Citation: | Ruguang Ma, Xiaolin Zhao, Yu Pei, Yuyang Zong, Jianjun Liu, Jiacheng Wang. Modulating hydroxyl adsorption on transition metal nitrides by magnetic moments toward fast alkaline hydrogen evolution[J]. Energy Lab, 2024, 2(2): 230007. doi: 10.54227/elab.20230007 |
Water dissociation is a critical step limiting the kinetics of electrocatalytic hydrogen evolution reaction (HER) in the alkaline. However, the effect of hydroxyl groups (OH*) on the electrocatalyst surface during the HER process has not been clarified yet. Here, three typical transition metal (TM) nitrides (i.e., Fe2N, Co3N and Ni3N) were investigated by combing theoretical calculation and experiments toward alkaline HER. The results show binding energy of OH* (∆EOH*) and magnetic moment of three nitrides follow the same trend of Fe2N > Co3N > Ni3N, showing a positive correlation. The as-synthesized Ni3N with the smallest magnetic moment shows the best alkaline HER activity due to its lowest water-dissociation barrier and weakest ∆EOH*. Weak adsorption to OH* could promote the fast release of OH* and thus enhance reaction kinetics. A small bond order corresponding to weak interaction between Ni3N and OH* is found to be favorable to the release of OH* and subsequent reaction steps, which originates from the orbital interaction of outer-shell electrons in TM and OH*. This work provides new insights into the design of advanced electrocatalysts using magnetic matrix toward alkaline HER.
1. | Y. Zhou and H. J. Fan, ACS Mater. Lett., 2021, 3, 136 |
2. | I. Roger, M. A. Shipman and M. D. Symes, Nat. Rev. Chem., 2017, 1, 0003 |
3. | R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic and N. M. Markovic, Science, 2011, 334, 1256 |
4. | N. Danilovic, R. Subbaraman, D. Strmcnik, K.-C. Chang, A. P. Paulikas, V. R. Stamenkovic and N. M. Markovic, Angew. Chem. Int. Ed., 2012, 124, 12663 |
5. | B. Zhang, J. Liu, J. Wang, Y. Ruan, X. Ji, K. Xu, C. Chen, H. Wan, L. Miao and J. Jiang, Nano Energy, 2017, 37, 74 |
6. | J. Huang, J. Han, T. Wu, K. Feng, T. Yao, X. Wang, S. Liu, J. Zhong, Z. Zhang, Y. Zhang and B. Song, ACS Energy Lett., 2019, 4, 3002 |
7. | Z. Li, Y. Pei, R. Ma, Y. Wang, Y. Zhu, M. Yang and J. Wang, J. Mater. Chem. A, 2021, 9, 13109 |
8. | K. Lu, Y. Liu, F. Lin, I. A. Cordova, S. Gao, B. Li, B. Peng, H. Xu, J. Kaelin, D. Coliz, C. Wang, Y. Shao and Y. Cheng, J. Am. Chem. Soc., 2020, 142, 12613 |
9. | J. Qian, X. Wang, H. Jiang, S. Li, C. Li, S. Li, R. Ma and J. Wang, ACS Appl. Mater. Interfaces, 2022, 14, 18607 |
10. | Y. Dou, D. Yuan, L. Yu, W. Zhang, L. Zhang, K. Fan, M. Al-Mamun, P. Liu, C. -T. He and H. Zhao, Adv. Mater., 2022, 34, 2104667 |
11. | S. Li, Z. Li, R. Ma, C. Gao, L. Liu, L. Hu, J. Zhu, T. Sun, Y. Tang, D. Liu and J. Wang, Angew. Chem. Int. Ed., 2021, 60, 3773 |
12. | J. Xie and Y. Xie, Chem. Eur. J., 2016, 22, 3588 |
13. | N. Han, P. Liu, J. Jiang, L. Ai, Z. Shao and S. Liu, J. Mater. Chem. A, 2018, 6, 19912 |
14. | J. K. Nørskov, F. Abild-Pedersen, F. Studt and T. Bligaard, Proc. Natl. Acad. Sci., 2011, 108, 937 |
15. | X. Jia, Y. Zhao, G. Chen, L. Shang, R. Shi, X. Kang, G. I. N. Waterhouse, L.-Z. Wu, C.-H. Tung and T. Zhang, Adv. Energy Mater., 2016, 6, 1502585 |
16. | G. Zhou, P. Wang, H. Li, B. Hu, Y. Sun, R. Huang and L. Liu, Nat. Commun., 2021, 12, 4827 |
17. | X. Li, H. Liu, Z. Chen, Q. Wu, Z. Yu, M. Yang, X. Wang, Z. Cheng, Z. Fu and Y. Lu, Nat. Commun., 2019, 10, 1409 |
18. | G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6, 15 |
19. | G. Kresse and J. Furthmüller, Physical Review B, 1996, 54, 11169 |
20. | J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865 |
21. | G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59, 1758 |
22. | I. A. Vladimir, F. Aryasetiawan and A. I. Lichtenstein, J. Phys. Condens. Mat., 1997, 9, 767 |
23. | S. Watanabe, Y. Sawada, M. Nakaya, M. Yoshino, T. Nagasaki, T. Kameyama, T. Torimoto, Y. Inaba, H. Takahashi, K. Takeshita and J. Onoe, J. Appl. Phys., 2016, 119, 235102 |
24. | X. Zhao, Z. Hu, Y. Li, Y. Wang, E. Song, L. Zhang and J. Liu, Mater. Horiz., 2021, 8, 1825 |
25. | P. Błoński and J. Hafner, J. Phys. Condens. Mat., 2009, 21, 426001 |
26. | G. Henkelman, B. P. Uberuaga and H. Jónsson, J. Chem. Phys., 2000, 113, 9901 |
27. | J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov and U. Stimming, J. Electrochem. Soc., 2005, 152, J23 |
28. | Y. Pei, B. Rezaei, X. Zhang, Z. Li, H. Shen, M. Yang and J. Wang, Mater. Chem. Front., 2020, 4, 2665 |
29. | J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff and J. K. Nørskov, Nat. Mater., 2006, 5, 909 |
30. | A. P. Grosvenor, B. A. Kobe, M. C. Biesinger and N. S. McIntyre, Surf. Interface Anal., 2004, 36, 1564 |
31. | F. Yan, Y. Wang, K. Li, C. Zhu, P. Gao, C. Li, X. Zhang and Y. Chen, Chem. Eur. J., 2017, 23, 10187 |
32. | X. Li, Z. Ao, J. Liu, H. Sun, A. I. Rykov and J. Wang, ACS Nano, 2016, 10, 11532 |
33. | Y. Hu, H. Duan, J., Y. Huang, M. Balogun, Y. Tong, ChemCatChem, 2019, 11, 6051 |
34. | D. Zhang, H. Li, Asim R., Astha S., W. Liang, Y. Wang, H. Chen, Kaushal V., D. Yan, Zhen S., Antonio T., C. Zhao, F. Beck, Karsten R., K. Catchpole, Siva K, Energy Environ. Sci., 2022, 15, 185 |
35. | M. Lao, P. Li, Y. Jiang, H. Pan, S. X. Dou and W. Sun, Nano Energy, 2022, 98, 107231 |
36. | Y. Sun, S. Sun, H. Yang, S. Xi, J. Gracia and Z. J. Xu, Adv. Mater., 2020, 32, 2003297 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Structural models of a Fe2N, b Co3N and c Ni3N; pDOS of d Fe2N, e Co3N and f Ni3N before and after adsorption of hydroxyl group (OH*); g Gibbs free energy change (∆GH*) of H* and binding energy of OH* (∆EOH*) on the surface of Co3N, Ni3N and Fe2N. h Bader charge of Fe2N, Co3N and Ni3N. i The relationship between the calculated magnetic moment and ∆EOH* for Fe2N, Co3N and Ni3N.
a XRD patterns, b magnetization hysteresis loops M(H) of Fe2N, Co3N and Ni3N at room temperature. c-f High-resolution XPS of c Fe 2p, d Co 2p, e Ni 2p and f N 1s in Fe2N, Co3N and Ni3N, respectively.
a LSV curves, b Tafel slope, c EIS of Fe2N, Co3N and Ni3N, respectively. The energy profile of water dissociation on the surface of d Fe2N, e Co3N and f Ni3N. The insets show the corresponding surfaces with H2O adsorption, H and OH co-adsorption.
Schematic illustration of orbital interaction of outer-shell electrons between OH− and a Fe2N, b Co3N and c Ni3N. The corresponding water splitting process on different spin state surface is also displayed.