Citation: | Ke Yang, Likun Chen, Jinshuo Mi, Ming Liu, Yan-Bing He. Fundamentals and perspectives of poly(vinylidene fluoride)-based electrolytes for solid-state lithium batteries[J]. Energy Lab, 2024, 2(2): 240007. doi: 10.54227/elab.20240007 |
Solid-state lithium metal batteries are considered as viable energy storage technologies for high-energy-density and safe devices. Recently, poly(vinylidene fluoride) (PVDF)-based solid-state electrolytes with “Li salt-polymer-little bound solvent” configuration attract much attention. However, several dilemmas such as limited ionic conductivity and interfacial reactions with electrodes restrict their further advancement for practical applications. In this review, we summarized the fundamentals of the PVDF-based solid-state electrolytes including the physicochemical properties, the ion transport behavior in electrolytes and batteries, the interfacial chemistry with electrodes, the role of various fillers and the interactions between components in electrolytes to provide an in-depth and comprehensive understanding. Then, we highlighted significant strategies that toward practical applications based on our lab’s results and other publications from four aspects: increasing ionic conductivity of electrolytes, enhancing interfacial stability with electrodes, designing thin and robust electrolytes, building safe and high-energy batteries. At last, we provided our perspectives on the future development directions to push forward practical applications of the PVDF-based solid-state electrolytes.
1. | Q. Zhao, S. Stalin, C.-Z. Zhao, L. A. Archer, Nat. Rev. Mater., 2020, 5, 229 |
2. | A. Manthiram, X. Yu, S. Wang, Nat. Rev. Mater., 2017, 2, 16103 |
3. | Y. S. Meng, V. Srinivasan, K. Xu, Science, 2022, 378, eabq3750 |
4. | Y. Xiao, Y. Wang, S. -H. Bo, J. C. Kim, L. J. Miara, G. Ceder, Nat. Rev. Mater., 2019, 5, 105 |
5. | X. B. Cheng, R. Zhang, C. Z. Zhao, Q. Zhang, Chem. Rev., 2017, 117, 10403 |
6. | K. Yang, L. Zhao, X. An, L. Chen, J. Ma, J. Mi, Y. B. He, Angew. Chem. Int. Ed., 2023, 62, e202302586 |
7. | L. Chen, P. Shi, T. Gu, J. Mi, K. Yang, L. Zhao, J. Lv, M. Liu, Y.-B. He, F. Kang, eScience, 2024, 100277 |
8. | Z. Song, F. Chen, M. Martinez-Ibanez, W. Feng, M. Forsyth, Z. Zhou, M. Armand, H. Zhang, Nat. Commun., 2023, 14, 4884 |
9. | L.-Z. Fan, H. He, C.-W. Nan, Nat. Rev. Mater., 2021, 6, 1003 |
10. | J. Lopez, D. G. Mackanic, Y. Cui, Z. Bao, Nat. Rev. Mater., 2019, 4, 312 |
11. | W. Lee, J. Lee, T. Yu, H. J. Kim, M. K. Kim, S. Jang, J. Kim, Y. J. Han, S. Choi, S. Choi, T. H. Kim, S. H. Park, W. Jin, G. Song, D. H. Seo, S. K. Jung, J. Kim, Nat. Commun., 2024, 15, 5860 |
12. | P. Lennartz, B. A. Paren, A. Herzog-Arbeitman, X. C. Chen, J. A. Johnson, M. Winter, Y. Shao-Horn, G. Brunklaus, Joule, 2023, 7, 1471 |
13. | L. Chen, Y.-F. Huang, J. Ma, H. Ling, F. Kang, Y.-B. He, Energy & Fuels, 2020, 34, 13456 |
14. | D. E. Fenton, J. M. Parker, P. V. Wright, Polymer, 1973, 14, 589 |
15. | J. Mindemark, M. J. Lacey, T. Bowden, D. Brandell, Prog. Polym. Sci., 2018, 81, 114 |
16. | L. Long, S. Wang, M. Xiao, Y. Meng, J. Mater. Chem. A, 2016, 4, 10038 |
17. | Z. Xue, D. He, X. Xie, J. Mater. Chem. A, 2015, 3, 19218 |
18. | J. Y. Song, Y. Y. Wang, C. C. Wan, J. Power Sources, 1999, 77, 183 |
19. | Y. V. Baskakova, O. g. V. Yarmolenko, O. N. Efimov, Russ. Chem. Rev., 2012, 81, 367 |
20. | X. Zhang, S. Wang, C. Xue, C. Xin, Y. Lin, Y. Shen, L. Li, C. W. Nan, Adv. Mater., 2020, 32, e2000026 |
21. | X. Zhang, T. Liu, S. Zhang, X. Huang, B. Xu, Y. Lin, B. Xu, L. Li, C. W. Nan, Y. Shen, J. Am. Chem. Soc., 2017, 139, 13779 |
22. | P. Yao, B. Zhu, H. Zhai, X. Liao, Y. Zhu, W. Xu, Q. Cheng, C. Jayyosi, Z. Li, J. Zhu, K. M. Myers, X. Chen, Y. Yang, Nano Lett., 2018, 18, 6113 |
23. | X. Zhang, S. Wang, C. Xue, C. Xin, Y. Lin, Y. Shen, L. Li, C. W. Nan, Adv. Mater., 2019, 31, 1806082 |
24. | X. Zhang, J. Han, X. Niu, C. Xin, C. Xue, S. Wang, Y. Shen, L. Zhang, L. Li, C. W. Nan, Batteries & Supercaps, 2020, 3, 876 |
25. | C. M. Costa, V. F. Cardoso, P. Martins, D. M. Correia, R. Goncalves, P. Costa, V. Correia, C. Ribeiro, M. M. Fernandes, P. M. Martins, S. Lanceros-Mendez, Chem. Rev., 2023, 123, 11392 |
26. | S. Zhou, S. Zhong, Y. Dong, Z. Liu, L. Dong, B. Yuan, H. Xie, Y. Liu, L. Qiao, J. Han, W. He, Adv. Funct. Mater., 2023, 33, 2214432 |
27. | K. Yang, L. Chen, J. Ma, C. Lai, Y. Huang, J. Mi, J. Biao, D. Zhang, P. Shi, H. Xia, G. Zhong, F. Kang, Y. B. He, Angew. Chem. Int. Ed., 2021, 60, 24668 |
28. | Y.-F. Huang, T. Gu, G. Rui, P. Shi, W. Fu, L. Chen, X. Liu, J. Zeng, B. Kang, Z. Yan, F. J. Stadler, L. Zhu, F. Kang, Y.-B. He, Energy Environ. Sci., 2021, 14, 6021 |
29. | Q. Liu, G. Yang, X. Li, S. Zhang, R. Chen, X. Wang, Y. Gao, Z. Wang, L. Chen, Energy Storage Mater., 2022, 51, 443 |
30. | Z. Xiong, Z. Wang, W. Zhou, Q. Liu, J.-F. Wu, T.-H. Liu, C. Xu, J. Liu, Energy Storage Mater., 2023, 57, 171 |
31. | D. Callegari, S. Bonizzoni, V. Berbenni, E. Quartarone, P. Mustarelli, D. Callegari, S. Bonizzoni, V. Berbenni, E. Quartarone, P. Mustarelli, Adv. Mater., 2020, 32, 1907375 |
32. | D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Chem, 2019, 5, 2326 |
33. | X. Cheng, J. Pan, Y. Zhao, M. Liao, H. Peng, Adv. Energy Mater., 2018, 8, 1702184 |
34. | F. Xu, S. Deng, Q. Guo, D. Zhou, X. Yao, Small Methods, 2021, 5, 2100262 |
35. | J. Mi, J. Ma, L. Chen, C. Lai, K. Yang, J. Biao, H. Xia, X. Song, W. Lv, G. Zhong, Y.-B. He, Energy Storage Mater., 2022, 48, 375 |
36. | W. Zhang, V. Koverga, S. Liu, J. Zhou, J. Wang, P. Bai, S. Tan, N. K. Dandu, Z. Wang, F. Chen, J. Xia, H. Wan, X. Zhang, H. Yang, B. L. Lucht, A.-M. Li, X.-Q. Yang, E. Hu, S. R. Raghavan, A. T. Ngo, C. Wang, Nat. Energy, 2024, 9, 386 |
37. | Y. Liang, S. Guan, C. Xin, K. Wen, C. Xue, H. Chen, S. Liu, X. Wu, H. Yuan, L. Li, C.-W. Nan, ACS Appl. Mater. Interfaces, 2022, 14, 32075 |
38. | L. Chen, T. Gu, J. Ma, K. Yang, P. Shi, J. Biao, J. Mi, M. Liu, W. Lv, Y.-B. He, Nano Energy, 2022, 100, 107470 |
39. | M. Wu, D. Liu, D. Qu, Z. Xie, J. Li, J. Lei, H. Tang, ACS Appl. Mater. Interfaces, 2020, 12, 52652 |
40. | Y. Liang, J. Zhang, S. Guan, K. Wen, C. Guo, Y.-H. Wu, H. Yuan, S. Liu, Y. Qi, W. Mo, X. Zhang, C.-W. Nan, Journal of Materiomics, 2024, 10, 880 |
41. | D. Zhang, Y. Liu, S. Yang, J. Zhu, H. Hong, S. Li, Q. Xiong, Z. Huang, S. Wang, J. Liu, C. Zhi, Adv. Mater., 2024, 36, e2401549 |
42. | Z. Wan, D. Lei, W. Yang, C. Liu, K. Shi, X. Hao, L. Shen, W. Lv, B. Li, Q. H. Yang, F. Kang, Y. B. He, Adv. Funct. Mater., 2019, 29, 1805301 |
43. | C. Yang, Q. Wu, W. Xie, X. Zhang, A. Brozena, J. Zheng, M. N. Garaga, B. H. Ko, Y. Mao, S. He, Y. Gao, P. Wang, M. Tyagi, F. Jiao, R. Briber, P. Albertus, C. Wang, S. Greenbaum, Y.-Y. Hu, A. Isogai, M. Winter, K. Xu, Y. Qi, L. Hu, Nature, 2021, 598, 590 |
44. | H. Akashi, K. i. Tanaka, K. Sekai, J. Electrochem. Soc., 1998, 145, 881 |
45. | X. He, Y. Ni, Y. Hou, Y. Lu, S. Jin, H. Li, Z. Yan, K. Zhang, J. Chen, Angew. Chem. Int. Ed., 2021, 60, 22672 |
46. | J. Yang, R. Li, P. Zhang, J. Zhang, J. Meng, L. Li, Z. Li, X. Pu, Energy Storage Mater., 2024, 64, 103088 |
47. | K. Yang, J. Ma, Y. Li, J. Jiao, S. Jiao, X. An, G. Zhong, L. Chen, Y. Jiang, Y. Liu, D. Zhang, J. Mi, J. Biao, B. Li, X. Cheng, S. Guo, Y. Ma, W. Hu, S. Wu, J. Zheng, M. Liu, Y.-B. He, F. Kang, J. Am. Chem. Soc., 2024, 146, 11371 |
48. | S. Xu, R. Xu, T. Yu, K. Chen, C. Sun, G. Hu, S. Bai, H.-M. Cheng, Z. Sun, F. Li, Energy Environ. Sci., 2022, 15, 3379 |
49. | Y. Liu, X. An, K. Yang, J. Ma, J. Mi, D. Zhang, X. Cheng, Y. Li, Y. Ma, M. Liu, F. Kang, Y.-B. He, Energy Environ. Sci., 2024, 17, 344 |
50. | Y.-X. Yao, X. Chen, C. Yan, X.-Q. Zhang, W.-L. Cai, J.-Q. Huang, Q. Zhang, Angew. Chem. Int. Ed., 2021, 60, 4090 |
51. | Z. Li, Y. Zhou, Y. Wang, Y. C. Lu, Z. Li, Y. Zhou, Y. Wang, Y. C. Lu, Adv. Energy Mater., 2019, 9, 1802207 |
52. | M. Li, H. An, Y. Song, Q. Liu, J. Wang, H. Huo, S. Lou, J. Wang, J. Am. Chem. Soc., 2023, 145, 25632 |
53. | Y. F. Huang, J. P. Zeng, S. F. Li, C. Dai, J. F. Liu, C. Liu, Y. B. He, Adv. Energy Mater., 2023, 13, 2203888 |
54. | J. Zhang, Y. Zeng, Q. Li, Z. Tang, D. Sun, D. Huang, L. Zhao, Y. Tang, H. Wang, Energy Storage Mater., 2023, 54, 440 |
55. | X. Wang, L. Ye, C.-W. Nan, X. Li, ACS Appl. Mater. Interfaces, 2022, 14, 46627 |
56. | J. Zheng, M. Tang, Y. Y. Hu, Angew. Chem. Int. Ed., 2016, 55, 12538 |
57. | M. Liu, S. Ganapathy, M. Wagemaker, Acc. Chem. Res., 2022, 55, 333 |
58. | M. Liu, S. Zhang, E. R. H. van Eck, C. Wang, S. Ganapathy, M. Wagemaker, Nat. Nanotechnol., 2022, 17, 959 |
59. | J. Zhu, S. He, H. Tian, Y. Hu, C. Xin, X. Xie, L. Zhang, J. Gao, S. M. Hao, W. Zhou, L. Zhang, Adv. Funct. Mater., 2023, 33, 2301165 |
60. | Y. Zeng, L. Zhao, J. Zhang, Q. Li, D. Sun, Y. Ren, Y. Tang, G. Jin, H. Wang, Small Science, 2023, 3, 2300017 |
61. | S. Liu, W. Liu, D. Ba, Y. Zhao, Y. Ye, Y. Li, J. Liu, Adv. Mater., 2022, 35, 2110423 |
62. | P. Shi, J. Ma, M. Liu, S. Guo, Y. Huang, S. Wang, L. Zhang, L. Chen, K. Yang, X. Liu, Y. Li, X. An, D. Zhang, X. Cheng, Q. Li, W. Lv, G. Zhong, Y. B. He, F. Kang, Nat. Nanotechnol., 2023, 18, 602 |
63. | S. Guo, S. Tan, J. Ma, L. Chen, K. Yang, Q. Zhu, Y. Ma, P. Shi, Y. Wei, X. An, Q. Ren, Y. Huang, Y. Zhu, Y. Cheng, W. Lv, T. Hou, M. Liu, Y.-B. He, Q.-H. Yang, F. Kang, Energy Environ. Sci., 2024, 17, 3797 |
64. | X. An, Y. Liu, K. Yang, J. Mi, J. Ma, D. Zhang, L. Chen, X. Liu, S. Guo, Y. Li, Y. Ma, M. Liu, Y. B. He, F. Kang, Adv. Mater., 2024, 36, 2311195 |
65. | Y. Yuan, L. Chen, Y. Li, X. An, J. Lv, S. Guo, X. Cheng, Y. Zhao, M. Liu, Y.-B. He, F. Kang, Energy Materials and Devices, 2023, 1, 9370004 |
66. | X. An, Y. Yuan, K. Yang, D. Zhang, Y. Cao, M. Liu, F. Kang, Y.-B. He, Carb. Neutrality, 2024, 3, 22 |
67. | S. Li, S. Q. Zhang, L. Shen, Q. Liu, J. B. Ma, W. Lv, Y. B. He, Q. H. Yang, Adv. Sci., 2020, 7, 1903088 |
68. | P. Zhai, Z. Yang, Y. Wei, X. Guo, Y. Gong, Adv. Energy Mater., 2022, 12, 2200967 |
69. | Q. Wu, M. Fang, S. Jiao, S. Li, S. Zhang, Z. Shen, S. Mao, J. Mao, J. Zhang, Y. Tan, K. Shen, J. Lv, W. Hu, Y. He, Y. Lu, Nat. Commun., 2023, 14, 6296 |
70. | Y. Mao, P. Zhao, G. McConohy, H. Yang, Y. Tong, X. Wang, Adv. Energy Mater., 2014, 4, 1301624 |
71. | H. J. Ye, W. Z. Shao, L. Zhen, J. Appl. Polym. Sci., 2013, 129, 2940 |
72. | D. Shah, P. Maiti, E. Gunn, D. F. Schmidt, D. D. Jiang, C. A. Batt, E. P. Giannelis, Adv. Mater., 2004, 16, 1173 |
73. | S. K. Karan, R. Bera, S. Paria, A. K. Das, S. Maiti, A. Maitra, B. B. Khatua, Adv. Energy Mater., 2016, 6, 1601016 |
74. | S. Yu, W. Zheng, W. Yu, Y. Zhang, Q. Jiang, Z. Zhao, Macromolecules, 2009, 42, 8870 |
75. | L. Zhao, X. Yu, J. Jiao, X. Song, X. Cheng, M. Liu, L.-l. Wang, J. Zheng, W. Lv, G. Zhong, Y.-B. He, F. Kang, Cell Reports Physical Science, 2023, 4, 101382 |
76. | L. Zhu, J. Chen, Y. Wang, W. Feng, Y. Zhu, S. F. H. Lambregts, Y. Wu, C. Yang, E. R. H. van Eck, L. Peng, A. P. M. Kentgens, W. Tang, Y. Xia, J. Am. Chem. Soc., 2024, 146, 6591 |
77. | Y. Zhu, Q. Zhang, Y. Zheng, G. Li, R. Gao, Z. Piao, D. Luo, R.-H. Gao, M. Zhang, X. Xiao, C. Li, Z. Lao, J. Wang, Z. Chen, G. Zhou, Proc. Natl. Acad. Sci., 2023, 120, e2300197120 |
78. | K. Huang, Y. Wang, H. Mi, D. Ma, B. Yong, P. Zhang, J. Mater. Chem. A, 2020, 8, 20593 |
79. | J. Mi, L. Chen, J. Ma, K. Yang, T. Hou, M. Liu, W. Lv, Y. B. He, Small Methods, 2023, 8, 2301162 |
80. | K. Yang, L. Chen, J. Ma, Y.-B. He, F. Kang, InfoMat, 2021, 3, 1195 |
81. | T. Gu, L. Chen, Y. F. Huang, J. Ma, P. Shi, J. Biao, M. Liu, W. Lv, Y. B. He, Energy Environ. Mater., 2023, 6, e12531 |
82. | B. Li, Q. Su, L. Yu, D. Wang, S. Ding, M. Zhang, G. Du, B. Xu, ACS Appl. Mater. Interfaces, 2019, 11, 42206 |
83. | D. Lei, Y.-B. He, H. Huang, Y. Yuan, G. Zhong, Q. Zhao, X. Hao, D. Zhang, C. Lai, S. Zhang, J. Ma, Y. Wei, Q. Yu, W. Lv, Y. Yu, B. Li, Q.-H. Yang, Y. Yang, J. Lu, F. Kang, Nat. Commun., 2019, 10, 4244 |
84. | J. He, H. Chen, D. Wang, Q. Zhang, G. Zhong, Z. Peng, J. Phys. Chem. Lett., 2022, 13, 1500 |
85. | Y. Ma, Y. Qiu, K. Yang, S. Lv, Y. Li, X. An, G. Xiao, Z. Han, Y. Ma, L. Chen, D. Zhang, W. Lv, Y. Tian, T. Hou, M. Liu, Z. Zhou, F. Kang, Y.-B. He, Energy Environ. Sci., 2024, 17, 8274 |
86. | Z.-Y. Wu, S.-F. Li, Y.-F. Huang, Energy Storage Mater., 2024, 68, 103330 |
87. | T. Deng, L. Cao, X. He, A. -M. Li, D. Li, J. Xu, S. Liu, P. Bai, T. Jin, L. Ma, M. A. Schroeder, X. Fan, C. Wang, Chem, 2021, 7, 3052 |
88. | W. Yang, Y. Liu, X. Sun, Z. He, P. He, H. Zhou, Angew. Chem. Int. Ed., 2024, 63, e202401428 |
89. | Y. Zhu, Z. Lao, M. Zhang, T. Hou, X. Xiao, Z. Piao, G. Lu, Z. Han, R. Gao, L. Nie, X. Wu, Y. Song, C. Ji, J. Wang, G. Zhou, Nat. Commun., 2024, 15, 3914 |
90. | C. Xue, S. Guan, B. Hu, X. Wang, C. Xin, S. Liu, J. Yu, K. Wen, L. Li, C.-W. Nan, Energy Storage Mater., 2022, 46, 452 |
91. | J. Wu, L. Yuan, W. Zhang, Z. Li, X. Xie, Y. Huang, Energy Environ. Sci., 2021, 14, 12 |
92. | J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu, F. Shi, A. Pei, H. Chen, W. Chen, J. Chen, X. Zhang, L. Zong, J. Wang, L. Q. Chen, J. Qin, Y. Cui, Nat. Nanotechnol., 2019, 14, 705 |
93. | J. Hu, P. He, B. Zhang, B. Wang, L.-Z. Fan, Energy Storage Mater., 2020, 26, 283 |
94. | Y. Ma, C. Wang, K. Yang, B. Li, Y. Li, S. Guo, J. Lv, X. An, M. Liu, Y. B. He, F. Kang, ACS Appl. Mater. Interfaces, 2023, 15, 17978 |
95. | H. Zhao, Y. Liu, L. Huang, L. Li, X. Li, Z. Cui, L. Du, S. Liao, Energy Storage Mater., 2024, 71, 103625 |
96. | L. Nie, J. Zhu, X. Wu, M. Zhang, X. Xiao, R. Gao, X. Wu, Y. Zhu, S. Chen, Z. Han, Y. Yu, S. Wang, S. Ling, G. Zhou, Adv. Mater., 2024, 36, e2400115 |
97. | C. Li, M. Zhang, P. Li, H.-R. Ren, X. Wu, Z. Piao, X. Xiao, M. Zhang, X. Liang, X. Wu, B. Chen, H. Li, Z. Han, J. Liu, L. Qiu, G. Zhou, H.-M. Cheng, J. Am. Chem. Soc., 2024, 146, 3553 |
98. | Y. Jing, Q. Lv, Y. Chen, B. Wang, B. Wu, C. Li, S. Yang, Z. He, D. Wang, H. Liu, S. Dou, Journal of Energy Chemistry, 2024, 94, 158 |
99. | D. Chen, Y. Liu, C. Xia, Y. Han, Q. Sun, X. Wang, W. Chen, X. Jian, W. Lv, J. Ma, W. He, InfoMat, 2021, 4, e12247 |
100. | W. Liu, C. Yi, L. Li, S. Liu, Q. Gui, D. Ba, Y. Li, D. Peng, J. Liu, Angew. Chem. Int. Ed., 2021, 60, 12931 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Performance comparison of different polymer electrolytes.
Schematic of the structure in this review.
a Schematic of structure for PVDF-based electrolytes.[34] Copyright 2021, Wiley-VCH. b Surface SEM images of PVDF electrolytes (the inset image is the optical image).[38] Copyright 2022, Elsevier. c Top-view SEM image of dense PVDF-based electrolytes (inset: related digital photographs).[34] d AFM phase image under tapping mode.[34] Copyright 2021, Wiley-VCH. e Schematic of the effects of molecular weight on the properties of PVDF-based electrolytes.[37] Copyright 2022, American Chemical Society. f Arrhenius plots and g cyclic voltammetry of the PVDF–LiX electrolytes.[23] Copyright 2019, Wiley-VCH. Digital images of several h DMF-PVDF- and i PC-PVDF-Li salts mixtures after one day of reacting with a polished Li foil. (Right part: the structural diagrams of DMF and PC molecules).[40] Copyright 2024, Elsevier.
a Mechanism of ion transport in PEO electrolytes.[17] Copyright 2015, Royal Society of Chemistry. b Statistical diagram of the solvation structures for HCLD solution and PVDF and PDL electrolytes.[47] c Atomic force microscopy-nanoinfrared (AFM-nano-IR) overlap of C=O vibration of the DMF solvent at
a Multiple Li-ion transport channels in composite electrolytes. Copyright 2021. Wiley-VCH. b Illustration of the Li salt state in the PVDF and composite electrolytes.[62] Copyright 2023, Spring Nature. c Illustration of the LiFSI dissociation and absorption processes on the T-BTO3-x.[63] Copyright 2024, The Royal Society of Chemistry. d Schematic diagram of the NaNbO3 participating in SEI.[64] Copyright 2024, Wiley-VCH.
Strategies for the improvement of ionic conductivity. a Schematic illustration for the influence of fluorinated graphene on the properties of polymer electrolytes, which can reduce the size of polymer particles and create uniform Li+ flux.[68] Copyright 2022, Wiley-VCH. b Schematic diagram of Li salt dissociation and ion transportation facilitated by the polymer matrix of SPEs with different conformations.[53] Copyright 2023, Wiley-VCH. c Illustration of Li-ion transport pathways in PVDF-based electrolytes without (left) and with (right) MPS.[75] Copyright 2023, Elsevier. d 2D 7Li-7Li EXSY spectra recorded at 20 °C (upper left) and 40 °C (lower left) with Tmix of 500 ms. The black boxes indicate the positions of heterocorrelation signals along the off-diagonals. Schematic of the Li+ diffusion mechanism (right).[76] Copyright 2024, American Chemical Society. e Coordination bond length in unsaturated coordination Prussian blue analog filler adsorbed LiTFSI.[77] Copyright 2023, National Academy of Sciences. f Schematic diagram of the Li+ migration at the surface of ceramic particles with and without DMF.[59] Copyright 2023, Wiley-VCH.
a Illustration of the interface design of inorganic-rich SEI using UV-cured PHCE thin layer.[87] Copyright 2021, Elsevier. b Schematic illustration of the free-solvent-capturing strategy to enhance interfacial stability.[52] Copyright 2023, American Chemical Society. c Schematic diagram of the working mechanism of solid-state NCM811/Li batteries using composite electrolyte with zeolite filler.[88] Copyright 2024, Wiley-VCH. d Schematic illustration of the ligand-assisted Li+ transport mechanism where Li+ is attached, guided, and then detached with DMF ligands at the locally-confined DMF-rich interfaces.[89] Copyright 2024, Springer Nature.
a Schematic diagram of the solid-state battery fabricating process and key components with ePTFE framework.[95] Copyright 2024, Elsevier. b Preparation process of PVDF & PU/LLZTO-based electrolyte.[96] Copyright 2024, Wiley-VCH. c Large-scale fabrication and assembly mechanism of ANFs into ultrathin, ultra-strong layered membranes.[97] Copyright 2024, American Chemical Society.
a FLIR images of PVDF/LiTFSI (top) and PBI/PVDF/LiTFSI (bottom) from 30°C to 300°C. b Optical photographs of the burning tests of PVDF/LiTFSI (top) and PBI/PVDF/LiTFSI (bottom).[99] Copyright, 2023 Wiley-VCH. c FTIR spectra of NCM without C@LATP at different depths before cycling. d FTIR spectra of NCM with C@LATP at different depths before cycling. e Schematics of Li+ transport paths and the limited diffusion of [Li (DMF)x]+ in the cathode without C@LATP (left) and cathode with C@LATP (right).[49] Copyright 2024, The Royal Society of Chemistry. f Illustration of Li ion transport pathways in common SPEs and PISSEs.[100] Copyright 2021, Wiley-VCH.