Citation: | Yi Yang, Lei Xu, Chong Yan, Jiaqi Huang, Qiang Zhang. Towards the intercalation and lithium plating mechanism for high safety and fast-charging lithium-ion batteries: a review[J]. Energy Lab, 2023, 1(1): 220011. doi: 10.54227/elab.20220011 |
The ever-increasing demand of portable electronics and electric vehicles has consistently promoted the development of lithium-ion batteries (LIBs) in the direction of higher energy density, higher safety, and faster charging. However, present high-energy LIBs are insufficient to sustain extra-fast power input without adverse consequences, which is mainly affected by the lithium (Li) plating on graphite electrode. The goal of this review is to enable graphite anode to support higher current and improve safety by ameliorating undesired Li plating from fundamentals and detections. Hence, the interaction, containing solid electrolyte interphase formation, Li+ intercalation/plating behavior, between graphite and Li+ be discussed in depth. Besides, the cognitive process of Li+ intercalation/plating kinetics as well as the inner mechanisms of Li plating especially in 3 extreme conditions (high state-of-charge, high charging-rate, and low temperature) are highly desirable to investigate Li plating comprehensively. Meanwhile, issues induced by Li plating, detection methods of Li deposition and knowledge gaps are identified for the follow-up research directions of Li plating in LIBs.
1. | R. M. Dell, Solid State Ionics, 2000, 134, 139 |
2. | X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Chem. Rev., 2017, 117, 10403 |
3. | G. N. Lewis, F. G. Keyes, J. Am. Chem. Soc., 1913, 35, 340 |
4. | M. Whittingham, Science, 1976, 192, 1126 |
5. | K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, Mater. Res. Bull., 1980, 15, 783 |
6. | M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater., 2018, 30, 1800561 |
7. | J. Liu, Z. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. Yang, X.-Q. Yang, J.-G. Zhang, Nat. Energy, 2019, 4, 180 |
8. | M. Winter, B. Barnett, K. Xu, Chem. Rev., 2018, 118, 11433 |
9. | C. Yan, R. Xu, Y. Xiao, J. F. Ding, L. Xu, B. Q. Li, J. Q. Huang, Adv. Funct. Mater., 2020, 30, 1909887 |
10. | Y. Yang, C. Yan, J. Q. Huang, Acta Phys. Chim. Sin., 2021, 37, 2010076 |
11. | A. Yoshino, Angew. Chem., Int. Ed., 2012, 51, 5798 |
12. | J. Deng, C. Bae, A. Denlinger, T. Miller, Joule, 2020, 4, 511 |
13. | R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Nat. Energy, 2018, 3, 267 |
14. | Y. X. Yao, X. Chen, C. Yan, X. Q. Zhang, W. L. Cai, J. Q. Huang, Q. Zhang, Angew. Chem., Int. Ed., 2021, 60, 4090 |
15. | X. Zeng, M. Li, D. Abd El-Hady, W. Alshitari, A. S. Al-Bogami, J. Lu, K. Amine, Adv. Energy Mater., 2019, 9, 1900161 |
16. | Q. Zhao, S. Stalin, C.-Z. Zhao, L. A. Archer, Nat. Rev. Mater., 2020, 5, 229 |
17. | G.-L. Zhu, C.-Z. Zhao, J.-Q. Huang, C. He, J. Zhang, S. Chen, L. Xu, H. Yuan, Q. Zhang, Small, 2019, 15, 1805389 |
18. | F. Liao, E. Molin, B. van Wee, Trans. Rev., 2016, 37, 252 |
19. | A. Tomaszewska, Z. Chu, X. Feng, S. O'Kane, X. Liu, J. Chen, C. Ji, E. Endler, R. Li, L. Liu, Y. Li, S. Zheng, S. Vetterlein, M. Gao, J. Du, M. Parkes, M. Ouyang, M. Marinescu, G. Offer, B. Wu, eTrans., 2019, 1, 100011 |
20. | W. Xie, X. Liu, R. He, Y. Li, X. Gao, X. Li, Z. Peng, S. Feng, X. Feng, S. Yang, J. Energy Storage, 2020, 32, 101837 |
21. | N. Piao, X. Gao, H. Yang, Z. Guo, G. Hu, H.-M. Cheng, F. Li, eTrans., 2022, 11, 100145 |
22. | X. Han, L. Lu, Y. Zheng, X. Feng, Z. Li, J. Li, M. Ouyang, eTrans., 2019, 1, 100005 |
23. | G. Zhang, X. Wei, S. Chen, J. Zhu, G. Han, H. Dai, ACS Appl. Energy Mater., 2021, 4, 12858 |
24. | T. Ma, S. Wu, F. Wang, J. Lacap, C. Lin, S. Liu, M. Wei, W. Hao, Y. Wang, J. W. Park, ACS Appl. Mater. Inter., 2020, 12, 56086 |
25. | W. Cai, C. Yan, Y.-X. Yao, L. Xu, X.-R. Chen, J.-Q. Huang, Q. Zhang, Angew. Chem., Int. Ed., 2021, 60, 13007 |
26. | W. Cai, Y. X. Yao, G. L. Zhu, C. Yan, L. L. Jiang, C. He, J. Q. Huang, Q. Zhang, Chem. Soc. Rev., 2020, 49, 3806 |
27. | D. Hu, L. Chen, J. Tian, Y. Su, N. Li, G. Chen, Y. Hu, Y. Dou, S. Chen, F. Wu, Chin. J. Chem., 2020, 39, 165 |
28. | Q. Liu, C. Du, B. Shen, P. Zuo, X. Cheng, Y. Ma, G. Yin, Y. Gao, RSC Adv., 2016, 6, 88683 |
29. | T. Waldmann, B.-I. Hogg, M. Wohlfahrt-Mehrens, J. Power Sources, 2018, 384, 107 |
30. | T. Waldmann, M. Kasper, M. Wohlfahrt-Mehrens, Electrochim. Acta, 2015, 178, 525 |
31. | T. Waldmann, M. Wilka, M. Kasper, M. Fleischhammer, M. Wohlfahrt-Mehrens, J. Power Sources, 2014, 262, 129 |
32. | J. Goodenough, K. Park, J. Am. Chem. Soc., 2013, 135, 1167 |
33. | M. Winter, J. O. Besenhard, M. E. Spahr, P. Novák, Adv. Mater., 1998, 10, 725 |
34. | A. Yacoby, Nat. Physics, 2011, 7, 925 |
35. | H. Yadegari, M. A. Koronfel, K. Wang, D. B. Thornton, I. E. L. Stephens, C. Molteni, P. D. Haynes, M. P. Ryan, ACS Energy Lett., 2021, 6, 1633 |
36. | R. Yazami, P. Touzain, J. Power Sources, 1983, 9, 365 |
37. | H. Shi, J. Barker, M. Y. Saïdi, R. Koksbang, L. Morris, J. Power Sources, 1997, 68, 291 |
38. | S. Schweidler, L. de Biasi, A. Schiele, P. Hartmann, T. Brezesinski, J. Janek, J. Phys. Chem. C, 2018, 122, 8829 |
39. | Z. P. Hu, A. Ignatiev, Phys. Rev. B, 1984, 30, 4856 |
40. | M. T. Johnson, H. I. Starnberg, H. P. Hughes, Surf. Sci., 1986, 178, 290 |
41. | M. Jäckle, A. Groß, J. Chem. Phys., 2014, 141, 174710 |
42. | L. Mandeltort, J. T. Yates, J. Phys. Chem. C, 2012, 116, 24962 |
43. | D. Fraggedakis, N. Nadkarni, T. Gao, T. Zhou, Y. Zhang, Y. Han, R. M. Stephens, Y. Shao-Horn, M. Z. Bazant, Energy Environ. Sci., 2020, 13, 2142 |
44. | T. Abe, H. Fukuda, Y. Iriyama, Z. Ogumi, J. Electrochem. Soc., 2004, 151, A1120 |
45. | Z. Ogumi, T. Abe, T. Fukutsuka, S. Yamate, Y. Iriyama, J. Power Sources, 2004, 127, 72 |
46. | K. Persson, V. A. Sethuraman, L. J. Hardwick, Y. Hinuma, Y. S. Meng, A. van der Ven, V. Srinivasan, R. Kostecki, G. Ceder, J. Phys. Chem. Lett., 2010, 1, 1176 |
47. | K. Xu, J. Electrochem. Soc., 2007, 154, A162 |
48. | K. Xu, A. von Cresce, U. Lee, Langmuir, 2010, 26, 11538 |
49. | Y. Yamada, Y. Iriyama, T. Abe, Z. Ogumi, Langmuir, 2009, 25, 12766 |
50. | F. Yao, F. Gunes, H. Q. Ta, S. M. Lee, S. J. Chae, K. Y. Sheem, C. S. Cojocaru, S. S. Xie, Y. H. Lee, J. Am. Chem. Soc., 2012, 134, 8646 |
51. | T. Gao, Y. Han, D. Fraggedakis, S. Das, T. Zhou, C.-N. Yeh, S. Xu, W. C. Chueh, J. Li, M. Z. Bazant, Joule, 2021, 5, 393 |
52. | M. Li, C. Wang, Z. Chen, K. Xu, J. Lu, Chem. Rev., 2020, 120, 6783 |
53. | L. Zhang, C. Zhu, S. Yu, D. Ge, H. Zhou, J. Energy Chem., 2022, 66, 260 |
54. | E. Peled, J. Electrochem. Soc., 1979, 126, 2047 |
55. | S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D. L. Wood, Carbon, 2016, 105, 52 |
56. | T. Liu, L. Lin, X. Bi, L. Tian, K. Yang, J. Liu, M. Li, Z. Chen, J. Lu, K. Amine, K. Xu, F. Pan, Nat. Nanotechnol., 2019, 14, 50 |
57. | S. Heiskanen, J. Kim, B. Lucht, Joule, 2019, 3, 2322 |
58. | D. M. Seo, D. Chalasani, B. S. Parimalam, R. Kadam, M. Nie, B. L. Lucht, ECS Electrochem. Lett., 2014, 3, A91 |
59. | B. Subramanian Parimalam, A. MacIntosh, R. Kadam, B. Lucht, J. Phys. Chem. C, 2017, 121, 22733 |
60. | L. Wang, A. Menakath, F. Han, Y. Wang, P. Y. Zavalij, K. J. Gaskell, O. Borodin, D. Iuga, S. P. Brown, C. Wang, K. Xu, B. W. Eichhorn, Nat. Chem., 2019, 11, 789 |
61. | J. Kim, J. G. Lee, H.-s. Kim, T. J. Lee, H. Park, J. H. Ryu, S. M. Oh, J. Electrochem. Soc., 2017, 164, A2418 |
62. | C. Wang, L. Xing, J. Vatamanu, Z. Chen, G. Lan, W. Li, K. Xu, Nat. Commun., 2019, 10, 3423 |
63. | M. Gauthier, T. Carney, A. Grimaud, L. Giordano, N. Pour, H.-H. Chang, D. Fenning, S. Lux, O. Paschos, C. Bauer, F. Maglia, S. Lupart, P. Lamp, Y. Shao-Horn, J. Phys. Chem. Lett., 2015, 6, 4653 |
64. | A. N. Dey, Thin Solid Films, 1977, 43, 131 |
65. | E. Peled, D. Golodnitsky, G. Ardel, J. Electrochem. Soc., 1997, 144, L208 |
66. | D. Aurbach, J. Power Sources, 2000, 89, 206 |
67. | D. Chen, M. Mahmoud, J.-H. Wang, G. Waller, B. Zhao, C. Qu, M. ElSayed, M. Liu, Nano Lett., 2019, 19, 2037 |
68. | S. Jurng, Z. L. Brown, J. Kim, B. L. Lucht, Energy Environ. Sci., 2018, 11, 2600 |
69. | Y. Zhou, M. Su, X. Yu, Y. Zhang, J.-G. Wang, X. Ren, R. Cao, W. Xu, D. R. Baer, Y. Du, O. Borodin, Y. Wang, X.-L. Wang, K. Xu, Z. Xu, C. Wang, Z. Zhu, Nat. Nanotechnol., 2020, 15, 224 |
70. | C. Hou, J. Han, P. Liu, C. Yang, G. Huang, T. Fujita, A. Hirata, M. Chen, Adv. Energy Mater., 2019, 9, 1902675 |
71. | W. Huang, P. Attia, H. Wang, S. Renfrew, N. Jin, S. Das, Z. Zhang, D. Boyle, Y. Li, M. Bazant, B. McCloskey, W. Chueh, Y. Cui, Nano Lett., 2019, 19, 5140 |
72. | C. Yan, L. Haoran, C. Xiang, X.-Q. Zhang, X.-B. Cheng, R. Xu, J.-Q. Huang, Q. Zhang, J. Am. Chem. Soc., 2019, 141, 9422 |
73. | C. Yan, H. Yuan, H. S. Park, J.-Q. Huang, J. Energy Chem., 2020, 47, 217 |
74. | W. Li, H. Li, J. Energy Chem., 2020, 45, 126 |
75. | O. Borodin, X. Ren, J. Vatamanu, A. Cresce, J. Knap, K. Xu, Acc. Chem. Res., 2017, 50, 2886 |
76. | Z. Liu, Acta Phys. Chim. Sin., 2019, 35, 1293 |
77. | L. L. Zhang, X. S. Zhao, Chem. Soc. Rev., 2009, 38, 2520 |
78. | A. Cresce, M. Gobet, O. Borodin, J. Peng, S. Russell, E. Wikner, A. Fu, L. Hu, H.-S. Lee, Z. Zhang, X.-Q. Yang, S. Greenbaum, K. Amine, K. Xu, J. Phys. Chem. C, 2015, 119, 27255 |
79. | A. von Cresce, K. Xu, Electrochem. Solid State Lett., 2011, 14, A154 |
80. | K. Xu, A. von Wald Cresce, J. Mater. Res., 2012, 27, 2327 |
81. | T. Abe, M. Ohtsuka, F. Sagane, Y. Iriyama, Z. Ogumi, J. Electrochem. Soc., 2004, 151, A1950 |
82. | R. Xu, J.-F. Ding, X.-X. Ma, C. Yan, Y.-X. Yao, J.-Q. Huang, Adv. Mater., 2021, 33, 2105962 |
83. | Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi, Y. Tateyama, A. Yamada, J. Am. Chem. Soc., 2014, 136, 5039 |
84. | Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Nat. Energy, 2019, 4, 269 |
85. | Y. Yamada, M. Yaegashi, T. Abe, A. Yamada, Chem. Commun., 2013, 49, 11194 |
86. | X.-Q. Zhang, X. Chen, X.-B. Cheng, B.-Q. Li, X. Shen, C. Yan, J.-Q. Huang, Q. Zhang, Angew. Chem., Int. Ed., 2018, 57, 5301 |
87. | K. Xu, Y. Lam, S. Zhang, R. Jow, T. Curtis, J. Phys. Chem. C, 2007, 111, 7411 |
88. | T. R. Jow, M. B. Marx, J. L. Allen, J. Electrochem. Soc., 2012, 159, A604 |
89. | I. Yamada, Y. Iriyama, T. Abe, Z. Ogumi, J. Power Sources, 2007, 172, 933 |
90. | I. Yamada, K. Miyazaki, T. Fukutsuka, Y. Iriyama, T. Abe, Z. Ogumi, J. Power Sources, 2015, 294, 460 |
91. | K. J. Griffith, K. M. Wiaderek, G. Cibin, L. E. Marbella, C. P. Grey, Nature, 2018, 559, 556 |
92. | Y. Xia, T. S. Mathis, M.-Q. Zhao, B. Anasori, A. Dang, Z. Zhou, H. Cho, Y. Gogotsi, S. Yang, Nature, 2018, 557, 409 |
93. | X. Xie, Y. Li, Z.-Q. Liu, M. Haruta, W. Shen, Nature, 2009, 458, 746 |
94. | A. N. Dey, B. P. Sullivan, J. Electrochem. Soc., 1970, 117, 222 |
95. | P. Arora, M. Doyle, R. E. White, J. Electrochem. Soc., 1999, 146, 3543 |
96. | C. K. Huang, J. S. Sakamoto, J. Wolfenstine, S. Surampudi, J. Electrochem. Soc., 2000, 147, 2893 |
97. | B. K. Purushothaman, U. Landau, J. Electrochem. Soc., 2006, 153, A533 |
98. | S. S. Zhang, K. Xu, T. R. Jow, J. Power Sources, 2006, 160, 1349 |
99. | N. Legrand, B. Knosp, P. Desprez, F. Lapicque, S. Raël, J. Power Sources, 2014, 245, 208 |
100. | J. Duan, Y. Zheng, W. Luo, W. Wu, T. Wang, Y. Xie, S. Li, J. Li, Y. Huang, Natl. Sci. Rev., 2020, 7, 1208 |
101. | X. M. Liu, C. B. Arnold, J. Electrochem. Soc. , 2020, 167, 130519 |
102. | H. Wang, Y. Zhu, S. C. Kim, A. Pei, Y. Li, D. T. Boyle, H. Wang, Z. Zhang, Y. Ye, W. Huang, Y. Liu, J. Xu, J. Li, F. Liu, Y. Cui, Proc. Natl. Acad. Sci. U. S. A., 2020, 117, 29453 |
103. | L. Xu, Y. Xiao, Y. Yang, S. J. Yang, X. R. Chen, R. Xu, Y. X. Yao, W. L. Cai, C. Yan, J. Q. Huang, Q. Zhang, Angew. Chem., Int. Ed., 2022, 61, e202210365 |
104. | P. Bai, J. Li, F. R. Brushett, M. Z. Bazant, Energy Environ. Sci., 2016, 9, 3221 |
105. | H. Ge, T. Aoki, N. Ikeda, S. Suga, T. Isobe, Z. Li, Y. Tabuchi, J. Zhang, J. Electrochem. Soc., 2017, 164, A1050 |
106. | S. S. Zhang, K. Xu, T. R. Jow, J. Power Sources, 2003, 115, 137 |
107. | W. Li, U. H. Kim, A. Dolocan, Y. K. Sun, A. Manthiram, ACS Nano, 2017, 11, 5853 |
108. | M. Petzl, M. A. Danzer, J. Power Sources, 2014, 254, 80 |
109. | E. J. McShane, A. M. Colclasure, D. E. Brown, Z. M. Konz, K. Smith, B. D. McCloskey, ACS Energy Lett., 2020, 5, 2045 |
110. | S. S. Zhang, InfoMat, 2021, 3, 125 |
111. | K.-E. Kim, J. Y. Jang, I. Park, M.-H. Woo, M.-H. Jeong, W. C. Shin, M. Ue, N.-S. Choi, Electrochem. Commun., 2015, 61, 121 |
112. | Z. M. Konz, E. J. McShane, B. D. McCloskey, ACS Energy Lett., 2020, 5, 1750 |
113. | B.-I. Hogg, T. Waldmann, M. Wohlfahrt-Mehrens, J. Electrochem. Soc., 2020, 167, 090525 |
114. | T. Waldmann, B.-I. Hogg, M. Kasper, S. Grolleau, C. G. Couceiro, K. Trad, B. P. Matadi, M. Wohlfahrt-Mehrens, J. Electrochem. Soc., 2016, 163, A1232 |
115. | K. Dokko, N. Nakata, Y. Suzuki, K. Kanamura, J. Phys. Chem. C, 2010, 114, 8646 |
116. | M. Angeles Cabañero, J. Altmann, L. Gold, N. Boaretto, J. Müller, S. Hein, J. Zausch, J. Kallo, A. Latz, Energy, 2019, 171, 1217 |
117. | Y. Ji, Y. Zhang, C.-Y. Wang, J. Electrochem. Soc., 2013, 160, A636 |
118. | A. Laforgue, X.-Z. Yuan, A. Platt, S. Brueckner, F. Perrin-Sarazin, M. Toupin, J.-Y. Huot, A. Mokrini, J. Electrochem. Soc., 2020, 167, 140521 |
119. | H. p. Lin, D. Chua, M. Salomon, H. C. Shiao, M. Hendrickson, E. Plichta, S. Slane, Electrochem. Solid State Lett., 2001, 4, A71 |
120. | M. Petzl, M. Kasper, M. A. Danzer, J. Power Sources, 2015, 275, 799 |
121. | C. Yan, Y.-X. Yao, W.-L. Cai, L. Xu, S. Kaskel, H. S. Park and J.-Q. Huang, J. Energy Chem., 2020, 49, 335 |
122. | S. S. Zhang, K. Xu, T. R. Jow, Electrochim. Acta, 2002, 48, 241 |
123. | R. V. Bugga, M. C. Smart, ECS Trans., 2019, 25, 241 |
124. | J. M. Tarascon, D. Guyomard, Solid State Ionics, 1994, 69, 293 |
125. | T. Zhang, E. Paillard, Front. Chem. Sci. Eng., 2018, 12, 577 |
126. | Q. Q. Liu, D. J. Xiong, R. Petibon, C. Y. Du, J. R. Dahn, J. Electrochem. Soc., 2016, 163, A3010 |
127. | G. V. Zhuang, K. Xu, H. Yang, T. R. Jow, P. N. Ross, J. Phys. Chem. B, 2005, 109, 17567 |
128. | Y. Ein-Eli, Electrochem. Solid State Lett., 1999, 2, 212 |
129. | A. Yaqub, Y.-J. Lee, M. J. Hwang, S. A. Pervez, U. Farooq, J.-H. Choi, D. Kim, H.-Y. Choi, S.-B. Cho, C.-H. Doh, J. Mater. Sci., 2014, 49, 7707 |
130. | J. C. Burns, D. A. Stevens, J. R. Dahn, J. Electrochem. Soc., 2015, 162, A959 |
131. | N. Ghanbari, T. Waldmann, M. Kasper, P. Axmann, M. Wohlfahrt-Mehrens, J. Phys. Chem. C, 2016, 120, 22225 |
132. | A. Iturrondobeitia, F. Aguesse, S. Genies, T. Waldmann, M. Kasper, N. Ghanbari, M. Wohlfahrt-Mehrens, E. Bekaert, J. Phys. Chem. C, 2017, 121, 21865 |
133. | B. P. Matadi, S. Geniès, A. Delaille, T. Waldmann, M. Kasper, M. Wohlfahrt-Mehrens, F. Aguesse, E. Bekaert, I. Jiménez-Gordon, L. Daniel, X. Fleury, M. Bardet, J.-F. Martin, Y. Bultel, J. Electrochem. Soc., 2017, 164, A1089 |
134. | X. -G. Yang, T. Liu, Y. Gao, S. Ge, Y. Leng, D. Wang, C.-Y. Wang, Joule, 2019, 3, 3002 |
135. | C. Fear, M. Parmananda, V. Kabra, R. Carter, C. T. Love, P. P. Mukherjee, Energy Storage Mater., 2021, 35, 500 |
136. | B. Rieger, S. F. Schuster, S. V. Erhard, P. J. Osswald, A. Rheinfeld, C. Willmann, A. Jossen, J. Energy Storage, 2016, 8, 1 |
137. | M. Tang, P. Albertus, J. Newman, J. Electrochem. Soc., 2009, 156, A390 |
138. | Y. Yang, L. Xu, S.-J. Yang, C. Yan, J.-Q. Huang, J. Energy Chem., 2022, 73, 394 |
139. | J. Cannarella, C. B. Arnold, J. Electrochem. Soc., 2015, 162, A1365 |
140. | X.-R. Chen, C. Yan, J.-F. Ding, H.-J. Peng, Q. Zhang, J. Energy Chem., 2021, 62, 289 |
141. | X. Feng, X. He, M. Ouyang, L. Wang, L. Lu, D. Ren, S. Santhanagopalan, J. Electrochem. Soc., 2018, 165, A3748 |
142. | X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia, X. He, Energy Storage Mater., 2018, 10, 246 |
143. | P. Jaumaux, J. Wu, D. Shanmukaraj, Y. Wang, D. Zhou, B. Sun, F. Kang, B. Li, M. Armand, G. Wang, Adv. Funct. Mater., 2021, 31, 2008644 |
144. | X. Liu, D. Ren, H. Hsu, X. Feng, G.-L. Xu, M. Zhuang, H. Gao, L. Lu, X. Han, Z. Chu, L. Jianqiu, X. He, K. Amine, M. Ouyang, Joule, 2018, 2, 2047 |
145. | D. Ren, X. Feng, L. Lu, M. Ouyang, S. Zheng, J. Li, X. He, J. Power Sources, 2017, 364, 328 |
146. | S. Zheng, L. Wang, X. Feng, X. He, J. Power Sources, 2018, 378, 527 |
147. | D. Ren, K. Smith, D. Guo, X. Han, X. Feng, L. Lu, M. Ouyang, J. Li, J. Electrochem. Soc., 2018, 165, A2167 |
148. | C. Uhlmann, J. Illig, M. Ender, R. Schuster, E. Ivers-Tiffée, J. Power Sources, 2015, 279, 428 |
149. | I. D. Campbell, M. Marzook, M. Marinescu, G. J. Offer, J. Electrochem. Soc., 2019, 166, A725 |
150. | U. R. Koleti, T. Q. Dinh, J. Marco, J. Power Sources, 2020, 451, 227798 |
151. | S. Schindler, M. Bauer, M. Petzl, M. A. Danzer, J. Power Sources, 2016, 304, 170 |
152. | V. Müller, R.-G. Scurtu, M. Memm, M. A. Danzer, M. Wohlfahrt-Mehrens, J. Power Sources, 2019, 440, 227148 |
153. | C. Yan, L.-L. Jiang, Y. Yao, Y. Lu, J.-Q. Huang, Q. Zhang, Angew. Chem., Int. Ed., 2021, 133, 8602 |
154. | J. Illig, M. Ender, T. Chrobak, J. P. Schmidt, D. Klotz, E. Ivers-Tiffée, J. Electrochem. Soc., 2012, 159, A952 |
155. | F. Katzer, M. A. Danzer, J. Power Sources, 2021, 503, 230009 |
156. | J. P. Schmidt, P. Berg, M. Schönleber, A. Weber, E. Ivers-Tiffée, J. Power Sources, 2013, 221, 70 |
157. | C. Bommier, W. Chang, Y. Lu, J. Yeung, G. Davies, R. Mohr, M. Williams, D. Steingart, Cell Rep. Phys. Sci., 2020, 1, 100035 |
158. | L. Gold, T. Bach, W. Virsik, A. Schmitt, J. Müller, T. E. M. Staab, G. Sextl, J. Power Sources, 2017, 343, 536 |
159. | J. B. Siegel, X. Lin, A. G. Stefanopoulou, D. S. Hussey, D. L. Jacobson, D. Gorsich, J. Electrochem. Soc., 2011, 158, A523 |
160. | A. Same, V. Battaglia, H.-Y. Tang, J. W. Park, J. Appl. Electrochem., 2012, 42, 1 |
161. | C. von Lüders, V. Zinth, S. V. Erhard, P. J. Osswald, M. Hofmann, R. Gilles, A. Jossen, J. Power Sources, 2017, 342, 17 |
162. | V. Zinth, C. von Lüders, M. Hofmann, J. Hattendorff, I. Buchberger, S. Erhard, J. Rebelo-Kornmeier, A. Jossen, R. Gilles, J. Power Sources, 2014, 271, 152 |
163. | S. Lv, T. Verhallen, A. Vasileiadis, F. Ooms, Y. Xu, Z. Li, Z. Li, M. Wagemaker, Nat. Commun., 2018, 9, 2152 |
164. | S. C. Nagpure, R. G. Downing, B. Bhushan, S. S. Babu, L. Cao, Electrochim. Acta, 2011, 56, 4735 |
165. | T. R. Tanim, P. P. Paul, V. Thampy, C. Cao, H.-G. Steinrück, J. Nelson Weker, M. F. Toney, E. J. Dufek, M. C. Evans, A. N. Jansen, B. J. Polzin, A. R. Dunlop, S. E. Trask, Cell Rep. Phys. Sci., 2020, 1, 100114 |
166. | D. P. Finegan, A. Quinn, D. S. Wragg, A. M. Colclasure, X. Lu, C. Tan, T. M. M. Heenan, R. Jervis, D. J. L. Brett, S. Das, T. Gao, D. A. Cogswell, M. Z. Bazant, M. Di Michiel, S. Checchia, P. R. Shearing, K. Smith, Energy Environ. Sci., 2020, 13, 2570 |
167. | M. A. Cabañero, M. Hagen, E. Quiroga-González, Electrochim. Acta, 2021, 374, 137487 |
168. | D. Belov, M.-H. Yang, Solid State Ionics, 2008, 179, 1816 |
169. | C. Hogrefe, S. Hein, T. Waldmann, T. Danner, K. Richter, A. Latz, M. Wohlfahrt-Mehrens, J. Electrochem. Soc., 2020, 167, 140546 |
170. | G. Zhang, X. Wei, G. Han, H. Dai, J. Zhu, X. Wang, X. Tang, J. Ye, J. Power Sources, 2021, 484, 229312 |
171. | Y. Zhang, X. Li, L. Su, Z. Li, B. Y. Liaw, J. Zhang, ECS Trans., 2017, 75, 37 |
172. | A. Fedorková, R. Oriňáková, A. Oriňák, A. Heile, H.-D. Wiemhöfer, H. F. Arlinghaus, Solid State Sciences, 2011, 13, 824 |
173. | S. Nanda, A. Manthiram, Energy Environ. Sci., 2020, 13, 2501 |
174. | M.-T. Fonseca Rodrigues, V. A. Maroni, D. J. Gosztola, K. P. C. Yao, K. Kalaga, I. A. Shkrob, D. P. Abraham, ACS Appl. Energy Mater., 2019, 2, 873 |
175. | S.-B. Son, D. Robertson, Z. Yang, Y. Tsai, S. Lopykinski, I. Bloom, J. Electrochem. Soc., 2020, 167, 140506 |
176. | C. Fang, J. Li, M. Zhang, Y. Zhang, F. Yang, J. Z. Lee, M.-H. Lee, J. Alvarado, M. A. Schroeder, Y. Yang, B. Lu, N. Williams, M. Ceja, L. Yang, M. Cai, J. Gu, K. Xu, X. Wang, Y. S. Meng, Nature, 2019, 572, 511 |
177. | J. Lu, Z. Chen, F. Pan, Y. Cui, K. Amine, Electrochem. Energy Rev., 2018, 1, 35 |
178. | J. Han, W. Wei, C. Zhang, Y. Tao, W. Lv, G. Ling, F. Kang, Q.-H. Yang, Electrochem. Energy Rev., 2018, 1, 139 |
179. | Y. Ding, Z. P. Cano, A. Yu, J. Lu, Z. Chen, Electrochem. Energy Rev., 2019, 2, 1 |
180. | X. Liu, T. Ji, H. Guo, H. Wang, J. Li, H. Liu, Z. Shen, Electrochem. Energy Rev., 2022, 5, 401 |
181. | T. Liu, X.-G. Yang, S. Ge, Y. Leng, C.-Y. Wang, eTrans., 2021, 7, 100103 |
182. | X.-G. Yang, T. Liu, C.-Y. Wang, Nat. Energy, 2021, 6, 176 |
183. | R.-M. Gao, H. Yang, C.-Y. Wang, H. Ye, F.-F. Cao, Z.-P. Guo, Angew. Chem., Int. Ed., 2021, 60, 25508 |
184. | Z. Wang, Y. Wang, C. Wu, W. K. Pang, J. Mao, Z. Guo, Chem. Sci., 2021, 12, 8945 |
185. | H. Hao, T. Hutter, B. L. Boyce, J. Watt, P. Liu, D. Mitlin, Chem. Rev., 2022, 122, 8053 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Schematic drawing of lithium plating on graphite electrode.
a Schematic of the graphite structure with two different stacking sequences including ABAB (2H) and ABCABC (3R). And ABA stacking is the main types of graphite. b The different lithium intercalation stages and phase transition regimes in the second cycle.[38] Copyright 2018, American Chemical Society. c The colour and structure of stages 1L, 3L, 2, 1.[51] Copyright 2021, Elsevier. d Rietveld refinement results for the second cycle: interlayer spacing dC−C vs. lithium content.[38] Copyright 2018, American Chemical Society.
a Schematic of the SEI formation process on graphite surface.[55] Copyright 2016, Elsevier. b Curve of potential and mass change during the formation of SEI on graphite surface.[56] Copyright 2018, Springer Nature. c In-situ AFM image of graphite cathode surface during potential change.[56] Copyright 2018, Springer Nature. d The traditional mosaic model to describe the SEI with multiple organic/inorganic components.[65] Copyright 1997, IOP Publishing. e Schematic diagram of SEI layered structure model.[66] Copyright 2000, Elsevier.
a Schematic diagram of Li-ion intercalated into graphite during charging.[48] Copyright 2010, American Chemical Society. b Energy diagram corresponding to the 4 sequential steps of a.
Cognitive process of Li intercalation kinetics and Li plating in past 50 years. The copyright claims for the images are listed in the order of the year mentioned.[87] Copyright 2007, American Chemical Society.[43] Copyright 2020, Royal Society of Chemistry.[51] Copyright 2021, Elsevier.[103] Copyright 2022, John Wiley and Sons.
Simplified model of the lithium plating-stripping process at different SOC levels.[108] Copyright 2014, Elsevier.
a Reaction energy landscape before plating occurs (left) and after plating starts (right).[51] Copyright 2021, Elsevier. b Detecting the onset of Li plating at 4C, 3C, and 2C in graphite/Li cells by using differential OCVs.[112] Copyright 2020, American Chemical Society. c Relationship between the activation energies associated with so-called charge-transfer process and the EC/Li molar ratio: the relationship between Li+ solvation sheath composition and the EC content in the solution.[87] Copyright 2007, American Chemical Society.
a Ageing mechanisms related to Li deposition in Li-ion cells.[29] Copyright 2018, Elsevier. b Chain reactions of the thermal runaway process in fast charged LIBs.[19] Copyright 2019, Elsevier.
Li plating detection methods based on different techniques. a High precision coulometry.[130] Copyright 2015, IOP Publishing. b Differential voltage analysis (DVA), and differential capacity analysis (DCA).[108] Copyright 2014, Elsevier. c Electrochemical impedance spectroscopy (EIS) analysis and voltages of post-charge relaxation profiles.[150] Copyright 2020, Elsevier.
a Raw data of the diffraction reflections of LiC12 and LiC6 by using in-situ neutron diffraction (ND).[161] Copyright 2017, Elsevier. b Diffraction data recorded at the beginning and end of this period with the tool of in-situ ND.[162] Copyright 2014, Elsevier. c The mapping of Li density vs. time from operando neutron depth profiling (NDP) during the first plating and stripping cycle.[163] Copyright 2018, Springer Nature.
a The Li distribution map over the cross-sectional area of the anode at a particular time (SOC) by using in-situ spatially-resolved X-ray diffraction (XRD).[165] Copyright 2020, Elsevier. b The in-situ depth-resolved XRD to obtain spatial maps of Li over the anode, as a function of time (SOC).[166] Copyright 2020, Royal Society of Chemistry.
a Spatial maps from a graphite anode over cycling as a function of the sputtering depth by using time-of-flight secondary ion mass spectrometry (TOF-SIMS).[107] Copyright 2017, American Chemical Society. b Spatial maps from surface enhanced Raman spectroscopy (SERS) using Raman-active Li2C2.[174] Copyright 2019, American Chemical Society. c Quantification of inactive Li and SEI species on graphite electrodes after fast charging utilizing titration gas chromatography (TGC).[109] Copyright 2020, American Chemical Society.