Liang, J. Zhang, X. Tao, Energy Storage Mater., 2018, 15, 218
    20. Y. Liu, Y. Elias, J. Meng, D. Aurbach, R. Zou, D. Xia, Q. Pang, Joule, 2021, 5, 2323
    21. H. Ye, J. Sun, Y. Zhao, J. Y. Lee, J. Energy Chem., 2022, 67, 585
    22. H. Ye, J. Sun, X. F. Lim, Y. Zhao, J. Y. Lee, Energy Storage Mater., 2021, 38, 338
    23. L.-L. Gu, J. Gao, C. Wang, S.-Y. Qiu, K.-X. Wang, X.-T. Gao, K.-N. Sun, P.-J. Zuo, X.-D. Zhu, J. Mater. Chem. A, 2020, 8, 20604
    24. A. Rafie, J. W. Kim, K. K. Sarode, V. Kalra, Energy Storage Mater., 2022, 50, 197
    25. W. Guo, Y. Fu, Energy Environ. Mater., 2018, 1, 20
    26. H. C. Chin, Carbon, 1981, 19, 175
    27. S. S. Zhang, Front. Energy Res., 2013, 1, 10
    28. C. Luo, E. Hu, K. J. Gaskell, X. Fan, T. Gao, C. Cui, S. Ghose, X. Q. Yang, C. Wang, Proc. Natl. Acad. Sci., 2020, 117, 14712
    29. J. Kim, D.-J. Lee, H.-G. Jung, Y.-K. Sun, J. Hassoun, B. Scrosati, Adv. Funct. Mater., 2013, 23, 1076
    30. D.-W. Wang, Q. Zeng, G. Zhou, L. Yin, F. Li, H.-M. Cheng, I. R. Gentle, G. Q. M. Lu, J. Mater. Chem. A, 2013, 1, 9382
    31. B. R. Puri, R. S. Hazra, Carbon, 1971, 9, 123
    32. J. Zhou, Y. Guo, C. Liang, J. Yang, J. Wang, Y. Nuli, Electrochim. Acta, 2018, 273, 127
    33. C. Lai, X. P. Gao, B. Zhang, T. Y. Yan, Z. Zhou, J. Phys. Chem. C, 2009, 113, 4712
    34. B. Duan, W. Wang, A. Wang, K. Yuan, Z. Yu, H. Zhao, J. Qiu, Y. Yang, J. Mater. Chem. A, 2013, 1, 13261
    35. Y. Xu, Y. Wen, Y. Zhu, K. Gaskell, K. A. Cychosz, B. Eichhorn, K. Xu, C. Wang, Adv. Funct. Mater., 2015, 25, 4312
    36. Z. Li, L. Yuan, Z. Yi, Y. Sun, Y. Liu, Y. Jiang, Y. Shen, Y. Xin, Z. Zhang, Y. Huang, Adv. Energy Mater., 2014, 4, 1301473
    37. B. Zhang, X. Qin, G. R. Li, X. P. Gao, Energy Environ. Sci., 2010, 3, 1531
    38. H. Kang, H. Kim, M. J. Park, Adv. Energy Mater., 2018, 8, 1802423
    39. S. Xin, L. Gu, N. H. Zhao, Y. X. Yin, L. J. Zhou, Y. G. Guo, L. J. Wan, J. Am. Chem. Soc., 2012, 134, 18510
    40. W. Zhang, D. Qiao, J. Pan, Y. Cao, H. Yang, X. Ai, Electrochim. Acta, 2013, 87, 497
    41. E. Markevich, G. Salitra, A. Rosenman, Y. Talyosef, F. Chesneau, D. Aurbach, J. Mater. Chem. A, 2015, 3, 19873
    42. L. Wang, Y. Lin, S. DeCarlo, Y. Wang, K. Leung, Y. Qi, K. Xu, C. Wang, B. W. Eichhorn, Chem. Mater., 2020, 32, 3765
    43. Z. Chen, Y. Zhao, F. Mo, Z. Huang, X. Li, D. Wang, G. Liang, Q. Yang, A. Chen, Q. Li, L. Ma, Y. Guo, C. Zhi, Small Struct., 2020, 1, 2000005
    44. A. Abouimrane, D. Dambournet, K. W. Chapman, P. J. Chupas, W. Weng, K. Amine, J. Am. Chem. Soc., 2012, 134, 4505
    45. X. Li, J. Liang, K. Zhang, Z. Hou, W. Zhang, Y. Zhu, Y. Qian, Energy Environ. Sci., 2015, 8, 3181
    46. F. Sun, B. Zhang, H. Tang, Z. Yue, X. Li, C. Yin, L. Zhou, J. Mater. Chem. A, 2018, 6, 10104
    47. J. Fanous, M. Wegner, J. Grimminger, Ä. Andresen, M. R. Buchmeiser, Chem. Mater., 2011, 23, 5024
    48. X. Yu, J. Xie, J. Yang, H. Huang, K. Wang, Z. Wen, J. Electroanal. Chem., 2004, 573, 121
    49. H. Yang, J. Chen, J. Yang, J. Wang, Angew. Chem. , Int. Ed., 2020, 59, 7306
    50. J. Fanous, M. Wegner, J. Grimminger, M. Rolff, M. B. M. Spera, M. Tenzer, M. R. Buchmeiser, J. Mater. Chem., 2012, 22, 23240
    51. S. Wei, L. Ma, K. E. Hendrickson, Z. Tu, L. A. Archer, J. Am. Chem. Soc., 2015, 137, 12143
    52. X. Yu, J. Xie, Y. Li, H. Huang, C. Lai, K. Wang, J. Power Sources, 2005, 146, 335
    53. L. Wang, X. He, J. Li, J. Gao, J. Guo, C. Jiang, C. Wan, J. Mater. Chem., 2012, 22, 22077
    54. W. Wang, Z. Cao, G. A. Elia, Y. Wu, W. Wahyudi, E. Abou-Hamad, A.-H. Emwas, L. Cavallo, L.-J. Li, J. Ming, ACS Energy Lett., 2018, 3, 2899
    55. X. Wang, Y. Qian, L. Wang, H. Yang, H. Li, Y. Zhao, T. Liu, Adv. Funct. Mater., 2019, 29, 1902929
    56. Z.-Q. Jin, Y.-G. Liu, W.-K. Wang, A.-B. Wang, B.-W. Hu, M. Shen, T. Gao, P.-C. Zhao, Y.-S. Yang, Energy Storage Mater., 2018, 14, 272
    57. L. Yin, J. Wang, F. Lin, J. Yang, Y. Nuli, Energy Environ. Sci., 2012, 5, 6966
    58. B. Liu, R. Fang, D. Xie, W. Zhang, H. Huang, Y. Xia, X. Wang, X. Xia, J. Tu, Energy Environ. Mater., 2018, 1, 196
    59. X. Chen, L. Peng, L. Wang, J. Yang, Z. Hao, J. Xiang, K. Yuan, Y. Huang, B. Shan, L. Yuan, J. Xie, Nat. Commun., 2019, 10, 1021
    60. B. He, Z. Rao, Z. Cheng, D. Liu, D. He, J. Chen, Z. Miao, L. Yuan, Z. Li, Y. Huang, Adv. Energy Mater., 2021, 11, 2003690
    61. M. Jiang, K. Wang, S. Gao, R. Wang, J. Han, J. Yan, S. Cheng, K. Jiang, ChemElectroChem, 2019, 6, 1365
    62. R. Zou, W. Liu, F. Ran, InfoMat, 2022, 4, e12319
    63. C.-H. Chang, A. Manthiram, ACS Energy Lett., 2018, 3, 72
    64. R. Fang, J. Xu, D.-W. Wang, Energy Environ. Sci., 2020, 13, 432
    65. P. T. Dirlam, A. G. Simmonds, R. C. Shallcross, K. J. Arrington, W. J. Chung, J. J. Griebel, L. J. Hill, R. S. Glass, K. Char, J. Pyun, ACS Macro Lett., 2015, 4, 111
    66. B. Oschmann, J. Park, C. Kim, K. Char, Y.-E. Sung, R. Zentel, Chem. Mater., 2015, 27, 7011
    67. J. Chen, H. Lu, X. Zhang, Y. Zhang, J. Yang, Y. Nuli, Y. Huang, J. Wang, Energy Storage Mater., 2022, 50, 387
    68. L. Wang, X. He, J. Li, M. Chen, J. Gao, C. Jiang, Electrochim. Acta, 2012, 72, 114
    69. J. Chen, H. Zhang, H. Yang, J. Lei, A. Naveed, J. Yang, Y. Nuli, J. Wang, Energy Storage Mater., 2020, 27, 307
    70. W. J. Chung, J. J. Griebel, E. T. Kim, H. Yoon, A. G. Simmonds, H. J. Ji, P. T. Dirlam, R. S. Glass, J. J. Wie, N. A. Nguyen, B. W. Guralnick, J. Park, A. Somogyi, P. Theato, M. E. Mackay, Y. E. Sung, K. Char, J. Pyun, Nat. Chem., 2013, 5, 518
    71. A. Bhargav, M. E. Bell, J. Karty, Y. Cui, Y. Fu, ACS Appl. Mater. Interfaces, 2018, 10, 21084
    72. M. Wu, Y. Cui, A. Bhargav, Y. Losovyj, A. Siegel, M. Agarwal, Y. Ma, Y. Fu, Angew. Chem. , Int. Ed., 2016, 55, 10027
    73. E. D. Grayfer, E. M. Pazhetnov, M. N. Kozlova, S. B. Artemkina, V. E. Fedorov, ChemSusChem, 2017, 10, 4805
    74. X. Fang, X. Guo, Y. Mao, C. Hua, L. Shen, Y. Hu, Z. Wang, F. Wu, L. Chen, Chem. Asian J., 2012, 7, 1013
    75. M. S. Whittingham, Prog. Solid State Chem., 1978, 12, 41
    76. A. Sakuda, K. Ohara, K. Fukuda, K. Nakanishi, T. Kawaguchi, H. Arai, Y. Uchimoto, T. Ohta, E. Matsubara, Z. Ogumi, T. Okumura, H. Kobayashi, H. Kageyama, M. Shikano, H. Sakaebe, T. Takeuchi, J. Am. Chem. Soc., 2017, 139, 8796
    77. X. Li, J. Liang, W. Li, J. Luo, X. Li, X. Yang, Y. Hu, Q. Xiao, W. Zhang, R. Li, T.-K. Sham, X. Sun, Chem. Mater., 2019, 31, 2002
    78. S. S. Zhang, J. Mater. Chem. A, 2015, 3, 7689
    79. Y. Chen, J. Li, Z. Lei, Y. Huo, L. Yang, S. Zeng, H. Ding, Y. Qin, Y. Jie, F. Huang, Q. Li, J. Zhu, R. Cao, G. Zhang, S. Jiao, D. Xu, Adv. Energy Mater., 2020, 10, 1903401
    80. S. Wu, Y. Du, S. Sun, Chem. Eng. J., 2017, 307, 189
    81. P. Li, L. Ma, T. Wu, H. Ye, J. Zhou, F. Zhao, N. Han, Y. Wang, Y. Wu, Y. Li, J. Lu, Adv. Energy Mater., 2018, 8, 1800624
    82. A. Yano, K. Yoshii, T. Takeuchi, H. Sakaebe, Electrochemistry, 2021, 89, 167
    83. K. Koganei, A. Sakuda, T. Takeuchi, H. Sakaebe, H. Kobayashi, H. Kageyama, T. Kawaguchi, H. Kiuchi, K. Nakanishi, M. Yoshimura, T. Ohta, T. Fukunaga, E. Matsubara, Solid State Ionics, 2018, 323, 32
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索



Article Metrics

Article views(2356) PDF downloads(438) Citation(0)

Other Articles By Authors

Article Contents



    DownLoad:  Full-Size Img  PowerPoint