Runyuan Cao, Yifan Yu, Chilin Li. Metal fluorides emerging as fast-charging and high-capacity cathodes from the viewpoint of open framework strategies[J]. Energy Lab, 2025, 3(1): 240017. doi: 10.54227/elab.20240017
Citation: Runyuan Cao, Yifan Yu, Chilin Li. Metal fluorides emerging as fast-charging and high-capacity cathodes from the viewpoint of open framework strategies[J]. Energy Lab, 2025, 3(1): 240017. doi: 10.54227/elab.20240017

REVIEW ARTICLE

Metal fluorides emerging as fast-charging and high-capacity cathodes from the viewpoint of open framework strategies

More Information
  • Corresponding author: chilinli@mail.sic.ac.cn
  • § These authors contribute equally to this work.

  • The urgent demand for both large energy density and reliable safety has triggered broad-scale research in developing brand-new energy storage systems, including metal fluoride FeF3 as conversion-type cathode, in view of its high capacity and energy density based on the multi-electron redox principle. Its present development is plagued by the inferior ion conductivity resulting from the dense and compact original structure with limited ion diffusion channel, further leading to the huge volumetric expansion and slow reaction kinetics. Based on the performance degradation mechanism, it is crucial to manipulate the material structure from a molecule level with multidimensional transport channels, that is, an open framework strategy. Here, a timely review on the current situations for open framework and its application into fluoride-based cathode is presented. Specifically, the formation mechanisms for various open frameworks and the multiple functions of channel fillers are highlighted. We also focus on the construction of water-free open framework cathode and its combination with other hetero-doping, microstructure and electrolyte modulation strategies, in order to induce a more enduring cycling referring to high-capacity conversion reaction. With this review as background, new conception into open framework strategy and approach challenges are discussed, aiming at propelling the employment of metal fluoride cathodes to large-scale energy storage devices in the near future.


  • 加载中
  • Runyuan Cao received his Bachelor degree in Nanjing University of Science and Technology in 2022. He is currently a Ph.D. candidate in Shanghai Institute of Ceramics, Chinese Academy of Sciences under the supervision of Prof. Chilin Li. His major interest focuses on the research and development of high-capacity/long-cycling stability cathode materials for lithium-ion batteries.
    Yifan Yu received his Bachelor degree in College of Materials Science and Engineering at Taiyuan University of Technology. He obtained his Ph.D. degree in Shanghai Institute of Ceramics, Chinese Academy of Sciences under the supervision of Prof. Chilin Li. His major interest focuses on the development of novel cathodes and electrolytes for rechargeable fluoride based batteries.
    Chilin Li received his Ph.D. degree in 2008 at Fudan University. He is now a professor in Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS). His research interest focuses on fluoride-based batteries, solid-state batteries, Li and Mg metal batteries, structure design and synthesis strategy of novel electrode and electrolyte materials, electrochemical mechanism, nanoionics.
  • 1. X. Fan, E. Hu, X. Ji, Y. Zhu, F. Han, S. Hwang, J. Liu, S. Bak, Z. Ma, T. Gao, S. C. Liou, J. Bai, X. Q. Yang, Y. Mo, K. Xu, D. Su and C. Wang, Nature Communications, 2018, 9, 2324
    2. L. Li, F. Meng and S. Jin, Nano Letters, 2012, 12, 6030
    3. K. Turcheniuk, D. Bondarev, V. Singhal and G. Yushin, Nature, 2018, 559, 467
    4. T. Wu, Y. Cui, K. Wei, C. Lai, Y. Zhao, S. Ni, Y. Chen, X. Gao, Y. Cui and C. Li, Nano Energy, 2022, 103, 107843
    5. A. W. Schäfer, S. R. Barrett, K. Doyme, L. M. Dray, A. R. Gnadt, R. Self, A. O’Sullivan, A. P. Synodinos and A. J. Torija, Nature Energy, 2019, 4, 160
    6. D.-L. Ma, Z.-Y. Cao, H.-G. Wang, X.-L. Huang, L.-M. Wang and X.-B. Zhang, Energy Environmental Science, 2012, 5, 8538
    7. W. Zhang, P. N. Duchesne, Z.-L. Gong, S.-Q. Wu, L. Ma, Z. Jiang, S. Zhang, P. Zhang, J.-X. Mi and Y. Yang, The Journal of Physical Chemistry C, 2013, 117, 11498
    8. H. Li, P. Balaya and J. Maier, Journal of the Electrochemical Society, 2004, 151, A1878
    9. C. Li, L. Gu, J. Tong, S. Tsukimoto and J. Maier, Advanced Functional Materials, 2011, 21, 1391
    10. H. Wu, J. Hu, S. Yu and C. Li, Energy Environmental Science, 2025, 18, 923
    11. C. Li, K. Chen, X. Zhou and J. Maier, npj Computational Materials, 2018, 4, 22
    12. T. Li, L. Li, Y. L. Cao, X. P. Ai and H. X. Yang, The Journal of Physical Chemistry C, 2010, 114, 3190
    13. S. W. Kim, D. H. Seo, H. Gwon, J. Kim and K. Kang, Advanced Materials, 2010, 22, 5260
    14. K. Chen, W. Qiu, M. Lei, C. Lai, J. Liu and C. Li, Matter, 2024, 7, 3907
    15. L. Guo, X. Gao, Q. Chen, H. Li, J. Ren, R. Wang, R. Shi, W. Gao and Y. Bai, Journal of Materials Chemistry A, 2024, 12, 32794
    16. Z. Jiang, Y. Wang, X. Chen, F. Chu, X. Jiang, F. Kwofie, Q. Pei, S. Luo, J. Arbiol and F. Wu, Journal of Materials Chemistry A, 2023, 11, 21541
    17. C. Li, L. Gu, S. Tsukimoto, P. A. van Aken and J. Maier, Advanced Materials, 2010, 22, 3650
    18. C. Li, C. Yin, L. Gu, R. E. Dinnebier, X. Mu, P. A. van Aken and J. Maier, Journal of the American Chemical Society, 2013, 135, 11425
    19. C. Li, L. Gu, J. Tong and J. Maier, ACS Nano, 2011, 5, 2930
    20. C. Li, X. Mu, P. A. van Aken and J. Maier, Advanced Energy Materials, 2013, 3, 113
    21. C. Li, C. Yin, X. Mu and J. Maier, Chemistry of Materials, 2013, 25, 962
    22. J. Hu, Y. Zhang, D. Cao and C. Li, Journal of Materials Chemistry A, 2016, 4, 16166
    23. Y. Han, J. Hu, C. Yin, Y. Zhang, J. Xie, D. Yin and C. Li, Journal of Materials Chemistry A, 2016, 4, 7382
    24. Y. Han, M. Yang, Y. Zhang, J. Xie, D. Yin and C. Li, Chemistry of Materials, 2016, 28, 3139
    25. D. Cao, C. Yin, D. Shi, Z. Fu, J. Zhang and C. Li, Advanced Functional Materials, 2017, 27, 1701130
    26. W. Qiu, Z. Li, K. Chen, C. Li, J. Liu and W. Zhang, ACS Applied Materials & Interfaces, 2019, 11, 37768
    27. D. S. Jacob, L. Bitton, J. Grinblat, I. Felner, Y. Koltypin and A. Gedanken, Chemistry of Materials, 2006, 18, 3162
    28. N. Yamakawa, M. Jiang, B. Key and C. P. Grey, Journal of the American Chemical Society, 2009, 131, 10525
    29. K. Lemoine, A. Wizner, S. Auguste, J.-M. Grenèche, H. Kojitani, M. Akaogi and Y. Inaguma, Open Ceramics, 2021, 6, 100123
    30. K. Lemoine, A. Hémon-Ribaud, M. Leblanc, J. Lhoste, J.-M. Tarascon and V. Maisonneuve, Chemical Reviews, 2022, 122, 14405
    31. G. Benner and R. Hoppe, Journal of Fluorine Chemistry, 1990, 46, 283
    32. I. D. Gocheva, M. Nishijima, T. Doi, S. Okada, J.-i. Yamaki and T. Nishida, Journal of Power Sources, 2009, 187, 247
    33. A. Martin, M. L. Doublet, E. Kemnitz and N. Pinna, Advanced Functional Materials, 2018, 28, 1802057
    34. Y. Yamada, T. Doi, I. Tanaka, S. Okada and J.-i. Yamaki, Journal of Power Sources, 2011, 196, 4837
    35. A. Kitajou, H. Komatsu, K. Chihara, I. D. Gocheva, S. Okada and J.-i. Yamaki, Journal of Power Sources, 2012, 198, 389
    36. Y. Zheng, S. Jitto, J. Hwang, K. Matsumoto and R. Hagiwara, ACS Applied Energy Materials, 2022, 5, 14361
    37. Z. Li, B. Wang, C. Li, J. Liu and W. Zhang, Journal of Materials Chemistry A, 2015, 3, 16222
    38. K. Lemoine, L. Zhang, D. Dambournet, J.-M. Grenèche, A. Hémon-Ribaud, M. Leblanc, O. J. Borkiewicz, J.-M. Tarascon, V. Maisonneuve and J. Lhoste, Chemistry of Materials, 2019, 31, 4246
    39. Y. Laligant, J. Pannetier, P. Labbe and G. Ferey, Journal of Solid State Chemistry, 1986, 62, 274
    40. K. Lemoine, L. Zhang, J.-M. Grenèche, A. Hémon-Ribaud, M. Leblanc, A. Guiet, C. Galven, J.-M. Tarascon, V. Maisonneuve and J. r. m. Lhoste, The Journal of Physical Chemistry C, 2019, 123, 21386
    41. K. Lemoine, R. Moury, J. Lhoste, A. Hémon-Ribaud, M. Leblanc, J.-M. Grenèche, J.-M. Tarascon and V. Maisonneuve, Dalton Transactions, 2020, 49, 8186
    42. J. L. Hu, K. Y. Chen, Z. G. Yao and C. L. Li, Science Bulletin, 2021, 66, 694
    43. N. Louvain, A. Fakhry, P. Bonnet, M. El-Ghozzi, K. Guérin, M.-T. Sougrati, J.-C. Jumas and P. Willmann, CrystEngComm, 2013, 15, 3664
    44. K. Lemoine, R. Moury, E. Durand, E. A.-d. Dompablo, E. Moran, M. Leblanc, A. Hemon-Ribaud, J.-M. Greneche, C. Galven and V. Gunes, Crystal Growth Design, 2021, 21, 935
    45. K. Chen, M. Lei, Z. Yao, Y. Zheng, J. Hu, C. Lai and C. Li, Science Advances, 2021, 7, eabj1491
    46. C. Li, L. Gu and J. Maier, Advanced Functional Materials, 2012, 22, 1145
    47. F. Badway, F. Cosandey, N. Pereira and G. Amatucci, Journal of The Electrochemical Society, 2003, 150, A1318
    48. R. E. Doe, K. A. Persson, Y. S. Meng and G. Ceder, Chemistry of Materials, 2008, 20, 5274
    49. Y. Y. Liu, J. W. Meng, M. Lei, Y. F. Yu, C. Z. Lai and C. L. Li, Advanced Functional Materials, 2023, 33, 2208013
    50. L. Li, R. Jacobs, P. Gao, L. Gan, F. Wang, D. Morgan and S. Jin, Journal of the American Chemical Society, 2016, 138, 2838
    51. C. Lai, K. Chen, Y. Zheng, J. Meng, J. Hu and C. Li, Journal of Energy Chemistry, 2023, 78, 178
    52. S. Sun, Z. Han, W. Liu, Q. Xia, L. Xue, X. Lei, T. Zhai, D. Su and H. Xia, Nature Communications, 2023, 14, 6662
    53. R. R. Li, J. He, M. Lei, M. H. Yang and C. L. Li, Chemical Engineering Journal, 2022, 446, 137294
    54. K. Karki, L. Wu, Y. Ma, M. J. Armstrong, J. D. Holmes, S. H. Garofalini, Y. Zhu, E. A. Stach and F. Wang, Journal of the American Chemical Society, 2018, 140, 17915
    55. A. W. Xiao, H. J. Lee, I. Capone, A. Robertson, T.-U. Wi, J. Fawdon, S. Wheeler, H.-W. Lee, N. Grobert and M. Pasta, Nature Materials, 2020, 19, 644
    56. C. Lai, K. Chen, M. Lei, J. Hu, S. Chen and C. Li, Advanced Functional Materials, 2024, 34, 2312415
    57. Q. Huang, K. Turcheniuk, X. Ren, A. Magasinski, D. Gordon, N. Bensalah and G. Yushin, Advanced Energy Materials, 2019, 9, 1803323
    58. W. Gu, O. Borodin, B. Zdyrko, H.-T. Lin, H. Kim, N. Nitta, J. Huang, A. Magasinski, Z. Milicev, G. Berdichevsky and G. Yushin, Advanced Functional Materials, 2016, 26, 1507
    59. O. Borodin, J. Self, K. A. Persson, C. Wang and K. Xu, Joule, 2020, 4, 69
    60. Q. Huang, K. Turcheniuk, X. Ren, A. Magasinski, A.-Y. Song, Y. Xiao, D. Kim and G. Yushin, Nature Materials, 2019, 18, 1343
    61. Y. Zhang, J. Meng, K. Chen, H. Wu, J. Hu and C. Li, ACS Energy Letters, 2020, 5, 1167
    62. Y. Yu, C. Lai, M. Lei, K. Chen and C. Li, Materials Horizons, 2024, 11, 2169
    63. C. Patel, E. Andre-Joyaux, J. A. Leitch, X. M. de Irujo-Labalde, F. Ibba, J. Struijs, M. A. Ellwanger, R. Paton, D. L. Browne, G. Pupo, S. Aldridge, M. A. Hayward and V. Gouverneur, Science, 2023, 381, 302
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(17)

Information

Article Metrics

Article views(112) PDF downloads(50) Citation(0)

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint