Citation: | Qiang Tian, Lingyan Jing, Wenyi Wang, Xieshu Ye, Xue Zhang, Qi Hu, Hengpan Yang, Chuanxin He. Utilizing carbonaceous catalysts for H2O2 electrosynthesis via the two-electron oxygen reduction reaction[J]. Energy Lab, 2025, 3(1): 240019. doi: 10.54227/elab.20240019 |
The electrochemical two-electron oxygen reduction reaction (2e− ORR) offers a promising pathway for decentralized hydrogen peroxide (H2O2) production, providing an attractive alternative to the conventional anthraquinone process. The emergence of metal-free carbonaceous catalysts for efficient H2O2 electrosynthesis is gaining momentum, with the potential to drive the development of novel industrial applications. This review aims to provide a comprehensive guide to the use of carbon-based catalysts in the selective electroreduction of O2 to H2O2. It begins by discussing the fundamental aspects of the electrocatalytic 2e− ORR, including overviews of reaction mechanisms, theoretical insights, and evaluation methodologies. The review then delves into potential active sites and the associated engineering strategies for carbon-based electrocatalysts, such as defect engineering, heteroatom doping, interactions with metal species, and single-atom modifications. Furthermore, strategies extending beyond active site optimization, along with advancements in electrolysis reactor design and potential application areas, are discussed to bridge the gap between laboratory-scale research and practical H2O2 electrosynthesis. The paper concludes by assessing current challenges and outlining research directions, emphasizing the efforts needed to enhance the feasibility and scalability of H2O2 electrosynthesis.
1. | J. M. Campos-Martin, G. Blanco-Brieva, J. L. G. Fierro, Angew. Chem. Int. Ed., 2006, 45, 6962 |
2. | H. L. Hou, X. K. Zeng, X. W. Zhang, Angew Chem. Int. Ed., 2020, 59, 17356 |
3. | S. C. Perry, D. Pangotra, L. Vieira, L.-I. Csepei, V. Sieber, L. Wang, C. Ponce de León, F. C. Walsh, Nat. Rev. Chem., 2019, 3, 442 |
4. | N. Agarwal, S. J. Freakley, R. U. McVicker, S. M. Althahban, N. Dimitratos, Q. He, D. J. Morgan, R. L. Jenkins, D. J. Willock, S. H. Taylor, Science, 2017, 358, 223 |
5. | M. Ksibi, Chem. Eng. J., 2006, 119, 161 |
6. | L. Cobrado, P. Ramalho, E. Ricardo, M. M. Azevedo, A. G. Rodrigues, J. Hosp. Infect., 2021, 113, 155 |
7. | K. Jiang, S. Back, A. J. Akey, C. Xia, Y. Hu, W. Liang, D. Schaak, E. Stavitski, J. K. Nørskov, S. Siahrostami, Nat. Commun., 2019, 10, 3997 |
8. | R. Hage, A. Lienke, Angew. Chem. Int. Ed., 2006, 45, 206 |
9. | K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi, Nat. Commun., 2016, 7, 11470 |
10. | Q. Tian, X. K. Zeng, C. Zhao, L. Y. Jing, X. W. Zhang, J. Liu, Adv. Funct. Mater, 2023, 33, 2213173 |
11. | K. Sato, M. Aoki, R. Noyori, Science, 1998, 281, 1646 |
12. | S. Yang, A. Verdaguer-Casadevall, L. Arnarson, L. Silvioli, V. Colic, R. Frydendal, J. Rossmeisl, I. Chorkendorff, I. E. Stephens, ACS Catal., 2018, 8, 4064 |
13. | Y. Wen, T. Zhang, J. Wang, Z. Pan, T. Wang, H. Yamashita, X. Qian, Y. Zhao, Angew. Chem. Int. Ed., 2022, 134, e202205972 |
14. | Q. Tian, L. Jing, S. Ye, J. Liu, R. Chen, C. A. H. Price, F. Fan, J. Liu, Small, 2021, 17, 2103224 |
15. | X. Yang, Y. Zeng, W. Alnoush, Y. Hou, D. Higgins, G. Wu, Adv. Mater., 2022, 34, 2107954 |
16. | J. Garcia-Serna, T. Moreno, P. Biasi, M. J. Cocero, J. P. Mikkola, T. O. Salmi, Green Chem., 2014, 16, 2320 |
17. | J. K. Edwards, G. J. Hutchings, Angew. Chem. Int. Ed., 2008, 47, 9192 |
18. | R. Dittmeyer, J.-D. Grunwaldt, A. Pashkova, Catal. Today, 2015, 248, 149 |
19. | C. Zhao, H. Li, Y. Yin, W. Tian, X. Yan, J. He, Z. Chen, S. Ye, J. Liu, Angew. Chem. Int. Ed, 2025, 64, e202420895 |
20. | H. Yin, Y. Dou, S. Chen, Z. Zhu, P. Liu, H. Zhao, Adv. Mater., 2020, 32, 1904870 |
21. | E. Jung, H. Shin, W. Hooch Antink, Y.-E. Sung, T. Hyeon, ACS Energy Lett., 2020, 5, 1881 |
22. | S. Siahrostami, A. Verdaguer-Casadevall, M. Karamad, D. Deiana, P. Malacrida, B. Wickman, M. Escudero-Escribano, E. A. Paoli, R. Frydendal, T. W. Hansen, Nat. Mater., 2013, 12, 1137 |
23. | J. S. Jirkovský, M. Halasa, D. J. Schiffrin, Phys. Chem. Chem. Phys., 2010, 12, 8042 |
24. | C. H. Choi, H. C. Kwon, S. Yook, H. Shin, H. Kim, M. Choi, J. Phys. Chem. C, 2014, 118, 30063 |
25. | J. Zhang, J. Ma, T. S. Choksi, D. Zhou, S. Han, Y.-F. Liao, H. B. Yang, D. Liu, Z. Zeng, W. Liu, J. Am. Chem. Soc., 2022, 144, 2255 |
26. | J. S. Jirkovský, I. Panas, E. Ahlberg, M. Halasa, S. Romani, D. J. Schiffrin, J. Am. Chem. Soc., 2011, 133, 19432 |
27. | Z. Yu, S. Lv, Q. Yao, N. Fang, Y. Xu, Q. Shao, C. W. Pao, J. F. Lee, G. Li, L. M. Yang, Adv. Mater., 2023, 35, 2208101 |
28. | X. Zhang, C. Wang, K. Chen, A. H. Clark, R. Hübner, J. Zhan, L. Zhang, A. Eychmüller, B. Cai, Adv. Mater., 2023, 35, 2211512 |
29. | Y. Zhou, G. Chen, J. Zhang, J. Mater. Chem. A, 2020, 8, 20849 |
30. | E. J. Askins, M. R. Zoric, M. Li, Z. Luo, K. Amine, K. D. Glusac, Nat. Commun., 2021, 12, 3288 |
31. | Z. Wang, D. K. James, J. M. Tour, Adv. Energy Sustain. Res., 2021, 2, 2100021 |
32. | Y. Bu, Y. Wang, G. F. Han, Y. Zhao, X. Ge, F. Li, Z. Zhang, Q. Zhong, J. B. Baek, Adv. Mater., 2021, 33, 2103266 |
33. | J. Zhang, H. Zhang, M. J. Cheng, Q. Lu, Small, 2020, 16, 1902845 |
34. | C. He, C. Xia, F. M. Li, J. Zhang, W. Guo, B. Y. Xia, Adv. Energy Mater., 2024, 14, 2303233 |
35. | N. Wang, S. Ma, P. Zuo, J. Duan, B. Hou, Adv. Sci., 2021, 8, 2100076 |
36. | Y. Jiang, P. Ni, C. Chen, Y. Lu, P. Yang, B. Kong, A. Fisher, X. Wang, Adv. Energy Mater., 2018, 8, 1801909 |
37. | S. Ding, B. Xia, M. Li, F. Lou, C. Cheng, T. Gao, Y. Zhang, K. Yang, L. Jiang, Z. Nie, Energy Environ. Sci., 2023, 16, 3363 |
38. | Y. Tian, D. Deng, L. Xu, M. Li, H. Chen, Z. Wu, S. Zhang, Nano-Micro Lett., 2023, 15, 122 |
39. | J.-Y. Zhang, C. Xia, H.-F. Wang, C. Tang, J. Energy Chem., 2022, 67, 432 |
40. | Q. Tian, L. Jing, W. Wang, X. Ye, X. Chai, X. Zhang, Q. Hu, H. Yang, C. He, Adv. Mater., 2025, 37, 2414490 |
41. | X. Guo, S. Lin, J. Gu, S. Zhang, Z. Chen, S. Huang, ACS Catal., 2019, 9, 11042 |
42. | M. Dan, R. Zhong, S. Hu, H. Wu, Y. Zhou, Z.-Q. Liu, Chem. Catal., 2022, 2, 1919 |
43. | M. Deng, D. Wang, Y. Li, Adv. Mater., 2024, 36, 2314340 |
44. | X. Zhang, Y. Xia, C. Xia, H. Wang, Trends Chem., 2020, 2, 942 |
45. | K. Wang, J. Huang, H. Chen, Y. Wang, S. Song, Chem. Commun., 2020, 56, 12109 |
46. | M. M. Montemore, M. A. van Spronsen, R. J. Madix, C. M. Friend, Chem. Rev., 2018, 118, 2816 |
47. | A. Verdaguer-Casadevall, D. Deiana, M. Karamad, S. Siahrostami, P. Malacrida, T. W. Hansen, J. Rossmeisl, I. Chorkendorff, I. E. Stephens, Nano Lett., 2014, 14, 1603 |
48. | K. Jiang, J. Zhao, H. Wang, Adv. Funct. Mater., 2020, 30, 2003321 |
49. | G. Chen, Y. Zhu, Y. Ying, Y. Yao, Z. Hu, D. Zu, Z. Lin, C.-W. Pao, Y.-C. Zhang, L. Li, Matter, 2024, 7, 2265 |
50. | H. Yang, S. Kumar, S. Zou, J. Electroanal. Chem., 2013, 688, 180 |
51. | J. Wu, M. Hou, Z. Chen, W. Hao, X. Pan, H. Yang, W. Cen, Y. Liu, H. Huang, P. W. Menezes, Adv. Mater., 2022, 34, 2202995 |
52. | R. Shen, W. Chen, Q. Peng, S. Lu, L. Zheng, X. Cao, Y. Wang, W. Zhu, J. Zhang, Z. Zhuang, Chem, 2019, 5, 2099 |
53. | C. H. Choi, M. Kim, H. C. Kwon, S. J. Cho, S. Yun, H.-T. Kim, K. J. Mayrhofer, H. Kim, M. Choi, Nat. Commun., 2016, 7, 10922 |
54. | K. Dong, Y. Lei, H. Zhao, J. Liang, P. Ding, Q. Liu, Z. Xu, S. Lu, Q. Li, X. Sun, J. Mater. Chem. A, 2020, 8, 23123 |
55. | M. Melchionna, P. Fornasiero, M. Prato, Adv. Mater., 2019, 31, 1802920 |
56. | L. Jing, Q. Tian, X. Li, J. Sun, W. Wang, H. Yang, X. Chai, Q. Hu, C. He, Adv. Funct. Mater., 2023, 33, 2305795 |
57. | K. Dong, J. Liang, Y. Wang, Z. Xu, Q. Liu, Y. Luo, T. Li, L. Li, X. Shi, A. M. Asiri, Angew. Chem. Int. Ed., 2021, 60, 10583 |
58. | X. Zhou, Y. Min, C. Zhao, C. Chen, M.-K. Ke, S.-L. Xu, J.-J. Chen, Y. Wu, H.-Q. Yu, Nat. Commun., 2024, 15, 193 |
59. | B. Ni, P. Shen, G. Zhang, J. Zhao, H. Ding, Y. Ye, Z. Yue, H. Yang, H. Wei, K. Jiang, J. Am. Chem. Soc., 2024, 146, 11181 |
60. | K.-H. Wu, D. Wang, X. Lu, X. Zhang, Z. Xie, Y. Liu, B.-J. Su, J.-M. Chen, D.-S. Su, W. Qi, Chem, 2020, 6, 1443 |
61. | Y. Guo, R. Zhang, S. Zhang, H. Hong, Y. Zhao, Z. Huang, C. Han, H. Li, C. Zhi, Energy Environ. Sci., 2022, 15, 4167 |
62. | W. Wang, Y. Zheng, Y. Hu, Y. Liu, S. Chen, J. Phys. Chem. Lett., 2022, 13, 8914 |
63. | L. Jing, W. Wang, Q. Tian, Y. Kong, X. Ye, H. Yang, Q. Hu, C. He, Angew. Chem. Int. Ed, 2024, 63, e202403023 |
64. | Z. Wu, T. Wang, J.-J. Zou, Y. Li, C. Zhang, ACS Catal., 2022, 12, 5911 |
65. | L. Jing, Q. Tian, W. Wang, X. Li, Q. Hu, H. Yang, C. He, Adv. Energy Mater., 2024, 14, 2304418 |
66. | R. Xie, C. Cheng, R. Wang, J. Li, E. Zhao, Y. Zhao, Y. Liu, J. Guo, P. Yin, T. Ling, ACS Catal., 2024, 14, 4471 |
67. | V. Viswanathan, H. A. Hansen, J. Rossmeisl, J. K. Nørskov, J. Phys. Chem. Lett., 2012, 3, 2948 |
68. | J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B, 2004, 108, 17886 |
69. | A. Kulkarni, S. Siahrostami, A. Patel, J. K. Nørskov, Chem. Rev., 2018, 118, 2302 |
70. | S. Trasatti, J. Electroanal. Chem. Interf. Electrochem., 1972, 39, 163 |
71. | M. Song, W. Liu, J. Zhang, C. Zhang, X. Huang, D. Wang, Adv. Funct. Mater., 2023, 33, 2212087 |
72. | G.-F. Han, F. Li, W. Zou, M. Karamad, J.-P. Jeon, S.-W. Kim, S.-J. Kim, Y. Bu, Z. Fu, Y. Lu, Nat. Commun., 2020, 11, 2209 |
73. | G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys., 2000, 113, 9901 |
74. | Y. He, S. Hwang, D. A. Cullen, M. A. Uddin, L. Langhorst, B. Li, S. Karakalos, A. J. Kropf, E. C. Wegener, J. Sokolowski, Energy Environ. Sci., 2019, 12, 250 |
75. | W. Wang, Y. Hu, P. Li, Y. Liu, S. Chen, ACS Catal., 2024, 14, 5961 |
76. | X. Zhao, Y. Liu, J. Am. Chem. Soc., 2020, 142, 5773 |
77. | M. Sprik, G. Ciccotti, J. Chem. Phys., 1998, 109, 7737 |
78. | L. Jing, C. Tang, Q. Tian, T. Liu, S. Ye, P. Su, Y. Zheng, J. Liu, ACS Appl. Mater. Interfaces, 2021, 13, 39763 |
79. | Q. Tian, L. Jing, Y. Chen, P. Su, C. Tang, G. Wang, J. Liu, Sustain. Mater. Technol., 2022, e00398 |
80. | L. Jing, Q. Tian, P. Su, H. Li, Y. Zheng, C. Tang, J. Liu, J. Mater. Chem. A, 2022, 10, 4068 |
81. | W. Xia, A. Mahmood, Z. Liang, R. Zou, S. Guo, Angew. Chem. Int. Ed., 2016, 55, 2650 |
82. | S. Chen, T. Luo, K. Chen, Y. Lin, J. Fu, K. Liu, C. Cai, Q. Wang, H. Li, X. Li, Angew. Chem. Int. Ed., 2021, 133, 16743 |
83. | S. Chen, T. Luo, X. Li, K. Chen, J. Fu, K. Liu, C. Cai, Q. Wang, H. Li, Y. Chen, C. Ma, L. Zhu, Y. -R. Lu, T. -S. Chan, M. Zhu, E. Cortés, M. Liu, J. Am. Chem. Soc., 2022, 144, 14505 |
84. | C. Xia, J. Y. T. Kim, H. Wang, Nat. Catal., 2020, 3, 605 |
85. | Q. Tian, L. Jing, H. Du, Y. Yin, X. Cheng, J. Xu, J. Chen, Z. Liu, J. Wan, J. Liu, J. Yang, Nat. Commun., 2024, 15, 983 |
86. | C. Xia, Y. Xia, P. Zhu, L. Fan, H. T. Wang, Science, 2019, 366, 226 |
87. | J. Tang, T. Zhao, D. Solanki, X. Miao, W. Zhou, S. Hu, Joule, 2021, 5, 1432 |
88. | S. Chen, Z. Chen, S. Siahrostami, D. Higgins, D. Nordlund, D. Sokaras, T. R. Kim, Y. Liu, X. Yan, E. Nilsson, J. Am. Chem. Soc., 2018, 140, 7851 |
89. | Z. Y. Lu, G. X. Chen, S. Siahrostami, Z. H. Chen, K. Liu, J. Xie, L. Liao, T. Wu, D. C. Lin, Y. Y. Liu, T. F. Jaramillo, J. K. Norskov, Y. Cui, Nat. Catal., 2018, 1, 156 |
90. | S. Chen, Z. Chen, S. Siahrostami, T. R. Kim, D. Nordlund, D. Sokaras, S. Nowak, J. W. To, D. Higgins, R. Sinclair, ACS Sustain. Chem. Eng., 2018, 6, 311 |
91. | H. W. Kim, M. B. Ross, N. Kornienko, L. Zhang, J. H. Guo, P. D. Yang, B. D. McCloskey, Nat. Catal., 2018, 1, 282 |
92. | Y. Sun, L. Silvioli, N. R. Sahraie, W. Ju, J. Li, A. Zitolo, S. Li, A. Bagger, L. Arnarson, X. Wang, J. Am. Chem. Soc., 2019, 141, 12372 |
93. | B. Q. Li, C. X. Zhao, J. N. Liu, Q. Zhang, Adv. Mater., 2019, 31, 1808173 |
94. | Y. J. Sa, J. H. Kim, S. H. Joo, Angew. Chem. Int. Ed., 2019, 58, 1100 |
95. | J. Gao, H. bin Yang, X. Huang, S. -F. Hung, W. Cai, C. Jia, S. Miao, H. M. Chen, X. Yang, Y. Huang, Chem, 2020, 6, 658 |
96. | E. Jung, H. Shin, B. -H. Lee, V. Efremov, S. Lee, H. S. Lee, J. Kim, W. Hooch Antink, S. Park, K. -S. Lee, Nat. Mater., 2020, 19, 436 |
97. | Q. Chang, P. Zhang, A. H. B. Mostaghimi, X. Zhao, S. R. Denny, J. H. Lee, H. Gao, Y. Zhang, H. L. Xin, S. Siahrostami, Nat. Commun., 2020, 11, 2178 |
98. | L. Li, C. Tang, Y. Zheng, B. Xia, X. Zhou, H. Xu, S. Z. Qiao, Adv. Energy Mater., 2020, 10, 2000789 |
99. | J. S. Lim, J. H. Kim, J. Woo, D. San Baek, K. Ihm, T. J. Shin, Y. J. Sa, S. H. Joo, Chem, 2021, 7, 3114 |
100. | Y. Xia, X. Zhao, C. Xia, Z.-Y. Wu, P. Zhu, J. Y. T. Kim, X. Bai, G. Gao, Y. Hu, J. Zhong, Nat. Commun., 2021, 12, 1 |
101. | C. Tang, L. Chen, H. Li, L. Li, Y. Jiao, Y. Zheng, H. Xu, K. Davey, S.-Z. Qiao, J. Am. Chem. Soc., 2021, 143, 7819 |
102. | Y. Wang, Y. Zhou, Y. Feng, X. Y. Yu, Adv. Funct. Mater., 2022, 32, 2110734 |
103. | Z. Tian, Q. Zhang, L. Thomsen, N. Gao, J. Pan, R. Daiyan, J. Yun, J. Brandt, N. López-Salas, F. Lai, Angew. Chem. Int. Ed., 2022, 134, e202206915 |
104. | H. Xu, S. Zhang, X. Zhang, M. Xu, M. Han, L. R. Zheng, Y. Zhang, G. Wang, H. Zhang, H. Zhao, Angew. Chem. Int. Ed., 2023, 62, e202314414 |
105. | Z. Zhuang, A. Huang, X. Tan, K. Sun, C. Chen, Q. Peng, Z. Zhuang, T. Han, H. Xiao, Y. Zeng, Joule, 2023, 7, 1003 |
106. | C. Zhang, W. Shen, K. Guo, M. Xiong, J. Zhang, X. Lu, J. Am. Chem. Soc., 2023, 145, 11589 |
107. | J. Du, G. Han, W. Zhang, L. Li, Y. Yan, Y. Shi, X. Zhang, L. Geng, Z. Wang, Y. Xiong, Nat. Commun., 2023, 14, 4766 |
108. | H. Huang, M. Sun, S. Li, S. Zhang, Y. Lee, Z. Li, J. Fang, C. Chen, Y.-X. Zhang, Y. Wu, J. Am. Chem. Soc., 2024, 146, 9434 |
109. | Z. Zhang, W. Chen, H. K. Chu, F. Xiong, K. Zhang, H. Yan, F. Meng, S. Gao, B. Ma, X. Hai, Angew. Chem. Int. Ed., 2024, e202410123 |
110. | A. Shen, Y. Zou, Q. Wang, R. A. Dryfe, X. Huang, S. Dou, L. Dai, S. Wang, Angew. Chem. Int. Ed., 2014, 126, 10980 |
111. | D. Yan, Y. Li, J. Huo, R. Chen, L. Dai, S. Wang, Adv. Mater., 2017, 29, 1606459 |
112. | Q. Wu, X. Yan, Y. Jia, X. Yao, EnergyChem, 2021, 3, 100059 |
113. | C. Tang, Q. Zhang, Adv. Mater., 2017, 29, 1604103 |
114. | D. San Roman, D. Krishnamurthy, R. Garg, H. Hafiz, M. Lamparski, N. T. Nuhfer, V. Meunier, V. Viswanathan, T. Cohen-Karni, ACS Catal., 2020, 10, 1993 |
115. | L. Yu, L. Tang, W. Guo, C. Li, D. Shin, Z. Liu, Y. Lin, Matter, 2022, 5, 1909 |
116. | K. H. Koh, A. H. Bagherzadeh Mostaghimi, Q. Chang, Y. J. Kim, S. Siahrostami, T. H. Han, Z. Chen, EcoMat, 2022, e12266 |
117. | Q. Wu, H. Zou, X. Mao, J. He, Y. Shi, S. Chen, X. Yan, L. Wu, C. Lang, B. Zhang, L. Song, X. Wang, A. Du, Q. Li, Y. Jia, J. Chen, X. Yao, Nat. Commun., 2023, 14, 6275 |
118. | Z. Wang, Q. -K. Li, C. Zhang, Z. Cheng, W. Chen, E. A. McHugh, R. A. Carter, B. I. Yakobson, J. M. Tour, ACS Catal., 2021, 11, 2454 |
119. | Q. Wu, Y. Jia, Q. Liu, X. Mao, Q. Guo, X. Yan, J. Zhao, F. Liu, A. Du, X. Yao, Chem, 2022, 8, 2715 |
120. | X. Liu, L. Dai, Nat. Rev. Mater., 2016, 1, 1 |
121. | L. Dai, Y. Xue, L. Qu, H. -J. Choi, J. -B. Baek, Chem. Rev., 2015, 115, 4823 |
122. | C. Tang, H. F. Wang, X. Chen, B. Q. Li, T. Z. Hou, B. Zhang, Q. Zhang, M. M. Titirici, F. Wei, Adv. Mater., 2016, 28, 6845 |
123. | W. He, Y. Wang, C. Jiang, L. Lu, Chem. Soc. Rev., 2016, 45, 2396 |
124. | H. Feng, J. Zhang, C. Yijun, J. Zhang, W. Deli, Energy Storage Sci. Technol., 2021, 10, 1963 |
125. | J. Miao, H. Zhu, Y. Tang, Y. Chen, P. Wan, Chem. Eng. J., 2014, 250, 312 |
126. | J. Zhu, X. Xiao, K. Zheng, F. Li, G. Ma, H.-C. Yao, X. Wang, Y. Chen, Carbon, 2019, 153, 6 |
127. | H. Zhao, X. Shen, Y. Chen, S. -N. Zhang, P. Gao, X. Zhen, X. -H. Li, G. Zhao, Chem. Commun., 2019, 55, 6173 |
128. | X. Lu, D. Wang, K. -H. Wu, X. Guo, W. Qi, J. Colloid Interf. Sci., 2020, 573, 376 |
129. | F. Sun, C. Yang, Z. Qu, W. Zhou, Y. Ding, J. Gao, G. Zhao, D. Xing, Y. Lu, Appl. Catal. B-Environ., 2021, 286, 119860 |
130. | C. Zhang, W. Liu, M. Song, J. Zhang, F. He, J. Wang, M. Xiong, J. Zhang, D. Wang, Appl. Catal. B-Environ., 2022, 307, 121173 |
131. | L. Xie, C. Liang, Y. Wu, K. Wang, W. Hou, H. Guo, Z. Wang, Y. M. Lam, Z. Liu, L. Wang, Small, 2024, 2401253 |
132. | Y. Ding, W. Zhou, J. Gao, F. Sun, G. Zhao, Adv. Mater. Interfaces, 2021, 8, 2002091 |
133. | S. K. Singh, K. Takeyasu, J. Nakamura, Adv. Mater., 2019, 31, 1804297 |
134. | K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science, 2009, 323, 760 |
135. | F. Hasché, M. Oezaslan, P. Strasser, T.-P. Fellinger, J. Energy Chem., 2016, 25, 251 |
136. | D. Iglesias, A. Giuliani, M. Melchionna, S. Marchesan, A. Criado, L. Nasi, M. Bevilacqua, C. Tavagnacco, F. Vizza, M. Prato, Chem, 2018, 4, 106 |
137. | D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Science, 2016, 351, 361 |
138. | W. Peng, J. Liu, X. Liu, L. Wang, L. Yin, H. Tan, F. Hou, J. Liang, Nat. Commun., 2023, 14, 4430 |
139. | J. Zhang, G. Zhang, S. Jin, Y. Zhou, Q. Ji, H. Lan, H. Liu, J. Qu, Carbon, 2020, 163, 154 |
140. | N. Wang, S. Ma, R. Zhang, L. Wang, Y. Wang, L. Yang, J. Li, F. Guan, J. Duan, B. Hou, Adv. Sci., 2023, 10, 2302446 |
141. | K. Zhao, Y. Su, X. Quan, Y. Liu, S. Chen, H. Yu, J. Catal., 2018, 357, 118 |
142. | G. Chen, J. Liu, Q. Li, P. Guan, X. Yu, L. Xing, J. Zhang, R. Che, Nano Res., 2019, 12, 2614 |
143. | Y. Xia, H. Shang, Q. Zhang, Y. Zhou, X. Hu, J. Electroanal, Chem., 2019, 840, 400 |
144. | H. W. Kim, H. Park, J. S. Roh, J. E. Shin, T. H. Lee, L. Zhang, Y. H. Cho, H. W. Yoon, V. J. Bukas, J. Guo, Chem. Mater., 2019, 31, 3967 |
145. | S. Xu, R. Lu, K. Sun, J. Tang, Y. Cen, L. Luo, Z. Wang, S. Tian, X. Sun, Adv. Sci., 2022, 9, 2201421 |
146. | T. Zhang, Y. Wang, X. Li, Q. Zhuang, Z. Zhang, H. Zhou, Q. Ding, Y. Wang, Y. Dang, L. Duan, Chinese Chem. Lett., 2023, 34, 107596 |
147. | S. Wang, E. Iyyamperumal, A. Roy, Y. Xue, D. Yu, L. Dai, Angew. Chem. Int. Ed., 2011, 50, 11756 |
148. | Z. Song, X. Chi, S. Dong, B. Meng, X. Yu, X. Liu, Y. Zhou, J. Wang, Angew. Chem. Int. Ed., 2024, 63, e202317267 |
149. | N. Jia, T. Yang, S. Shi, X. Chen, Z. An, Y. Chen, S. Yin, P. Chen, ACS Sustain. Chem. Eng., 2020, 8, 2883 |
150. | V. Perazzolo, C. Durante, R. Pilot, A. Paduano, J. Zheng, G. A. Rizzi, A. Martucci, G. Granozzi, A. Gennaro, Carbon, 2015, 95, 949 |
151. | F. Xiang, X. Zhao, J. Yang, N. Li, W. Gong, Y. Liu, A. Burguete-Lopez, Y. Li, X. Niu, A. Fratalocchi, Adv. Mater., 2022, 2208533 |
152. | J. Cheng, C. Lyu, H. Li, J. Wu, Y. Hu, B. Han, K. Wu, M. Hojamberdiev, D. Geng, Appl. Catal. B-Environ., 2023, 327, 122470 |
153. | M. Fan, Z. Wang, K. Sun, A. Wang, Y. Zhao, Q. Yuan, R. Wang, J. Raj, J. Wu, J. Jiang, Adv. Mater., 2023, 2209086 |
154. | L. Huang, H. Niu, C. Xia, F. M. Li, Z. Shahid, B. Yu Xia, Adv. Mater., 2024, 2404773 |
155. | A. Bonakdarpour, T. R. Dahn, R. Atanasoski, M. K. Debe, J. R. Dahn, Electrochem. Solid-State Lett., 2008, 11, B208 |
156. | J. M. Yoo, H. Shin, D. Y. Chung, Y. -E. Sung, Acc. Chem. Res., 2022, 55, 1278 |
157. | P. Zhu, W. Feng, D. Zhao, P. Song, M. Li, X. Tan, T. Liu, S. Liu, W. Zhu, Z. Zhuang, Angew. Chem. Int. Ed., 2023, 135, e202304488 |
158. | C. Zhu, S. Fu, Q. Shi, D. Du, Y. Lin, Angew. Chem. Int. Ed., 2017, 56, 13944 |
159. | A. Wang, J. Li, T. Zhang, Nat. Rev. Chem., 2018, 2, 65 |
160. | S. Yang, J. Kim, Y. J. Tak, A. Soon, H. Lee, Angew. Chem. Int. Ed., 2016, 55, 2058 |
161. | F. Wu, C. Pan, C.-T. He, Y. Han, W. Ma, H. Wei, W. Ji, W. Chen, J. Mao, P. Yu, J. Am. Chem. Soc., 2020, 142, 16861 |
162. | Y. Chen, R. Gao, S. Ji, H. Li, K. Tang, P. Jiang, H. Hu, Z. Zhang, H. Hao, Q. Qu, Angew. Chem. Int. Ed., 2021, 60, 3212 |
163. | H. Xu, H. Jia, H. Li, J. Liu, X. Gao, J. Zhang, M. Liu, D. Sun, S. Chou, F. Fang, Appl. Catal. B-Environ., 2021, 297, 120390 |
164. | L. Jiao, H. Yan, Y. Wu, W. Gu, C. Zhu, D. Du, Y. Lin, Angew. Chem. Int. Ed., 2020, 132, 2585 |
165. | Y. Tian, M. Li, Z. Wu, Q. Sun, D. Yuan, B. Johannessen, L. Xu, Y. Wang, Y. Dou, H. Zhao, Angew. Chem. Int. Ed., 2022, 61, e202213296 |
166. | L. Yang, H. Cheng, H. Li, G. Sun, S. Liu, T. Ma, L. Zhang, Adv. Mater., 2024, 2406957 |
167. | S. Zhang, M. Jin, H. Xu, X. Zhang, T. Shi, Y. Ye, Y. Lin, L. Zheng, G. Wang, Y. Zhang, Energy Environ. Sci., 2024, 17, 1950 |
168. | H. Gong, Z. Wei, Z. Gong, J. Liu, G. Ye, M. Yan, J. Dong, C. Allen, J. Liu, K. Huang, Adv. Funct. Mater., 2022, 32, 2106886 |
169. | L. Yan, C. Wang, Y. Wang, Y. Wang, Z. Wang, L. Zheng, Y. Lu, R. Wang, G. Chen, Appl. Catal. B-Environ., 2023, 338, 123078 |
170. | Q. Zhang, X. Tan, N. M. Bedford, Z. Han, L. Thomsen, S. Smith, R. Amal, X. Lu, Nat. Commun., 2020, 11, 4181 |
171. | L. Y. Dong, J. S. Wang, T. Y. Li, T. Wu, X. Hu, Y. T. Wu, M. Y. Zhu, G. P. Hao, A. H. Lu, Angew. Chem. Int. Ed., 2024, 63, e202317660 |
172. | Y. Li, J. Chen, Y. Ji, Z. Zhao, W. Cui, X. Sang, Y. Cheng, B. Yang, Z. Li, Q. Zhang, Angew. Chem. Int. Ed., 2023, e202306491 |
173. | W. Zhang, J. Zhang, N. Wang, K. Zhu, C. Yang, Y. Ai, F. Wang, Y. Tian, Y. Ma, Y. Ma, Nat. Sustain., 2024, 7, 463 |
174. | Y. Wang, R. Shi, L. Shang, G. I. Waterhouse, J. Zhao, Q. Zhang, L. Gu, T. Zhang, Angew. Chem. Int. Ed., 2020, 59, 13057 |
175. | J. Yaling, Z. Xue, J. Yang, Q. Liu, J. Xian, Y. Zhong, Y. Sun, X. Zhang, D. Yao, G. Li, Angew. Chem. Int. Ed., 2022, 61, e202110838 |
176. | G. Wei, Y. Li, X. Liu, J. Huang, M. Liu, D. Luan, S. Gao, X. W. Lou, Angew. Chem. Int. Ed., 2023, 135, e202313914 |
177. | C. Tang, Y. Jiao, B. Shi, J. N. Liu, Z. Xie, X. Chen, Q. Zhang, S. Z. Qiao, Angew. Chem. Int. Ed., 2020, 132, 9256 |
178. | N. Wang, X. Zhao, R. Zhang, S. Yu, Z. H. Levell, C. Wang, S. Ma, P. Zou, L. Han, J. Qin, ACS Catal., 2022, 12, 4156 |
179. | E. Zhang, L. Tao, J. An, J. Zhang, L. Meng, X. Zheng, Y. Wang, N. Li, S. Du, J. Zhang, Angew. Chem. Int. Ed., 2022, 134, e202117347 |
180. | M. Yan, H. Yang, Z. Gong, J. Zhu, C. Allen, T. Cheng, H. Fei, Adv. Mater., 2024, 2402963 |
181. | M. Yan, Z. Wei, Z. Gong, B. Johannessen, G. Ye, G. He, J. Liu, S. Zhao, C. Cui, H. Fei, Nat. Commun., 2023, 14, 368 |
182. | F. Zhang, Y. Zhu, C. Tang, Y. Chen, B. Qian, Z. Hu, Y. C. Chang, C. W. Pao, Q. Lin, S. A. Kazemi, Adv. Funct. Mater., 2022, 32, 2110224 |
183. | K. Lee, J. Lim, M. J. Lee, K. Ryu, H. Lee, J. Y. Kim, H. Ju, H.-S. Cho, B.-H. Kim, M. C. Hatzell, Energy Environ. Sci., 2022, 15, 2858 |
184. | Y. Long, J. Lin, F. Ye, W. Liu, D. Wang, Q. Cheng, R. Paul, D. Cheng, B. Mao, R. Yan, Adv. Mater., 2023, 2303905 |
185. | Y. X. Du, Q. Yang, W. T. Lu, Q. Y. Guan, F. F. Cao, G. Zhang, Adv. Funct. Mater., 2023, 33, 2300895 |
186. | Y. Pang, K. Wang, H. Xie, Y. Sun, M.-M. Titirici, G.-L. Chai, ACS Catal., 2020, 10, 7434 |
187. | L. Zhao, R. Yan, B. Mao, R. Paul, W. Duan, L. Dai, C. Hu, Small, 2024, 2403029 |
188. | J. An, Y. Feng, Q. Zhao, X. Wang, J. Liu, N. Li, Environ. Sci. Ecotechnol., 11, 100170 |
189. | B. Huang, Y. Cui, R. Hu, J. Huang, L. Guan, ACS Appl. Energy Mater., 2021, 4, 4620 |
190. | H. Chen, X. Liang, Y. Liu, X. Ai, T. Asefa, X. Zou, Adv. Mater., 2020, 32, 2002435 |
191. | Q. Tian, L. Jing, Y. Yin, Z. Liang, H. Du, L. Yang, X. Cheng, D. Zuo, C. Tang, Z. Liu, J. Liu, J. Wan, J. Yang, Nano Lett., 2024, 24, 1650 |
192. | J. Park, Y. Nabae, T. Hayakawa, M. -a. Kakimoto, ACS Catal., 2014, 4, 3749 |
193. | Z. Deng, M. Gong, Z. Gong, X. Wang, Nano Lett., 2022, 22, 9551 |
194. | T. -P. Fellinger, F. Hasché, P. Strasser, M. Antonietti, J. Am. Chem. Soc., 2012, 134, 4072 |
195. | Y. Liu, X. Quan, X. Fan, H. Wang, S. Chen, Angew. Chem. Int. Ed., 2015, 127, 6941 |
196. | Y. Wang, R. Shi, L. Shang, L. Peng, D. Chu, Z. Han, G. I. N. Waterhouse, R. Zhang, T. Zhang, Nano Energy, 2022, 96, 107046 |
197. | D. Zhang, C. Tsounis, Z. Ma, D. Djaidiguna, N. M. Bedford, L. Thomsen, X. Lu, D. Chu, R. Amal, Z. Han, Small, 2022, 18, 2105082 |
198. | Z. Lin, Q. Zhang, J. Pan, C. Tsounis, A. A. Esmailpour, S. Xi, H. Y. Yang, Z. Han, J. Yun, R. Amal, X. Lu, Energy Environ. Sci., 2022, 15, 1172 |
199. | Q. Zhang, M. Zhou, G. Ren, Y. Li, Y. Li, X. Du, Nat. Commun., 2020, 11, 1731 |
200. | P. Cao, X. Quan, K. Zhao, X. Zhao, S. Chen, H. Yu, ACS Catal., 2021, 11, 13797 |
201. | Q. Cheng, M. Wang, J. Ni, L. Zhang, Y. Cheng, X. Zhou, Y. Cao, T. Qian, C. Yan, Carbon Energy, 2023, 5, e307 |
202. | J. An, N. Li, Q. Zhao, Y. Qiao, S. Wang, C. Liao, L. Zhou, T. Li, X. Wang, Y. Feng, Water Res., 2019, 164, 114933 |
203. | K. Ri, S. Yang, D. Sun, Q. Zhong, L. Wu, S. Sin, C. Xu, Y. Liu, C. Qi, H. He, Sep. Purif. Technol., 2024, 336, 126351 |
204. | K. Shi, Z. Ren, Z. Meng, X. Feng, ChemCatChem, 2024, 16, e202301308 |
205. | P. Wang, T. Hayashi, Q. a. Meng, Q. Wang, H. Liu, K. Hashimoto, L. Jiang, Small, 2017, 13, 1601250 |
206. | J. Wang, C. Li, M. Rauf, W. Wang, ACS Sustain. Chem. Eng., 2022, 11, 436 |
207. | H. Zhang, Y. Zhao, Y. Li, G. Li, J. Li, F. Zhang, ACS Appl. Energy Mater., 2020, 3, 705 |
208. | X. Zhang, X. Zhao, P. Zhu, Z. Adler, Z. -Y. Wu, Y. Liu, H. Wang, Nat. Commun., 2022, 13, 2880 |
209. | S. Wang, D. Ye, H. Liu, X. Zhu, Q. Lan, Y. Yang, R. Chen, Q. Liao, Sep. Purif. Technol., 2022, 297, 121527 |
210. | S. Park, B. N. Popov, Fuel, 2009, 88, 2068 |
211. | D. Zhang, C. Tsounis, Z. Ma, L. Peng, Z. Lin, H. Yin, F. Hussain, C. Cazorla, D. Chu, R. Amal, Cell Rep. Phys. Sci., 2023, 4 |
212. | Q. Zhao, J. An, S. Wang, Y. Qiao, C. Liao, C. Wang, X. Wang, N. Li, ACS Appl. Mater. Interfaces, 2019, 11, 35410 |
213. | H. Chen, C. He, H. Niu, C. Xia, F.-M. Li, W. Zhao, F. Song, T. Yao, Y. Chen, Y. Su, J. Am. Chem. Soc., 2024, 146, 15356 |
214. | K. -Y. Law, J. Phys. Chem. Lett., 2014, 5, 686 |
215. | A. Forner-Cuenca, J. Biesdorf, L. Gubler, P. M. Kristiansen, T. J. Schmidt, P. Boillat, Adv. Mater., 2015, 27, 6317 |
216. | W. Zhou, X. Meng, J. Gao, F. Sun, G. Zhao, Chemosphere, 2021, 278, 130382 |
217. | S. Rojas-Carbonell, K. Artyushkova, A. Serov, C. Santoro, I. Matanovic, P. Atanassov, ACS Catal., 2018, 8, 3041 |
218. | X. Zhao, Y. Liu, J. Am. Chem. Soc., 2021, 143, 9423 |
219. | W. Ren, A. Xu, K. Chan, X. Hu, Angew. Chem. Int. Ed., 2022, 134, e202214173 |
220. | P. Cao, X. Zhao, Y. Liu, H. Zhang, K. Zhao, S. Chen, H. Yu, F. Dong, N. N. Nichols, J. G. Chen, Angew. Chem. Int. Ed., 2024, e202406452 |
221. | J. Gu, S. Liu, W. Ni, W. Ren, S. Haussener, X. Hu, Nat. Catal., 2022, 5, 268 |
222. | J. Lee, J. S. Lim, G. Yim, H. Jang, S. H. Joo, Y. J. Sa, ACS Appl. Mater. Interfaces, 2021, 13, 59904 |
223. | K. Zhu, J. Ma, L. Chen, F. Wu, X. Xu, M. Xu, W. Ye, Y. Wang, P. Gao, Y. Xiong, ACS Catal., 2022, 12, 4840 |
224. | Q. Nian, X. Zhang, Y. Feng, S. Liu, T. Sun, S. Zheng, X. Ren, Z. Tao, D. Zhang, J. Chen, ACS Energy Lett., 2021, 6, 2174 |
225. | Y. Fang, Y. Fan, K. Xie, W. Ge, Y. Zhu, Z. Qi, Z. Song, H. Jiang, C. Li, Angew. Chem. Int. Ed., 2023, 135, e202304413 |
226. | I. Yamanaka, T. Hashimoto, R. Ichihashi, K. Otsuka, Electrochim. Acta, 2008, 53, 4824 |
227. | J. S. Lim, Y. J. Sa, S. H. Joo, Cell Rep. Phys. Sci., 2022, 3, 100987 |
228. | J. Hou, M. Yang, C. Ke, G. Wei, C. Priest, Z. Qiao, G. Wu, J. Zhang, EnergyChem, 2020, 2, 100023 |
229. | J. Wu, Y. Han, Y. Bai, X. Wang, Y. Zhou, W. Zhu, T. He, Y. Wang, H. Huang, Y. Liu, Adv. Funct. Mater., 2022, 32, 2203647 |
230. | Z. Deng, S. J. Choi, G. Li, X. Wang, Chem. Soc. Rev., 2024, 53, 8137 |
231. | Y. Xu, J. P. Edwards, S. Liu, R. K. Miao, J. E. Huang, C. M. Gabardo, C. P. O’Brien, J. Li, E. H. Sargent, D. Sinton, ACS Energy Lett., 2021, 6, 809 |
232. | P. -P. Yang, M. -R. Gao, Chem. Soc. Rev., 2023, 52, 4343 |
233. | T. Murayama, I. Yamanaka, J. Phys. Chem. C, 2011, 115, 5792 |
234. | J. F. Pérez, J. Llanos, C. Sáez, C. López, P. Cañizares, M. A. Rodrigo, J. Clean. Prod., 2019, 211, 1259 |
235. | J. Zhang, F. Coms, S. Kumaraguru, J. Electrochem. Soc., 2021, 168, 024520 |
236. | W. E. Mustain, M. Chatenet, M. Page, Y. S. Kim, Energy Environm. Sci., 2020, 13, 2805 |
237. | M. Bernt, A. Siebel, H. A. Gasteiger, J. Electrochem. Soc., 2018, 165, F305 |
238. | R. S. Jayashree, L. Gancs, E. R. Choban, A. Primak, D. Natarajan, L. J. Markoski, P. J. Kenis, J. Am. Chem. Soc., 2005, 127, 16758 |
239. | R. S. Jayashree, S. K. Yoon, F. R. Brushett, P. O. Lopez-Montesinos, D. Natarajan, L. J. Markoski, P. J. Kenis, J. Power Sources, 2010, 195, 3569 |
240. | P. F. B. D. Martins, I. Plazl, D. Strmcnik, B. Genorio, Curr. Opin. Electrochem., 2023, 38, 101223 |
241. | O. Scialdone, A. Galia, S. Sabatino, Electrochem. Commun., 2013, 26, 45 |
242. | Z. Chen, S. Chen, S. Siahrostami, P. Chakthranont, C. Hahn, D. Nordlund, S. Dimosthenis, J. K. Nørskov, Z. Bao, T. F. Jaramillo, React. Chem. Engin., 2017, 2, 239 |
243. | C. Xia, S. Back, S. Ringe, K. Jiang, F. Chen, X. Sun, S. Siahrostami, K. Chan, H. Wang, Nat. Catal., 2020, 3, 125 |
244. | H. He, S. Liu, Y. Liu, L. Zhou, H. Wen, R. Shen, H. Zhang, X. Guo, J. Jiang, B. Li, Green Chem., 2023, 25, 9501 |
245. | Y. Zheng, Y. Zhang, X. Liang, J. Ouyang, X. Guo, Z. Chen, ChemSusChem, 2024, e202400472 |
246. | A. Reyes-Cruzaley, R. Félix-Navarro, B. Trujillo-Navarrete, C. Silva-Carrillo, J. Zapata-Fernández, J. Romo-Herrera, O. Contreras, E. Reynoso-Soto, Electrochim. Acta, 2019, 296, 575 |
247. | L. Fu, S. -J. You, G. -q. Zhang, F. -L. Yang, X. -h. Fang, Chem. Eng. J., 2010, 160, 164 |
248. | Y. -J. Ko, H. -G. Kim, M. G. Seid, K. Cho, J. -W. Choi, W. -S. Lee, S. W. Hong, ACS Sustain. Chem. Engin., 2018, 6, 14857 |
249. | W. Wang, J. Yu, J. Zou, X. Yu, Electrochim. Acta, 2016, 191, 426 |
250. | C. Ridruejo, F. Alcaide, G. Álvarez, E. Brillas, I. Sirés, J. Electroanal. Chem., 2018, 808, 364 |
251. | L. Wang, M. Cao, Z. Ai, L. Zhang, Environ. Sci. Technol., 2015, 49, 3032 |
252. | G. Ren, M. Zhou, M. Liu, L. Ma, H. Yang, Chem. Engin. J., 2016, 298, 55 |
253. | H. Sheng, A. N. Janes, R. D. Ross, D. Kaiman, J. Huang, B. Song, J. R. Schmidt, S. Jin, Energy Environ. Sci., 2020, 13, 4189 |
254. | Z. Bao, Q. Cao, Y. Shao, S. Zhang, X. Peng, Y. Li, C. Jiang, X. Zhong, J. Wang, ACS Catal., 2023, 13, 14492 |
255. | J. Xu, X. Zheng, Z. Feng, Z. Lu, Z. Zhang, W. Huang, Y. Li, D. Vuckovic, Y. Li, S. Dai, G. Chen, K. Wang, H. Wang, J. K. Chen, W. Mitch, Y. Cui, Nat. Sustain., 2021, 4, 233 |
256. | I. J. Amanna, H. -P. Raué, M. K. Slifka, Nat. Med., 2012, 18, 974 |
257. | X. Wen, X. Zhang, M. Wang, C. Yuan, J. Lang, X. Li, H. Wei, D. Mandler, M. Long, Appl. Catal. B-Environ., 2024, 342, 123437 |
258. | N. Luo, G. H. Miley, R. J. Gimlin, R. L. Burton, J. Rusek, F. Holcomb, J. Prop. Power, 2008, 24, 583 |
259. | S. -i. Yamazaki, Z. Siroma, H. Senoh, T. Ioroi, N. Fujiwara, K. Yasuda, J. Power Sources, 2008, 178, 20 |
260. | A. Sanli, A. Aytaç, Int. J. Hydrogen Energy, 2011, 36, 869 |
261. | Y. Yamada, S. Yoshida, T. Honda, S. Fukuzumi, Energy Environ. Sci., 2011, 4, 2822 |
262. | T. Bewer, T. Beckmann, H. Dohle, J. Mergel, D. Stolten, J. Power Sources, 2004, 125, 1 |
263. | D. N. Prater, J. J. Rusek, Appl. Energy, 2003, 74, 135 |
264. | L. Yi, Y. Song, X. Liu, X. Wang, G. Zou, P. He, W. Yi, Int. J. Hydrogen Energy, 2011, 36, 15775 |
265. | S. J. Lao, H. Y. Qin, L. Q. Ye, B. H. Liu, Z. P. Li, J. Power Sources, 2010, 195, 4135 |
266. | W. Sun, F. Wang, B. Zhang, M. Zhang, V. Küpers, X. Ji, C. Theile, P. Bieker, K. Xu, C. Wang, Science, 2021, 371, 46 |
267. | B. Puértolas, A. K. Hill, T. García, B. Solsona, L. Torrente-Murciano, Catal. Today, 2015, 248, 115 |
268. | C. Tang, Y. Zheng, M. Jaroniec, S. -Z. Qiao, Angew. Chem. Int. Ed., 2021, 60, 19572 |
269. | M. S. Saha, A. Denggerile, Y. Nishiki, T. Furuta, T. Ohsaka, Electrochem. Commun., 2003, 5, 445 |
270. | N. Chaenko, G. Kornienko, V. Kornienko, Russ, J. Electrochem., 2011, 47, 230 |
271. | Z. Lin, Felice, G. E. P. O'Connell, T. Wan, D. Zhang, L. Peng, D. Chu, X. Lu, Z. Han, Chem. Engin. J., 2024, 481, 148736 |
272. | Y. -L. Chen, T. -C. Chou, J. Appl. Electrochem., 1996, 26, 543 |
273. | Y. Shen, M. Atobe, W. Li, T. Nonaka, Electrochim. Acta, 2003, 48, 1041 |
274. | L. -Y. Dong, M. -H. Guan, Y. -Q. Ren, G. -P. Hao, A. -H. Lu, Renewables, 2023, 1, 562 |
275. | Y. Yuan, L. Chen, Z. Wan, K. Shi, X. Teng, H. Xu, P. Wu, J. Shi, Sci. Adv., 10, eado1755 |
276. | J. Qi, Y. Du, Q. Yang, N. Jiang, J. Li, Y. Ma, Y. Ma, X. Zhao, J. Qiu, Nat. Commun., 2023, 14, 6263 |
277. | X. Wu, Y. Wang, Z. -S. Wu, Chem, 2022, 8, 2594 |
278. | Y. Li, X. Wei, L. Chen, J. Shi, M. He, Nat. Commun., 2019, 10, 5335 |
279. | S. Li, R. Ma, J. Hu, Z. Li, L. Liu, X. Wang, Y. Lu, G. E. Sterbinsky, S. Liu, L. Zheng, Nat. Commun., 2022, 13, 2916 |
280. | W. -J. Liu, Z. Xu, D. Zhao, X. -Q. Pan, H. -C. Li, X. Hu, Z. -Y. Fan, W. -K. Wang, G. -H. Zhao, S. Jin, Nat. Commun., 2020, 11, 265 |
281. | Y. Lu, T. Liu, C. L. Dong, C. Yang, L. Zhou, Y. C. Huang, Y. Li, B. Zhou, Y. Zou, S. Wang, Adv. Mater., 2022, 34, 2107185 |
282. | Y. Sun, K. Fan, J. Li, L. Wang, Y. Yang, Z. Li, M. Shao, X. Duan, Nat. Commun., 2024, 15, 6098 |
283. | S. Zhu, K. Jiang, B. Chen, S. Zheng, J. Mater. Chem. A, 2023, 11, 3849 |
284. | Z. -J. Zhao, S. Liu, S. Zha, D. Cheng, F. Studt, G. Henkelman, J. Gong, Nat. Rev. Mater., 2019, 4, 792 |
285. | Y. Chen, C. Zhen, Y. Chen, H. Zhao, Y. Wang, Z. Yue, Q. Wang, J. Li, M. D. Gu, Q. Cheng, Angew. Chem. Int. Ed., 2024, e202407163 |
286. | X. Shi, S. Back, T. M. Gill, S. Siahrostami, X. Zheng, Chem, 2021, 7, 38 |
287. | S. Mavrikis, M. Göltz, S. C. Perry, F. Bogdan, P. K. Leung, S. Rosiwal, L. Wang, C. Ponce de León, ACS Energy Lett., 2021, 6, 2369 |
288. | K. Dong, J. Liang, Y. Wang, Y. Ren, Z. Xu, H. Zhou, L. Li, Q. Liu, Y. Luo, T. Li, Chem Catal., 2021, 1, 1437 |
289. | X. Sun, J. Yang, X. Zeng, L. Guo, C. Bie, Z. Wang, K. Sun, A. K. Sahu, M. Tebyetekerwa, T. E. Rufford, X. Zhang, Angew. Chem. Int. Ed., 2024, e202414417 |
290. | J. S. Lim, S. H. Joo, Chem, 2023, 9, 2056 |
291. | Z. Wang, X. Duan, M. G. Sendeku, W. Xu, S. Chen, B. Tian, W. Gao, F. Wang, Y. Kuang, X. Sun, Chem Catal., 2023, 3 |
292. | Q. Zhang, C. Cao, S. Zhou, W. Wei, X. Chen, R. Xu, X. T. Wu, Q. L. Zhu, Adv. Mater., 2024, 2408341 |
293. | C. Chen, H. Jin, P. Wang, X. Sun, M. Jaroniec, Y. Zheng, S. -Z. Qiao, Chem. Soc. Rev., 2024, 53, 2022 |
294. | M. Liu, Y. Pang, B. Zhang, P. De Luna, O. Voznyy, J. Xu, X. Zheng, C. T. Dinh, F. Fan, C. Cao, Nature, 2016, 537, 382 |
295. | L. Mi, Q. Huo, J. Cao, X. Chen, H. Yang, Q. Hu, C. He, Adv. Energy Mater., 2022, 12, 2202247 |
296. | J. Su, L. Jiang, B. Xiao, Z. Liu, H. Wang, Y. Zhu, J. Wang, X. Zhu, Small, 2023, 2310317 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
a Schematic of the AQ process. b Schematic of the direct synthesis of H2O2.[12] Copyright 2018, American Chemical Society. c Electrosynthesis of H2O2 powered by green electricity.[13] Copyright 2022, John Wiley & Sons.
a Schematic illustration of 4e− and 2e− ORR pathways. b Possible configurations of O2 adsorption on the catalyst surface and potential products of side-on and end-on adsorption of O2 molecules c Schematic of catalyst engineering for proper *OOH binding strength and designable active sites on carbonaceous catalysts.[48] Copyright 2020, John Wiley & Sons.
a Sabatier volcano plot of 2e− ORR.[69] Copyright 2018 American Chemical Society. b Theoretical 2e− ORR activity volcano plot.[72] Copyright 2020 Springer Nature. c Free energy diagram of 4e− and 2e− ORR pathways on Au (111) surface.[69] Copyright 2018 American Chemical Society. d Initial, highest-free energy and final snapshots in the constraint molecular dynamic simulations for the 2e− ORR.[75] Copyright 2024 American Chemical Society.
a Schematic of the RRDE setup in a three-electrode electrochemical cell. b Typical LSV curve obtained on RRDE for ORR.
Timeline of some representative findings for carbon-based electrocatalysts in 2e− ORR. Below are the permissions for the reproduced images. Copyright 2018, American Chemical Society.[88] Copyright 2018, Springer Nature.[89] Copyright 2018, American Chemical Society.[90] Copyright 2018, Springer Nature.[91] Copyright 2019, Springer Nature.[7] Copyright 2019, American Chemical Society.[92] Copyright 2019, John Wiley and Sons.[93] Copyright 2019, John Wiley and Sons.[94] Copyright 2020, Elsevier.[95] Copyright 2020, Springer Nature.[96] Copyright 2020, Springer Nature.[97] Copyright 2020, John Wiley and Sons.[98] Copyright 2021, Elsevier.[99] Copyright 2021, Springer Nature.[100] Copyright 2021, American Chemical Society.[101] Copyright 2021, John Wiley and Sons.[57] Copyright 2022, Royal Society of Chemistry.[61] Copyright 2022, John Wiley and Sons.[102] Copyright 2022, John Wiley and Sons.[103] Copyright 2023, John Wiley and Sons.[104] Copyright 2023, Elsevier.[105] Copyright 2023, American Chemical Society.[106] Copyright 2023, Springer Nature.[107] Copyright 2024, American Chemical Society.[108] Copyright 2024, John Wiley and Sons.[109] Copyright 2024, John Wiley and Sons.[63]
a High-resolution transmission electron microscopy image of the GOMC catalyst. b Schematic illustration comparing H2O2 synthesis via 2e− ORR on basal plane-rich and edge site-rich carbon.[94] Copyright 2019, John Wiley & Sons. c Illustration for the structure of the O-GOMC catalysts with various rod diameters and the synthetic strategy used to prepare the O-GOMC catalysts with controlled density of carbon edges. d Correlation between the mass activity for H2O2 production at 0.80 V vs RHE and the calculated density of edge carbons in the O-GOMC catalysts.[99] Copyright 2021, Elsevier. e Schematic of engineered edge density for enhanced 2e− ORR.[114] Copyright 2020, American Chemical Society. f Schematic of the 2e− ORR mechanism at armchair and zigzag carbon edges.[115] Copyright 2022, Elsevier.
a Schematic of defective carbon-based materials for 2e− ORR. b Different defect configurations examined by DFT calculations and c the corresponding ORR volcano plots for the 2e− (red line) and 4e− (black line) pathways.[90] Copyright 2018, American Chemical Society. d Schematic illustration of the synthesized PD/N-C catalyst. e aberration-corrected scanning transmission electron microscopy images and their Fourier transform fitting results of PD/N-C catalyst. f Schematic of pentagonal defect-rich nitrogen-doped carbon for 2e− ORR.[106] Copyright 2023, American Chemical Society. g Integrated differential phase contrast scanning transmission electron microscopic image of ODG-30 catalyst in defective domain and h coloring and magnifying image of O-DG-30 in defective domain. i Correlation between H2O2 FE, electron transfer number, and catalyst defect density. j Schematic diagram of possible electrocatalytic mechanism of O-DG-30 catalyst. (Gray: C atom, red: O atom, gray white: H atom).[117] Copyright 2023, Springer Nature.
Transmission electron microscopy images of CNTs a before and after b oxidation. c Polarization curves at 1,600 rpm (solid lines) and simultaneous H2O2 detection currents at the ring electrode (dashed lines) for both catalysts in 0.1 M KOH. d Calculated H2O2 selectivity at various potentials at 0.1 M KOH.[89] Copyright 2018, Springer Nature. e Idealized schemes of proposed low-overpotential active sites on F-mrGO and F-mrGO(600) catalysts.[91] Copyright 2018, Springer Nature.
a Preferred *OOH adsorption configurations on B-, P-, N-, and S- doped graphene, respectively. Green, orange, blue, yellow, gray, red, and white spheres represent boron, phosphorous, nitrogen, sulfur, carbon, oxygen and hydrogen, respectively. b Free-energy profile of O2 reduction paths where each state’s charge is corresponding to the potential of URHE = 0.7 V. Highest-free-energy snapshots and final snapshots in constant-potential MD simulations for c 2e− and d 4e− pathways of O2 reduction pathways. a-d are reproduced with permission.[100] Copyright 2021, Springer Nature.
a Configurations of different nitrogen species functionalized into a carbon framework. b Relationship between H2O2 selectivity and atomic content of pyrrolic-N. c Schematic diagram of 2e− and 4e− ORR pathways on N-FLG catalysts with different nitrogen configurations.[98] Copyright 2020, John Wiley & Sons. d Relationship between the pyrrolic N content and the H2O2 selectivity. e Free energy profile of 2e− and 4e− ORR pathways at the equilibrium potentials of 0.7 V vs RHE on different N-doped graphene models. f Schematic diagram of *OOH adsorption on dual-pyrrolic N doping configuration in neutral and alkaline solutions under equilibrium potentials.[138] Copyright 2023, Springer Nature.
a, b Schematic of ORR pathways on Pt surface.[24] Copyright 2014, American Chemical Society. c Schematic of Co nanoparticles embedded open carbon nanocages. d Transmission electron microscopy image of P-Co@C-700 nanocages. e High-resolution transmission electron microscopy image of the part circled in panel d. f The adsorption models of intermediate *OOH on Co-G with –C–O–C group. g Side view of charge density difference for Co-G with –C–O–C group. h Side view of charge density difference for adsorption of *OOH on Co-G with –C–O–C group. The blue, red, brown, and white spheres represent Co, O, C, and H atoms, respectively.[102] Copyright 2022, John Wiley & Sons. i Annular dark-field scanning transmission electron microscopy image of Pdδ+-OCNT presenting uniform distribution of amorphous Pd atom clusters. Inset figure shows the size distribution of the Pd clusters. j Activity volcano plot of Pd atom clusters.[97] Copyright 2020, Springer Nature. k Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy image of FeSAs/ACs catalyst. l Charge density differences of FeO4/Fe4/C and FeO4/Fe4/C adsorbed *OOH.[104] Copyright 2023, John Wiley & Sons.
a Schematic of ORR along the 2e− or 4e− pathway on transition metal SACs (M = Mn, Fe, Co, Ni, and Cu) anchored in N-doped graphene. b Activity-volcano curves of ORR via the 2e− or 4e− pathway.[95] Copyright 2020, Elsevier. c H2O2 selectivity and the number of electrons at 0.1 V vs RHE. d Comparison of the activities of O2 to H2O2 conversion and H2O2 reduction on different M-N-C catalysts.[92] Copyright 2019, American Chemical Society.
a Schematic of the SAC structure, featuring the central metal atom, the first and second coordination spheres, and the location/chemical environment. b Illustration of three dual-atom models consisting of Co and p-block metals. c illustration of the proposed 2e− ORR mechanism on CoIn dual-atom catalyst.[107] Copyright 2023, Springer Nature. d Optimized geometric structures of *OOH adsorption on various Co single-atom sites.[101] Copyright 2021, American Chemical Society. e Schematic diagram of the synthesis route for Co1–NG(O) catalyst.[96] Copyright 2020, Springer Nature. f Schematic of edge-hosted atomic Co-N4 sites and basal-plane-hosted Co-N4 sites for different ORR pathways.[165] Copyright 2022, John Wiley & Sons.
a O2 diffusion pathway in 2e− ORR. b Schematic representation of the structural engineering for carbon-based electrocatalysts. c Schematic illustration of ORR mechanism on mesoporous carbon. d schematic diagram of mesoporous hollow carbon for 2e− ORR to produce H2O2. e Schematic representation of the interfacial state during H2O2 electrosynthesis on a vertical graphene array electrode.[196] Copyright 2022, Elsevier.
a Schematic diagram of three types of surface wetting states.[205] Copyright 2016, John Wiley and Sons. b Diagram of NADE preparation process.[199] Copyright 2020, Springer Nature. c Schematic illustration of the Janus electrode submerged in the electrolyte.[207] Copyright 2020, American Chemical Society. d Schematic depicting the “shielding effect” of Na+ promotes acidic H2O2 generation under industrial-relevant current.[208] Copyright 2022, Springer Nature. e Schematic of in situ selectivity modulation by CTAB on the carbon surface.[60] Copyright 2020, Elsevier.
a Schematic diagram of H-type electrolytic cell for H2O2 electrosynthesis. b Schematic diagram of the flow cell setup for H2O2 electro-production. c Schematic diagram of solid-electrolyte fuel cell for H2O2 electrosynthesis.[86] Copyright 2019, AAAS. d Schematic diagram of the membrane-free microfluidic flow cell.
a Schematic illustration of Electrochemical H2O2 production to degrade organic pollutants.[106] Copyright 2023, American Chemical Society. b schematic illustration of an on-site electrosynthesis device for H2O2 production from O2 for water purification.[242] Copyright 2017, Royal Society of Chemistry. c Schematic of electrochemical synthesis of H2O2 for water disinfection.[7] Copyright 2019, Spring Nature. d Schematic illustration of cyclohexanone oxime production in electrocatalytic ORR–coupled ammoximation reaction system.[275] Copyright 2024, AAAS. e Scheme diagram of the flow cell coupling electrochemical furfural oxidation and H2O2 generation.[98] Copyright 2020, John Wiley & Sons.
Design and application of carbonaceous catalysts for electrochemical 2e− ORR to produce H2O2.