Citation: | Zuosu Qin, Yuanhang Gao, Tao Zhang, Yuelin Li, Renfei Zhao, Ning Zhang, Xiaohe Liu, Long Chen, Gen Chen. Rapid desolvation and anti-reduction electrolyte enables high-performance lithium metal batteries[J]. Energy Lab, 2024, 2(2): 240012. doi: 10.54227/elab.20240012 |
Lithium metal batteries (LMBs) have attracted widespread attention due to their potential for high-energy-density storage applications. However, the sluggish kinetics of traditional carbonate electrolytes at the electrode interface and severe side reactions between electrodes and electrolytes impedes the practical implementation of LMBs. Herein, we design a fast desolvation and anti-reduction electrolyte to achieve high-performance LMBs by tuning the solvation structure of Li+. The incorporation of bis(trifluoromethanesulfonyl)imide (TFSI−) and difluorophosphate (DFP−) anions into the solvation structure of Li+ mitigates the reactivity of the electrolyte with Li metal, promoting the anti-reduction capability of the electrolyte. In addition, the interaction between Li+ and solvent molecules as well as anions is weakened, which reduces the desolvation energy of Li+. Furthermore, the proposed anions can be preferentially sacrificed to form an inorganic-rich cathode electrolyte interphase (CEI), thereby inhibiting the oxidative decomposition of the electrolyte and the dissolution of transition metal (TM) elements. Therefore, the reversibility of the Li anode is improved to 97.8% and the Li||NCM622 cell exhibits a capacity retention of 78.3% after 250 cycles at 1 C. Even at a high loading or 3 C rate, the Li||NCM622 cells also demonstrate exceptional electrochemical performance.
1. | D. Lu, R. Li, M. M. Rahman, P. Yu, L. Lv, S. Yang, Y. Huang, C. Sun, S. Zhang, H. Zhang, J. Zhang, X. Xiao, T. Deng, L. Fan, L. Chen, J. Wang, E. Hu, C. Wang and X. Fan, Nature, 2024, 627, 101 |
2. | J. Zhang, H. Zhang, S. Weng, R. Li, D. Lu, T. Deng, S. Zhang, L. Lv, J. Qi, X. Xiao, L. Fan, S. Geng, F. Wang, L. Chen, M. Noked, X. Wang and X. Fan, Nat. Commun., 2023, 14, 2211 |
3. | Z. Qin, T. Zhang, X. Gao, W. Luo, J. Han, B. Lu, J. Zhou and G. Chen, Adv. Mater., 2024, 36, 2307091 |
4. | H. Yang, F. He, J. Shen, Z. Chen, Y. Yao, L. He and Y. Yu, Energy Lab, 2023, 1, 220007 |
5. | Y. Yang, L. Xu, C. Yan, J. Huang and Q. Zhang, Energy Lab, 2023, 1, 220011 |
6. | Q. Liu, Z. Chen, Y. Liu, Y. Hong, W. Wang, J. Wang, B. Zhao, Y. Xu, J. Wang, X. Fan, L. Li and H. B. Wu, Energy Storage Mater., 2021, 37, 521 |
7. | A. M. Li, O. Borodin, T. P. Pollard, W. Zhang, N. Zhang, S. Tan, F. Chen, C. Jayawardana, B. L. Lucht, E. Hu, X. Q. Yang and C. Wang, Nat. Chem., 2024, 16, 922 |
8. | J. Chen, D. Zhang, L. Zhu, M. Liu, T. Zheng, J. Xu, J. Li, F. Wang, Y. Wang, X. Dong and Y. Xia, Nat. Commun., 2024, 15, 3217 |
9. | Q.-K. Zhang, X.-Q. Zhang, J. Wan, N. Yao, T.-L. Song, J. Xie, L.-P. Hou, M.-Y. Zhou, X. Chen, B.-Q. Li, R. Wen, H.-J. Peng, Q. Zhang and J.-Q. Huang, Nat. Energy, 2023, 8, 725 |
10. | G. Zhang, J. Chang, L. Wang, J. Li, C. Wang, R. Wang, G. Shi, K. Yu, W. Huang, H. Zheng, T. Wu, Y. Deng and J. Lu, Nat. Commun., 2023, 14, 1081 |
11. | H. Ye and Y. Li, Energy Lab, 2023, 1, 220003 |
12. | Z. Han, D. Zhang, H. Wang, G. Zheng, M. Liu and Y. He, Acta Phys.-Chim. Sin., 2023, 40, 2307034 |
13. | J. Liu, X. Li, D. Wu, H. Wang, J. Huang and J. Ma, Acta Phys.-Chim. Sin., 2023, 40, 2306039 |
14. | Q. Ran, H. Zhao, J. Liu, L. Li, Q. Hu, F. Nie, X. Liu and S. Kormarneni, J. Energy Chem., 2023, 82, 475 |
15. | H. Huang, C. Liu, Z. Liu, Y. Wu, Y. Liu, J. Fan, G. Zhang, P. Xiong and J. Zhu, Adv. Powder Mater., 2024, 3, 100141 |
16. | Z. Zhao, X. Zhao, Y. Zhou, S. Liu, G. Fang and S. Liang, Adv. Powder Mater., 2023, 2, 100139 |
17. | Z. Piao, H. R. Ren, G. Lu, K. Jia, J. Tan, X. Wu, Z. Zhuang, Z. Han, C. Li, R. Gao, X. Tao, G. Zhou and H. M. Cheng, Angew. Chem. Int. Ed., 2023, 62, e202300966 |
18. | Z. Cui, C. Liu and A. Manthiram, Adv. Mater., 2024, 36, 2409272 |
19. | Y. Gao, G. Wu, W. Fang, Z. Qin, T. Zhang, J. Yan, Y. Zhong, N. Zhang and G. Chen, Angew. Chem. Int. Ed., 2024, 63, e202403668 |
20. | Z. Wen, W. Fang, F. Wang, H. Kang, S. Zhao, S. Guo and G. Chen, Angew. Chem. Int. Ed., 2024, 63, e202314876 |
21. | W. Fang, Z. Wen, F. Wang, L. Chen, Y. Zhang, N. Zhang, X. Liu and G. Chen, Sci. Bull., 2024, 69, 1686-1696 |
22. | Z. Wen, W. Fang, X. Wu, Z. Qin, H. Kang, L. Chen, N. Zhang, X. Liu and G. Chen, Adv. Funct. Mater., 2022, 32, 2204768 |
23. | F. Wang, Z. Wen, Z. Zheng, W. Fang, L. Chen, F. Chen, N. Zhang, X. Liu, R. Ma and G. Chen, Adv. Energy Mater., 2023, 13, 2203830 |
24. | J. Pokharel, A. Cresce, B. Pant, M. Y. Yang, A. Gurung, W. He, A. Baniya, B. S. Lamsal, Z. Yang, S. Gent, X. Xian, Y. Cao, W. A. Goddard, K. Xu and Y. Zhou, Nat. Commun., 2024, 15, 3085 |
25. | Q. Zhang, L. Xu, X. Yue, J. Liu, X. Wang, X. He, Z. Shi, S. Niu, W. Gao, C. Cheng and Z. Liang, Adv. Energy Mater., 2023, 13, 2302620 |
26. | Z. Wen, W. Fang, L. Chen, Z. Guo, N. Zhang, X. Liu and G. Chen, Adv. Funct. Mater., 2021, 31, 2104930 |
27. | J. Li, L. Chen, F. Wang, Z. Qin, Y. Zhang, N. Zhang, X. Liu and G. Chen, Chem. Eng. J., 2023, 451, 138536 |
28. | N.-Y. Park, S.-B. Kim, M.-C. Kim, S.-M. Han, D.-H. Kim, M.-S. Kim and Y.-K. Sun, Adv. Energy Mater., 2023, 13, 2301530 |
29. | Y. Huang, B. Cao, X. Xu, X. Li, K. Zhou, Z. Geng, Q. Li, X. Yu and H. Li, Adv. Energy Mater., 2024, 14, 2400943 |
30. | W. Zou, J. Zhang, M. Liu, J. Li, Z. Ren, W. Zhao, Y. Zhang, Y. Shen and Y. Tang, Adv. Mater., 2024, 36, 2400537 |
31. | W. Cai, Y. Deng, Z. Deng, Y. Jia, Z. Li, X. Zhang, C. Xu, X. Q. Zhang, Y. Zhang and Q. Zhang, Adv. Energy Mater., 2023, 13, 2301396 |
32. | Y. Li, M. Liu, K. Wang, C. Li, Y. Lu, A. Choudhary, T. Ottley, D. Bedrov, L. Xing and W. Li, Adv. Energy Mater., 2023, 13, 1300918 |
33. | C. Li, Y. Li, Z. Chen, Y. Zhou, F. Bai and T. Li, Chin. Chem. Lett., 2023, 34, 107852 |
34. | G. Fang, W. Chen, H. Yang, H. Fang, C. Yu and M. Wu, Chin. Chem. Lett., 2023, 35, 108799 |
35. | T. Xu, T. Zheng, Z. Ru, J. Song, M. Gu, Y. Yue, Y. Xiao, S. Amzil, J. Gao, P. Müller-Buschbaum, K. Wang, H. Zhao, Y. J. Cheng and Y. Xia, Adv. Funct. Mater., 2024, 34, 2313319 |
36. | Z. Wang, X. Che, D. Wang, Y. Wang, X. He, Y. Zhu and B. Zhang, Angew. Chem. Int. Ed., 2024, 63, e202404109 |
37. | A. Wang, L. Wang, H. Liang, Y. Song, Y. He, Y. Wu, D. Ren, B. Zhang and X. He, Adv. Funct. Mater., 2023, 33, 2211958 |
38. | X. -Y. Fan, M. Liu, T. -L. Chen, W. Hao, Z. Cao, N. Jiang, Q. Liu, Y. -H. Feng, H. Qin, S. -F. Chen, S. Liu, X. Ji, Y. Xiao, S. Chou and P. -F. Wang, Adv. Funct. Mater., 2024, 34, 2400996 |
39. | B. D. Adams, J. Zheng, X. Ren, W. Xu and J. G. Zhang, Adv. Energy Mater., 2017, 8, 1702097 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
ENLAB-2024-0012-suppl |
Snapshots of MD simulations, radial distribution functions and coordination numbers in a, c BE and b, d TDFDT electrolytes. e Coordination number of the first solvation sheath of Li+. The first solvation sheath coordination number percentages of f BE and g TDFDT. h The binding energy of Li+ with solvents or anions. i The electrostatic potentials and corresponding lowest unoccupied molecular orbital values of the representative solvation structures extracted from MD simulations. j 7Li NMR spectra of different electrolytes. Raman spectra of k BE and l TDFDT.
CE tested by Li||Cu half-cells of a long-term cycling and b Aurbach method. Voltage-time profiles of Li||Li symmetric cells at c 1 mA cm−2 and d 2 mA cm−2 with a fixed capacity of 1 mAh cm−2. e Voltage-time profiles of Li||Li symmetric cells at different current densities. f CV test of Li||Cu half-cells at a scan rate of 1 mV s−1. g Tafel curves obtained from Li||Li symmetric cells at a scan rate of 1 mV s−1. Li+ transfer number of h BE and i TDFDT (Inset: Impedance of Li||Li symmetric cells before and after polarization). The activation energy of j Li+ passing through SEI and k Li+ desolvation at the anode interface. The l top and m cross-sectional views of the Li deposition morphology.
The in-depth XPS spectra of the Li metal surface in Li||Li symmetrical cells after 20 cycles at 1 mA cm−2 and a fixed capacity of 1 mAh cm−2 using a-d BE and e-h TDFDT.
Electrochemical performance of Li||NCM622 cells. a Long-term cycling performance and b corresponding voltage-capacity profiles of Li||NCM622 cells with different electrolytes. c Long-term cycling performance and d corresponding voltage-capacity profiles of Li||NCM622 cells with high cathode loading. e Rate performance of Li||NCM622 cells and f detailed information from 0.1 C to 3 C. g EIS spectra and h the fitted impedance values of Li||NCM622 cells after cycling at 1 C. i Leakage current during the 4.4 V constant-voltage floating test of the NCM622 cathodes after 5 cycles.
XPS spectra of NCM622 cathodes after 30 cycles in a-d BE and e-h TDFDT. i Element ratios in the XPS spectra of NCM622. j Concentration of transition metal elements on metallic Li in Li||NCM622 cells after 100 cycles. k TEM and l SEM images of NCM622 electrode after 100 cycles.