Citation: | Lai Yu, Jie Li, Nazir Ahmad, Xiaoyue He, Rong Liu, Xinyi Ma, Jianming Li, Anqiang Pan, Genqiang Zhang. Synergistic manipulation of micro-phosphorus and sulphur incorporation on carbonaceous cathode endows superior zinc-ion storage performance[J]. Energy Lab, 2024, 2(2): 240002. doi: 10.54227/elab.20240002 |
Aqueous zinc-ion hybrid capacitors (ZHCs) stand out as emerging electrochemical energy storage systems, combining the merits of low cost and impressive theoretical capacity. Nevertheless, unsatisfactory energy density and cycle life of ZHCs limit their widespread application. Herein, a simple one-pot approach was introduced to mitigate the issues through phosphorus and sulfur synergistically activated carbon nanosheets with hierarchically porous architecture (PS-HPCNS), deemed as a potential cathode candidate. The PS-HPCNS can show an excellent Zn-ion storage performance, including a high electrochemical capacity of 240.1 mAh g−1 under 0.2 A g−1, a decent energy density of 139.3 Wh kg−1 at 116 W kg−1, also a long cycle life over
1. | S. Alvin, H. S. Cahyadi, J. Hwang, W. Chang, S. K. Kwak, J. Kim, Adv. Energy Mater., 2020, 10, 2000283 |
2. | C. Zhang, M. Liang, S.-H. Park, Z. Lin, A. Seral-Ascaso, L. Wang, A. Pakdel, C. Ó. Coileáin, J. Boland, O. Ronan, N. McEvoy, B. Lu, Y. Wang, Y. Xia, J. N. Coleman, V. Nicolosi, Energy Environ. Sci., 2020, 13, 2124 |
3. | B. Yong, D. Ma, Y. Wang, H. Mi, C. He, P. Zhang, Adv. Energy Mater., 2020, 10, 2002354 |
4. | H. Li, L. Ma, C. Han, Z. Wang, Z. Liu, Z. Tang, C. Zhi, Nano Energy, 2019, 62, 550 |
5. | Y. F. Xu, Y. C. Du, H. Chen, J. Chen, T. J. Ding, D. M. Sun, D. H. Kim, Z. Q. Lin, X. S. Zhou, Chem. Soc. Rev., 2024, 53, 7202 |
6. | Y. H. Man, P. Jaumaux, Y. F. Xu, Y. T. Fei, X. Y. Mo, G. X. Wang, X. S. Zhou, Sci. Bull., 2023, 68, 1819-1842 |
7. | H. Tang, J. Yao, Y. Zhu, Adv. Energy Mater., 2021, 11, 2003994 |
8. | L. Wu, Y. Dong, Energy Storage Mater., 2021, 41, 715 |
9. | S. Tang, C. Wang, X. Pu, X. Gu, Z. Chen, Acta Phys.-Chim. Sin., 2023, 39, 2212037 |
10. | S. Gheytani, Y. Liang, F. Wu, Y. Jing, H. Dong, K. K. Rao, X. Chi, F. Fang, Y. Yao, Adv. Sci., 2017, 4, 1700465 |
11. | Z. Wang, M. Zhang, W. Ma, J. Zhu, W. Song, Small, 2021, 17, 2100219 |
12. | J. Yin, W. Zhang, N. A. Alhebshi, N. Salah, H. N. Alshareef, Adv. Energy Mater., 2021, 11, 2100201 |
13. | Q. Liu, H. Zhang, J. Xie, X. Liu, X. Lu, Carbon Energy, 2020, 2, 521 |
14. | Z. Li, Y. An, S. Dong, C. Chen, L. Wu, Y. Sun, X. Zhang, Energy Storage Mater., 2020, 31, 252 |
15. | L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu, J. Cheng, C. Xu, B. Li, Q.-H. Yang, F. Kang, Energy Storage Mater., 2018, 13, 96 |
16. | Z. Huang, A. Chen, F. Mo, G. Liang, X. Li, Q. Yang, Y. Guo, Z. Chen, Q. Li, B. Dong, C. Zhi, Adv. Energy Mater., 2020, 10, 2001024 |
17. | G. Yang, J. Huang, X. Wan, Y. Zhu, B. Liu, J. Wang, P. Hiralal, O. Fontaine, Y. Guo, H. Zhou, Nano Energy, 2021, 90, 106500 |
18. | C.-C. Hou, Y. Wang, L. Zou, M. Wang, H. Liu, Z. Liu, H. F. Wang, C. Li, Q. Xu, Adv. Mater., 2021, 33, 2101698 |
19. | R. Fei, H. Wang, Q. Wang, R. Qiu, S. Tang, R. Wang, B. He, Y. Gong, H. J. Fan, Adv. Energy Mater, 2020, 10, 2002741 |
20. | H. Zhang, Z. Chen, Y. Zhang, Z. Ma, Y. Zhang, L. Bai, L. Sun, J. Mater. Chem. A, 2021, 9, 16565 |
21. | L. Huang, Y. Xiang, M. Luo, Q. Zhang, H. Zhu, K. Shi, S. Zhu, Carbon, 2021, 185, 1 |
22. | Q. Sun, D. Li, J. Cheng, L. Dai, J. Guo, Z. Liang, L. Ci, Carbon, 2019, 155, 601 |
23. | Y. Qian, Y. Li, Z. Yi, J. Zhou, Z. Pan, J. Tian, Y. Wang, S. Sun, N. Lin, Y. Qian, Adv. Funct. Mater., 2020, 31, 2006875 |
24. | X. Zheng, J. Wu, X. Cao, J. Abbott, C. Jin, H. Wang, P. Strasser, R. Yang, X. Chen, G. Wu, Applied Catalysis B: Environmental, 2019, 241, 442 |
25. | X. Hu, G. Zhong, J. Li, Y. Liu, J. Yuan, J. Chen, H. Zhan, Z. Wen, Energy Environ. Sci., 2020, 13, 2431 |
26. | W. Li, M. Zhou, H. Li, K. Wang, S. Cheng, K. Jiang, Energy Environ. Sci., 2015, 8, 2916 |
27. | Y. Liu, Y. Ouyang, D. Huang, C. Jiang, X. Liu, Y. Wang, Y. Dai, D. Yuan, J. W. Chew, Sci. Total Environ., 2020, 706, 136019 |
28. | K. Kubota, S. Shimadzu, N. Yabuuchi, S. Tominaka, S. Shiraishi, M. Abreu-Sepulveda, A. Manivannan, K. Gotoh, M. Fukunishi, M. Dahbi, S. Komaba, Chem. Mater., 2020, 32, 2961 |
29. | D. Han, S. Wu, S. Zhang, Y. Deng, C. Cui, L. Zhang, Y. Long, H. Li, Y. Tao, Z. Weng, Q. H. Yang, F. Kang, Small, 2020, 16, 2001736 |
30. | X. Shi, H. Zhang, S. Zeng, J. Wang, X. Cao, X. Liu, X. Lu, ACS Materials Lett., 2021, 3, 1291 |
31. | Y. Lu, Z. Li, Z. Bai, H. Mi, C. Ji, H. Pang, C. Yu, J. Qiu, Nano Energy, 2019, 66, 104132 |
32. | Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu, Y. Wang, Y. Xia, Joule, 2019, 3, 1289 |
33. | D. Wu, C. Ji, H. Mi, F. Guo, H. Cui, P. Qiu, N. Yang, Nanoscale, 2021, 13, 15869 |
34. | H. He, J. Lian, C. Chen, Q. Xiong, M. Zhang, Chem. Eng. J., 2021, 421, 129786 |
35. | H. Fan, X. Hu, S. Zhang, Z. Xu, G. Gao, Y. Zheng, G. Hu, Q. Chen, T. S. AlGarni, R. Luque, Carbon, 2021, 180, 254 |
36. | J. Yin, W. Zhang, W. Wang, N. A. Alhebshi, N. Salah, H. N. Alshareef, Adv. Energy Mater., 2020, 10, 2001705 |
37. | Y. Shao, Z. Sun, Z. Tian, S. Li, G. Wu, M. Wang, X. Tong, F. Shen, Z. Xia, V. Tung, J. Sun, Y. Shao, Adv. Funct. Mater, 2020, 31, 2007843 |
38. | H. Xu, W. He, Z. Li, J. Chi, J. Jiang, K. Huang, S. Li, G. Sun, H. Dou, X. Zhang, Adv. Funct. Mater, 2022, 2111131 |
39. | Y. Li, W. Yang, W. Yang, Z. Wang, J. Rong, G. Wang, C. Xu, F. Kang, L. Dong, Nano-Micro Lett., 2021, 13, 95 |
40. | Y. Yang, D. Chen, H. Wang, P. Ye, Z. Ping, J. Ning, Y. Zhong, Y. Hu, Chem. Eng. J., 2022, 431, 133250 |
41. | L. Wang, M. Peng, J. Chen, X. Tang, L. Li, T. Hu, K. Yuan, Y. Chen, ACS Nano, 2022, 16, 2877 |
42. | P. Liu, W. Liu, Y. Huang, P. Li, J. Yan, K. Liu, Energy Storage Mater., 2020, 25, 858 |
43. | Z. Tie, L. Liu, S. Deng, D. Zhao, Z. Niu, Angew. Chem. Int. Ed., 2020, 59, 4920 |
44. | X. Deng, J. Li, Z. Shan, J. Sha, L. Ma, N. Zhao, J. Mater. Chem., 2020, 8, 11617 |
45. | H. Zhang, Q. Liu, Y. Fang, C. Teng, X. Liu, P. Fang, Y. Tong, X. Lu, Adv. Mater., 2019, 31, 1904948 |
46. | C. Lv, W. Xu, H. Liu, L. Zhang, S. Chen, X. Yang, X. Xu, D. Yang, Small, 2019, 15, 1900816 |
47. | Q. Jin, W. Li, K. Wang, H. Li, P. Feng, Z. Zhang, W. Wang, K. Jiang, Adv. Funct. Mater., 2020, 30, 1909907 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
ENLAB-2024-0002-suppl |
a Schematic illustration of the preparation process of PS-HPCNS. b SEM image of C-TDP/PA-K. c SEM, d TEM and e HRTEM images of PS-HPCNS. f Corresponding elemental mappings (C, S, and P) of PS-HPCNS. g N2 adsorption-desorption isotherms, complemented by the pore size distribution analysis of PS-HPCNS.
a Typical XRD patterns and b XPS survey spectra of PS-HPCNS and S-PC; High-resolution c C 1s, d S 2p and e P 2p XPS spectra of PS-HPCNS; f Raman spectra of PS-HPCNS and S-PC.
a the ZHC based on the PS-HPCNS cathode; b rate capability of the PS-HPCNS and S-PC based ZHCs; c Galvanostatic charge-discharge profiles of PS-HPCNS cathode; d Ragone plots, and e ultralong cycling performance of the assembled ZHC with the PS-HPCNS cathode at 10 A g−1.
a-b CV profiles of PS-HPCNS and S-PC cathode; c The fitting plot between log(i) and log(v); d The capacitive contributions at 10 mV s−1; e Normalized capacitive contributions at different scan rates; (f) Nyquist plots of PS-HPCNS and S-PC cathodes.
Energy storage mechanism of the ZHC based on the PS-HPCNS cathode. a The discharge and charge profiles at 0.2 A g−1; The ex-situ XRD patterns of b Zn|In anode and c PS-HPCNS cathode; d Ex situ SEM images of PS-HPCNS cathode; e In situ Raman spectroscopy and f ex-situ XPS spectra of C 1s.
Theoretical calculations for zinc storage behavior. Top and side illustration of simulations for Zn ions adsorbed in the a pristine carbon, b S-PC and c PS-HPCNS models. The different charge densities of Zn ions adsorbed in the d pristine carbon, e S-PC, and f PS-HPCNS. Corresponding DOS illustrations of different carbon structures g before and h after Zn ion adsorption. The cyan and yellow regions display charge depletion and accumulation, respectively. The brown, red, yellow, and blue colors indicate C, O, S, and P atoms, respectively.