Citation: | Jianing Liang, Pei Xiao, Jinguo Cheng, Mingxing Gong, Wanming Teng, Jiaye Liu, Hongfang Liu, Deli Wang. Enhancing the structure stability and sodium storage performance of P2-Na2/3Ni1/3Mn2/3O2 via Ti-doped[J]. Energy Lab, 2024, 2(2): 240001. doi: 10.54227/elab.20240001 |
Sodium-ion batteries (SIBs) are considered promising alternative electrochemical energy storage technologies due to the abundant element reserves and low cost of sodium. P2-type layered Na2/3Ni1/3Mn2/3O2 is a neoteric and fascinating cathode material for SIBs due to its stable structures and high operating voltage. However, the internal structure leads to multiple phase transitions and sluggish Na+ diffusion, resulting in rapid capacity decay and poor rate performance. Herein, we find that titanium-doped Na2/3Ni1/3Mn2/3O2 cathode exhibits a robust layer-structured framework with frustrated Na+ migration barriers below 0.149 eV. Benefiting from the large Ti-O bond energy and the created O-Ti-O configurations, the new cathode materials can not only stabilize the P2-type layered structure during a wide voltage range of 1.5‒4.3 V, but also lead to the rapid Na+ transport dynamics. Moreover, the excess Ti dopants occupies into Na sites, serving as “immovable pillars”, have virtually adverse effects of blocking working sodium ions diffusion and reducing the rechargeable capacity. These findings reveal an important strategy for the design of layered cathode materials that are vital for sodium-ion batteries.
1. | Y.-J. Liao, F. Zhou, Y.-X. Zhang, T.-A. Lu, Y. He, X.-Y. Chen, K.-F. Huo, Energy Stor. Sci. Technol., 2024, 13, 130 |
2. | G. Zhao, Z.-L. Gong, X.-Y. Li, Y. Yang, J. Electrochem., 2023, 29, 22042813 |
3. | Y. Lu, J. Liang, Y. Hu, Y. Liu, K. Chen, S. Deng, D. Wang, Adv. Energy Mater., 2020, 10, 1903312 |
4. | Z.-Z. Li, J.-L. Qin, J.-N. Liang, Z.-R. Li, R. Wang, D.-L. Wang, Energy Stor. Sci. Technol., 2022, 11, 2900 |
5. | S. Zhang, H. Liao, Z.-Q. Liu, C. Yan, J.-Q. Huang, Chinese Chem. Lett., 2024, 35, 109284 |
6. | J.-C. Chen, X.-D. Li, L.-W. Mi, W.-H. Chen, Energy Lab, 2023, 1, 230008 |
7. | M. D. Slater, D. Kim, E. Lee, C. S. Johnson, Adv. Funct. Mater., 2013, 23, 947 |
8. | Q. Ding, W. Zheng, A. Zhao, Y. Zhao, K. Chen, X. Zhou, H. Zhang, Q. Li, X. Ai, H. Yang, Y. Fang, Y. Cao, Adv. Energy Mater., 2023, 13, 2203802 |
9. | Y.-Y. Lai, H.-X. Xie, P. Li, B. Li, A. Zhao, L.-B. Luo, Z.-W. Jiang, Y.-J. Fang, S.-L. Chen, X.-P. Ai, D.-G. Xia, Y.-L. Cao, Adv. Mater., 2022, 34, 2206039 |
10. | K. B. Hueso, M. Armand, T. Rojo, Energy Environ. Sci., 2013, 6, 734 |
11. | Y.-J. Fang, X.-Y. Yu, X.-W. Lou, Angew. Chem. Int. Ed., 2017, 56, 5801 |
12. | W. Zuo, Y. Yang, Acc. Mater. Res., 2022, 3, 709 |
13. | S. Gao, Z. Zhu, H. Fang, K. Feng, J. Zhong, M. Hou, Y. Guo, F. Li, W. Zhang, Z. Ma, F. Li, Adv. Mater., 2024, 36, 2311523 |
14. | P. Zou, L. Yao, C. Wang, S. Lee, T. Li, H. Xin, Angew. Chem. Int. Ed., 2023, 62, e202304628 |
15. | C.-C. Cai, X.-Y. Li, H. Fan, Z. Chen, T. Zhu, J.-T. Li, R.-H. Yu, T.-Y. Li, P. Hu, L. Zhou, Carbon Neutrality, 2024, 3, 4 |
16. | X.-G. Yuan, Y. J. Guo, L. Gan, X. A. Yang, W. H. He, X. S. Zhang, Y. X. Yin, S. Xin, H. R. Yao, Z. Huang, Y. G. Guo, Adv. Funct. Mater., 2022, 32, 2111466 |
17. | N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev., 2014, 114, 11636 |
18. | Q. Shen, Y. Liu, L. Jiao, X. Qu, J. Chen, Energy Stor. Mater., 2021, 35, 400 |
19. | C.-C. Cai, X.-Y. Li, P. Hu, T. Zhu, J.-T. Li, H. Fan, R.-H. Yu, T.-Y. Zhang, S. Lee, L. Zhou, L.-Q. Mai, Adv. Funct. Mater., 2023, 33, 2215155 |
20. | J.-J. Braconnier, C. Delmas, C. Fouassier, P. Hagenmuller, Mater. Res. Bull., 1980, 15, 1797 |
21. | J. Zhang, W. Wang, W. Wang, S. Wang, B. Li, ACS Appl. Mater. Interfaces, 2019, 11, 22051 |
22. | D. H. Lee, J. Xu, Y. S. Meng, Phys. Chem. Chem. Phys., 2013, 15, 3304 |
23. | Y. Liu, Q. Shen, X. Zhao, J. Zhang, X. Liu, T. Wang, N. Zhang, L. Jiao, J. Chen, L.-Z. Fan, Adv. Funct. Mater., 2020, 30, 1907837 |
24. | P. F. Wang, Y. You, Y. X. Yin, Y. S. Wang, L. J. Wan, L. Gu, Y. G. Guo, Angew. Chem. Int. Ed., 2016, 55, 7445 |
25. | Y. Sun, S. Guo, H. Zhou, Energy Environ. Sci., 2019, 12, 825 |
26. | Q. Shen, Y. Liu, X. Zhao, J. Jin, Y. Wang, S. Li, P. Li, X. Qu, L. Jiao, Adv. Funct. Mater., 2021, 31, 2106923 |
27. | J. Zang, Y. Mao, X. Hao, H. Liu, T. Zhu, Z. Xu, Y. Xiao, T. Li, W. Wang, Y. Li, Chem. Eng. J., 2024, 483, 149036 |
28. | X. Xu, Q. Liu, H. Zhu, S. Cao, Y. Liu, ACS Sustainable Chem. Eng., 2023, 11, 15006 |
29. | S. Zhang, X. Li, Y. Su, Y. Yang, H. Yu, H. Wang, Q. Zhang, Y. Lu, D. Song, S. Wang, Q. Zhang, X. Rong, L. Zhang, L. Chen, Y. S. Hu, Adv. Funct. Mater., 2023, 33, 2301568 |
30. | H. Yoshida, N. Yabuuchi, K. Kubota, I. Ikeuchi, A. Garsuch, M. Schulz-Dobrick, S. Komaba, Chem. Commun., 2014, 50, 3677 |
31. | K. Tang, Y. Huang, X. Xie, S. Cao, L. Liu, H. Liu, Z.-G. Luo, Y. Wang, B.-B. Chang, H.-B. Shu, X.-Y. Wang, Chem. Eng. J., 2020, 399, 125275 |
32. | Q.-C. Wang, Z. Shadike, X.-L. Li, J. Bao, Q.-Q. Qiu, E. Hu, S.-M. Bak, X. Xiao, L. Ma, X.-J. Wu, X.-Q. Yang, Y.-N. Zhou, Adv. Energy Mater., 2021, 11, 2003455 |
33. | Q. Zhao, F. K. Butt, M. Yang, Z. Guo, X. Yao, M. J. M. Zapata, Y. Zhu, X. Ma, C. Cao, Energy Stor. Mater., 2021, 41, 581 |
34. | J. Xiao, H. Gao, K. Tang, M. Long, J. Chen, H. Liu, G. Wang, Small Methods, 2022, 6, 2101292 |
35. | W. Xu, R. Dang, L. Zhou, Y. Yang, T. Lin, Q. Guo, F. Xie, Z. Hu, F. Ding, Y. Liu, Y. Liu, H. Mao, J. Hong, Z. Zuo, X. Wang, R. Yang, X. Jin, X. Hou, Y. Lu, X. Rong, N. Xu, Y. S. Hu, Adv. Mater., 2023, 35, 2301314 |
36. | C.-P. Vicente, R. Ariza, W. Zuo, Y. Yang, G. F. Ortiz, Small, 2023, 20, 2305690 |
37. | C. Su, G. Liu, Q. Sun, L. Wen, Z. Chen, M. Zhao, ACS Appl. Energy Mater., 2024, 7, 1927 |
38. | T. Cui, L. Liu, Y. Xiang, C. Sheng, X. Li, Y. Fu, J. Am. Chem. Soc., 2024, 146, 13924 |
39. | X. L. Li, T. Wang, Y. Yuan, X. Y. Yue, Q. C. Wang, J. Y. Wang, J. Zhong, R. Q. Lin, Y. Yao, X. J. Wu, X. Q. Yu, Z. W. Fu, Y. Y. Xia, X. Q. Yang, T. Liu, K. Amine, Z. Shadike, Y. N. Zhou, J. Lu, Adv. Mater., 2021, 33, 2008194 |
40. | Y. Wang, Z. Feng, P. Cui, W. Zhu, Y. Gong, M. A. Girard, G. Lajoie, J. Trottier, Q. Zhang, L. Gu, Y. Wang, W. Zuo, Y. Yang, J. B. Goodenough, K. Zaghib, Nat. Commun., 2021, 12, 13 |
41. | Q. C. Wang, J. K. Meng, X. Y. Yue, Q. Q. Qiu, Y. Song, X. J. Wu, Z. W. Fu, Y. Y. Xia, Z. Shadike, J. Wu, X. Q. Yang, Y. N. Zhou, J. Am. Chem. Soc., 2018, 141, 840 |
42. | J. Peng, Y. Liu, Y. Pan, J. Wu, Y. Su, Y. Guo, X. Wu, C. Wu, Y. Xie, J. Am. Chem. Soc., 2020, 142, 18645 |
43. | J. Liang, Z. Li, J. Cheng, J. Qin, H. Liu, D. Wang, Nano Res., 2022, 16, 4987 |
44. | L. L. Wong, K. C. Phuah, R. Dai, H. Chen, W. S. Chew, S. Adams, Chem. Mater., 2021, 33, 625 |
45. | D. Carlier, J. H. Cheng, R. Berthelot, M. Guignard, M. Yoncheva, R. Stoyanova, B. J. Hwang, C. Delmas, Dalton Trans., 2011, 40, 9306 |
46. | A. Milewska, K. Świerczek, W. Zając, J. Molenda, J. Power Sources, 2018, 404, 39 |
47. | Y.-J. Shin, M.-H. Park, J.-H. Kwak, H. Namgoong, O. H. Han, Solid State Ionics, 2002, 150, 363 |
48. | Y.-J. Shin, M.-Y. Yi, Solid State Ionics, 2000, 132, 131 |
49. | P.-F. Wang, H.-R. Yao, X.-Y. Liu, Y.-X. Yin, J.-N. Zhang, Y. Wen, X. Yu, L. Gu, Y.-G. Guo, Sci. Adv., 2018, 4, eaar6018 |
50. | E. N. Bassey, P. J. Reeves, M. A. Jones, J. Lee, I. D. Seymour, G. Cibin, C. P. Grey, Chem. Mater., 2021, 33, 4890 |
51. | A. J. MacLeod, Appl. Math. Comput., 1993, 57, 305 |
52. | H. Chen, L. L. Wong, S. Adams, Acta Cryst., 2019, 75, 18 |
53. | K. Momma, F. Izumi, J. Appl. Cryst., 2011, 44, 1272 |
54. | S. Adams, Acta Cryst., 2001, B57, 278 |
55. | K. Zhang, D. Kim, Z. Hu, M. Park, G. Noh, Y. Yang, J. Zhang, V. W. Lau, S. L. Chou, M. Cho, S. Y. Choi, Y. M. Kang, Nat. Commun., 2019, 10, 5203 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
a XRD patterns of synthesized Na-NM, NMT-5, NMT-10 and NMT-20; Enlarged view of b (002) diffraction peaks in 15°-17° and c (100) diffraction peaks in 35°-37°. Rietveld refinement of d NMT-10 and e NMT-20. f The structure evolution of NMT with Ti doping.
a Fitting Ti 2p XPS spectra. b diagrammatic of two Na sites in P2-type structure. c site occupancy of Nae and Naf with Ti doping changes obtained from Rietveld refinement and Na 1s fine spectra. d HR-TEM image of NMT-10 at the [100] zone axis, and e intensity profiles measured in d at the (001) and (-100) directions. f HR-TEM image of NMT-10 at the [001] zone axis, and g corresponding atomic spacing of three directions marked in lines. h Elemental mapping of NMT-10 flake.
a electrochemical impedance spectroscopy (inset show gold ion-blocking electrodes and equivalent circuit, thickness normalization); b LSV operation and c ionic & electronic conductivity for targeted samples. d Galvanostatic charge/discharge profiles and e corresponding differential capacity versus voltage (dQ/dV) of Na-NM and NMT-10 at voltage window of 1.5-4.3 V. f Ion diffusion coefficients of Na-NM, NMT-5, NMT-10 and NMT-20 obtained from GITT.
Bond valence energy landscapes of Na+ diffusion pathways for a NMT-10 and b NMT-20. c Migration energy barriers following the Naf→Nae→Naf route. d Energy landscape in Na-NM, NMT-5, NMT-10, and NMT-20. e Schematic of multi-ion concerted migration pathways in NNM-10 and single-ion migration pathway in NNM-20.
a cycle performances at 0.1 C, b corresponding capacity retention after 200 cycles, and c rate capability at various current densities from 0.1 to 5 C of Na-NM, NMT-5, NMT-10 and NMT-20. Nyquist plots at different cycles of d Na-NM, e NMT-10, and f corresponding Warburg coefficients.
Typical charge/discharge profiles and in-situ XRD patterns of a Na-NM and c NMT-10. The cell volume of b Na-NM and d NMT-10 was calculated from XRD patterns during charge/discharge processes. e Schematic illustration of proposed reversible intercalation mechanism of Na+.