Citation: | Xue-Jiao Nie, Jin-Zhi Guo, Xing-Long Wu. NASICON-type V-based phosphate cathodes for sodium-ion batteries[J]. Energy Lab, 2025, 3(1): 240014. doi: 10.54227/elab.20240014 |
Sodium-ion batteries (SIBs) with abundant raw materials and cost-effectiveness, are regarded as promising technologies for energy storage. Among various cathode materials, NASICON-type vanadium-based phosphates exhibit exceptional sodium storage capabilities. Nevertheless, low energy density, inadequate electronic conductivity, the toxicity of vanadium, and elevated costs hinder its practical application. In order to advance the practical applicability of polyanionic vanadium phosphate, current research efforts are concentrated on formulating effective strategies for improving the electrochemical performance. Consequently, this perspective focuses on the research progress of V-based phosphate cathode materials from the lattice regulation strategies, including the effects of single or double regulation of cation and anion sites on their local crystal/electronic structure, electrode reaction kinetics, Na+ migration path, sodium storage properties and mechanisms. Furthermore, the remaining challenges and personal outlooks about the future development of NASICON-type phosphate cathodes are presented. This review aims to inspire the rational design of advanced polyanion cathode materials for SIBs.
1. | V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci., 2011, 4, 3243 |
2. | H. Pan, Y.-S. Hu, L. Chen, Energy Environ. Sci., 2013, 6, 2338 |
3. | T. Yang, D. Luo, Y. Liu, A. Yu, Z. Chen, iScience, 2023, 26, 105982 |
4. | P. Barpanda, G. Oyama, S.-i. Nishimura, S.-C. Chung, A. Yamada, Nat. Commun., 2014, 5, 4358 |
5. | J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Chem. Soc. Rev., 2017, 46, 3529 |
6. | Z.-Y. Gu, X.-T. Wang, Y.-L. Heng, K.-Y. Zhang, H.-J. Liang, J.-L. Yang, E. H. Ang, P.-F. Wang, Y. You, F. Du, X.-L. Wu, Sci. Bull., 2023, 68, 2302 |
7. | Z. Hao, X. Shi, Z. Yang, X. Zhou, L. Li, C. Q. Ma, S. Chou, Adv. Mater., 2023, 36, 2305135 |
8. | M. Li, C. Sun, X. Yuan, Y. Li, Y. Yuan, H. Jin, J. Lu, Y. Zhao, Adv. Funct. Mater., 2024, 34, 2314019 |
9. | S. Qiu, X. Wu, M. Wang, M. Lucero, Y. Wang, J. Wang, Z. Yang, W. Xu, Q. Wang, M. Gu, J. Wen, Y. Huang, Z. J. Xu, Z. Feng, Nano Energy, 2019, 64, 103941 |
10. | S. Li, J. Guo, Z. Ye, X. Zhao, S. Wu, J.-X. Mi, C.-Z. Wang, Z. Gong, M. J. McDonald, Z. Zhu, K.-M. Ho, Y. Yang, ACS Appl. Mater. Interfaces, 2016, 8, 17233 |
11. | Y. Jiang, X. Zhou, D. Li, X. Cheng, F. Liu, Y. Yu, Adv. Energy Mater., 2018, 8, 1800068 |
12. | K. Saravanan, C. W. Mason, A. Rudola, K. H. Wong, P. Balaya, Adv. Energy Mater., 2013, 3, 444 |
13. | C. Zhu, K. Song, P. A. van Aken, J. Maier, Y. Yu, Nano Lett., 2014, 14, 2175 |
14. | Z. Jian, C. Yuan, W. Han, X. Lu, L. Gu, X. Xi, Y. -S. Hu, H. Li, W. Chen, D. Chen, Y. Ikuhara, L. Chen, Adv. Funct. Mater., 2014, 24, 4265 |
15. | H. Zhang, L. Wang, L. Ma, Y. Liu, B. Hou, N. Shang, S. Zhang, J. Song, S. Chen, X. Zhao, Adv. Sci., 2024, 11, 2306168 |
16. | X. Yao, Z. Zhu, Q. Li, X. Wang, X. Xu, J. Meng, W. Ren, X. Zhang, Y. Huang, L. Mai, ACS Appl. Mater. Interfaces, 2018, 10, 10022 |
17. | S. Sun, S. Liu, Y. Chen, L. Li, Q. Bai, Z. Tian, Q. Huang, Y. Wang, X. Wang, L. Guo, Adv. Funct. Mater., 2023, 33, 2213711 |
18. | X.-R. Qi, Y. Liu, L.-L. Ma, B.-X. Hou, H.-W. Zhang, X.-H. Li, Y.-S. Wang, Y.-Q. Hui, R.-X. Wang, C.-Y. Bai, H. Liu, J.-J. Song, X.-X. Zhao, Rare Metals, 2022, 41, 1637 |
19. | X. Zhang, X. Rui, D. Chen, H. Tan, D. Yang, S. Huang, Y. Yu, Nanoscale, 2019, 11, 2556 |
20. | X. Rui, W. Sun, C. Wu, Y. Yu, Q. Yan, Adv. Mater., 2015, 27, 6670 |
21. | W. Duan, Z. Zhu, H. Li, Z. Hu, K. Zhang, F. Cheng, J. Chen, J. Mater. Chem. A, 2014, 2, 8668 |
22. | R. Huang, D. Yan, Q. Zhang, G. Zhang, B. Chen, H. Y. Yang, C. Yu, Y. Bai, Adv. Energy Mater., 2024, 14, 2400595 |
23. | L. Huang, J. Zhu, J.-X. Liu, H. Wu, G.-J. Zhang, J. Adv. Ceram., 2024, 13, 1093 |
24. | X. Wang, A. Yu, T. Jiang, S. Yuan, Q. Fan, Q. Xu, Adv. Mater., 2024, 36, 2410482 |
25. | F. Ji, K. Chen, F. Li, A. Zhao, Y. Fang, Y. Cao, Energy Storage Mater., 2024, 68, 103371 |
26. | X. Zhang, Z. Ju, Y. Zhu, K. J. Takeuchi, E. S. Takeuchi, A. C. Marschilok, G. Yu, Adv. Energy Mater., 2021, 11, 2000808 |
27. | E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Science, 2019, 366, 969 |
28. | Y. Huang, M. Xie, Z. Wang, Y. Jiang, Y. Yao, S. Li, Z. Li, L. Li, F. Wu, R. Chen, Small, 2018, 14, 1801246 |
29. | X. Wang, Z. Feng, J. Huang, W. Deng, X. Li, H. Zhang, Z. Wen, Carbon, 2018, 127, 149 |
30. | H. Li, H. Zhou, Chem. Commun., 2012, 48, 1201 |
31. | H. Zhang, Y. Huang, H. Ming, G. Cao, W. Zhang, J. Ming, R. Chen, Journal of Materials Chemistry A, 2020, 8, 1604 |
32. | Y. Fang, L. Xiao, X. Ai, Y. Cao, H. Yang, Adv. Mater., 2015, 27, 5895 |
33. | X. Chen, C. Zhao, K. Yang, S. Sun, J. Bi, N. Zhu, Q. Cai, J. Wang, W. Yan, Energy Environ. Mater., 2023, 6, e12483 |
34. | Z. Zhang, L. F. Nazar, Nat. Rev. Mater., 2022, 7, 389 |
35. | J.-H. Park, J.-H. Cho, S.-B. Kim, W.-S. Kim, S.-Y. Lee, S.-Y. Lee, J. Mater. Chem., 2012, 22, 12574 |
36. | Y. Liu, Y.-H. Zhang, J. Ma, J. Zhao, X. Li, G. Cui, Chem. Mat., 2024, 36, 54 |
37. | Q. Zhao, R. Wang, M. Gao, F. K. Butt, J. Jia, H. Wu, Y. Zhu, Nano Res., 2024, 17, 1441 |
38. | D. S. Hall, R. Gauthier, A. Eldesoky, V. S. Murray, J. R. Dahn, ACS Appl. Mater. Interfaces, 2019, 11, 14095 |
39. | H. Jiang, G. Qian, R. Liu, W.-D. Liu, Y. Chen, W. Hu, Sci. China Mater., 2023, 66, 4542 |
40. | D. Shumei, T. Dan, L. Ping, L. Huiqin, W. Fenyan, H. Zhang, J. Solid State Electrochem., 2023, 27, 1 |
41. | W. Yan, S. Yang, Y. Huang, Y. Yang, Y. Guohui, J. Alloy. Compd., 2020, 819, 153048 |
42. | F. He, J. Kang, T. Liu, H. Deng, B. Zhong, Y. Sun, Z. Wu, X. Guo, Ind. Eng. Chem. Res., 2023, 62, 3444 |
43. | B. Zhang, X. Ma, W. Hou, W. yuan, L. He, O. Yang, Y. Liu, J. Wang, Y. Xu, ACS Appl. Energ. Mater., 2022, 5, 14712 |
44. | Q. Ni, Y. Bai, F. Wu, C. Wu, Adv. Sci., 2017, 4, 1600275 |
45. | Y. Cao, Y. Liu, D. Zhao, J. Zhang, X. Xia, T. Chen, L.-c. Zhang, P. Qin, Y. Xia, J. Alloy. Compd., 2019, 784, 939 |
46. | H. Li, H. Tang, C. Ma, Y. Bai, J. Alvarado, B. Radhakrishnan, S. P. Ong, F. Wua, Y. S. Meng, C. Wu, Chem. Mat., 2018, 30, 2498 |
47. | A. Inoishi, Y. Yoshioka, L. Zhao, A. Kitajou, S. Okada, ChemElectroChem, 2017, 4, 2755 |
48. | J. Li, Z. Liang, Y. Jin, B. Yu, T. Wang, T. Wang, L. Zhou, H. Xia, K. Zhang, M. Chen, Small Methods, 2024, 8, 2301742 |
49. | L. Xiao, F. Ji, J. Zhang, X. Chen, Y. Fang, Small, 2023, 19, 2205732 |
50. | H. Li, Y. Bai, F. Wu, Q. Ni, C. Wu, ACS Appl. Mater. Interfaces, 2016, 8, 27779 |
51. | Y. Li, M. Chen, B. Liu, Y. Zhang, X. Liang, X. Xia, Adv. Energy Mater., 2020, 10, 2000927 |
52. | D. Fan, Q. Shen, H. Li, X. Qu, L. Jiao, Y. Liu, Energy Mater. Adv., 2024, 5, 0073 |
53. | L. Zhao, H. Zhao, Z. Du, N. Chen, X. Chang, Z. Zhang, F. Gao, A. Trenczek-Zajac, K. Świerczek, Electrochim. Acta, 2018, 282, 510 |
54. | S. Park, J.-N. Chotard, D. Carlier, I. Moog, M. Courty, M. Duttine, F. Fauth, A. Iadecola, L. Croguennec, C. Masquelier, Chem. Mat., 2021, 33, 5355 |
55. | F. Chen, V. M. Kovrugin, R. David, O. Mentré, F. Fauth, J. N. Chotard, C. Masquelier, Small Methods, 2019, 3, 1800218 |
56. | M. Chen, W. Hua, J. Xiao, J. Zhang, V. W.-h. Lau, M. Park, G.-H. Lee, S. Lee, W. Wang, J. Peng, L. Fang, L. Zhou, C.-K. Chang, Y. Yamauchi, S. Chou, Y.-M. Kang, J. Am. Chem. Soc., 2021, 143, 18091 |
57. | Q. Wang, A. Sarkar, D. Wang, L. Velasco, R. Azmi, S. S. Bhattacharya, T. Bergfeldt, A. Düvel, P. Heitjans, T. Brezesinski; et al, Energy Environ. Sci., 2019, 12, 2433 |
58. | Z. Y. Gu, X. X. Zhao, K. Li, J. M. Cao, X. T. Wang, J. Z. Guo, H. H. Liu, S. H. Zheng, D. H. Liu, H. Y. Wu, X. L. Wu, Adv. Mater., 2024, 36, 2400690 |
59. | L. Zhu, M. Wang, S. Xiang, D. Sun, Y. Tang, H. Wang, Adv. Energy Mater., 2023, 13, 2302046 |
60. | N. Zhang, X. Dong, Q. Yan, J. Wang, F. Jin, J. Liu, D. Wang, H. Liu, B. Wang, S. Dou, Energy Storage Mater., 2024, 72, 103734 |
61. | X. Liao, Y. Li, B. Xie, M. Xie, X. Tan, Q. Zheng, L. Li, X.-X. Zhao, Z.-Y. Gu, S. C. Smith, J. Zhao, D. Lin, X.-L. Wu, Energy Storage Mater., 2025, 74, 103920 |
62. | F. Ding, C. Zhao, D. Xiao, X. Rong, H. Wang, Y. Li, Y. Yang, Y. Lu, Y.-S. Hu, J. Am. Chem. Soc., 2022, 144, 8286 |
63. | Z. Y. Gu, J. Z. Guo, J. M. Cao, X. T. Wang, X. X. Zhao, X. Y. Zheng, W. H. Li, Z. H. Sun, H. J. Liang, X. L. Wu, Adv. Mater, 2022, 34, 2110108 |
64. | B. Wu, G. Hou, E. Kovalska, V. Mazanek, P. Marvan, L. Liao, L. Dekanovsky, D. Sedmidubsky, I. Marek, C. Hervoches, Z. Sofer, Inorg. Chem, 2022, 61, 4092 |
65. | M. Li, C. Sun, Q. Ni, Z. Sun, Y. Liu, Y. Li, L. Li, H. Jin, Y. Zhao, Adv. Energy Mater, 2023, 13, 2203971 |
66. | Y. Chen, Y. Xu, X. Sun, B. Zhang, S. He, L. Li, C. Wang, J. Power Sources, 2018, 378, 423 |
67. | M. Y. Wang, J. Z. Guo, Z. W. Wang, Z. Y. Gu, X. J. Nie, X. Yang, X. L. Wu, Small, 2020, 16, 1907645 |
68. | M.-Y. Wang, X.-X. Zhao, J.-Z. Guo, X.-J. Nie, Z.-Y. Gu, X. Yang, X.-L. Wu, Green Energy Environ., 2022, 7, 763 |
69. | Q. M. Yin, Z. Y. Gu, Y. Liu, H. Y. Lü, Y. T. Liu, Y. N. Liu, M. Y. Su, J. Z. Guo, X. L. Wu, Adv. Funct. Mater., 2023, 33, 2304046 |
70. | S.-Y. Li, Q.-M. Yin, Z.-Y. Gu, Y. Liu, Y.-N. Liu, M.-Y. Su, X.-L. Wu, J. Colloid Interface Sci., 2024, 664, 381 |
71. | Y. Liu, C. Sun, Q. Ni, Z. Sun, M. Li, S. Ma, H. Jin, Y. Zhao, Energy Storage Mater., 2022, 53, 881 |
72. | J. Hou, M. Hadouchi, L. Sui, J. Liu, M. Tang, W. H. Kan, M. Avdeev, G. Zhong, Y.-K. Liao, Y.-H. Lai, Y.-H. Chu, H.-J. Lin, C.-T. Chen, Z. Hu, Y. Huang, J. Ma, Energy Storage Mater., 2021, 42, 307 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
a Total density of states and b band structures of Na3V2(PO4)3 and Na3V1.75Al0.25(PO4)3.[53] Copyright 2018, Elsevier. c The Na+ distribution schematic of Na4FeV(PO4)3. d Electrochemical voltage-composition profile of pre-sodiated Na4FeV(PO4)3 during the first two cycles at a C/20 rate, with a voltage window of 1.3−4.3 V vs. Na+/Na.[54] Copyright 2021, American Chemical Society. e The first cycle charge-discharge curve for Na4MnV(PO4)3 at a rate of 0.05 C within the voltage range of 2.5 to 4.3 V.[55] Copyright 2019, Wiley-VCH. f Charge-discharge curves of the Na3V1.5Cr0.5(PO4)3 at various rates.[56] Copyright 2021, American Chemical Society.
a Comparison of migration energy barriers between the multilevel redox in NVP frame (MLNP) and NVP. b The Na+ diffusion pathway and corresponding migration energy barrier for the Na2↔Na2 pathway.[58] Copyright 2024, Wiley-VCH. c The crystal structure of the ME-NMVTP cathode and a magnified view of the TMO6 octahedron.[59] Copyright 2023, Wiley-VCH.
a Research distribution of high entropy cathode materials.[23] Copyright 2024, Tsinghua University Press. b The first charge-discharge curves. c The cycling performance of NVMP at 20 C.[65] 2023, Wiley-VCH.
a Schematic diagram of the various types of polyanionic species. b Structural degradation scheme for Na3V2(PO4)3.[66] Copyright 2018, ELSEVIER. c, d Calculated total DOS of c NVP and d NVPSi0.1.[67] Copyright 2020, Wiley-VCH.
a Using charge balance theory to enhance the energy density of Na3V2(PO4)3. b Schematic illustration of structural changes in the NVAP-Si3 electrode during cycling. c The charge/discharge curves of NVAP-Si3 at 0.1 C.[71] Copyright 2022, Elsevier. d-e Total and projected densities of states d, along with the side-view electron density difference e for NMVP and NMVPF-Mn/V materials.[72] Copyright 2021, Elsevier.
The future development direction of NASICON-type phosphate cathodes for SIBs.