| Citation: | Sicong Zhang, Tao Pan, Yingying Wang, Dianhui Wang, Qing Li, Huan Pang. DFT for the designing of MOF-based materials for rechargeable batteries: a review[J]. Energy Lab. doi: 10.54227/elab.20250007 |
Metal organic frameworks (MOFs) possess distinct permeable frameworks and customizable designs, which can effectively enhance their electrochemical performance when used in rechargeable batteries. This article reviews the application of DFT in various rechargeable batteries using MOF based materials (pure MOF, MOF composites, MOF derivatives, MOF composite derivatives), including lithium-ion batteries, lithium sulfur batteries, zinc ion batteries, etc. This review focuses on predicting the performance of MOF materials in different battery systems, highlighting how computational methods can guide the synthesis of novel materials. DFT advances battery material design through atomic-scale insights into electronic and ionic behaviors, yet faces challenges in modeling dynamics and large-scale systems. Finally, this article also provides an outlook on the research of DFT simulation of MOF materials in rechargeable batteries.
| 1. | D. Adekoya, S. Qian, X. Gu, W. Wen, D. Li, J. Ma, S. Zhang, Nano-Micro Letters, 2020, 13, 13 |
| 2. | C. Morari, L. Buimaga-Iarinca, C. Tripon, R. V. F. Turcu, Electrochim. Acta, 2024, 473, 143493 |
| 3. | Y. Li, Z. Xu, X. Zhang, Z. Wu, J. E. Zhou, J. Zhang, X. Lin, J. Energy Chem., 2023, 85, 239 |
| 4. | X. Liu, F. Liu, X. Zhao and L. Z. Fan, J. Mater., 2022, 8, 30 |
| 5. | Z. Yan, Z. Sun, A. Li, H. Liu, Z. Guo, L. Zhao, J. Feng, L. Qian, Chem. Eng. J., 2022, 429, 132249 |
| 6. | G. Zhang, X. Li, D. Wei, H. Yu, J. Ye, S. Chen, W. Zhang, J. Zhu, X. Duan, Chem. Eng. J., 2023, 453, 139841 |
| 7. | X. Hu, Q. Huang, Y. Zhang, H. Zhong, Z. Lin, X. Lin, A. Zeb, C. Xu, X. Xu, Sustain. Energy Fuels, 2022, 6, 1175 |
| 8. | J. Wang, X. Zhao, Mater. Lett., 2022, 313, 131600 |
| 9. | J. Lin, Y. H. Sun, X. Lin, Nano Energy, 2022, 91, 106655 |
| 10. | S. Wu, H. Liu, G. Lei, H. He, J. Wu, G. Zhang, F. Zhang, W. Peng, X. Fan, Y. Li, Chem. Eng. J., 2022, 441, 135849 |
| 11. | X. Wang, D. Du, H. Xu, Y. Yan, X. Wen, L. Ren, C. Shu, Chem. Eng. J., 2023, 452, 139524 |
| 12. | M. Liu, J. Zhao, H. Dong, H. Meng, D. Cao, K. Zhu, J. Yao, G. Wang, Small, 2024, 20, 2405309 |
| 13. | C. Chen, J. Chai, M. Sun, T. Guo, J. Lin, Y. Zhou, Z. Sun, F. Zhang, L. Zhang, W. Chen, Y. Li, Energy Environ. Sci., 2024, 17, 2298 |
| 14. | Q. Liu, L. Yang, Z. Mei, Q. An, K. Zeng, W. Huang, S. Wang, Y. Sun, H. Guo, Energy Environ. Sci., 2024, 17, 780 |
| 15. | J. Wen, H. Yao, Z. Liu, F. Su, H. Jiang, Q. Fu, W. Xie, L. Yang, C. Han, J. Ma, J. Shen, L. Yan, X. Zhao, J. Power Sources, 2024, 606, 234556 |
| 16. | K. Chen, C. Chen, J. Long, G. Zhou, Appl. Surf. Sci., 2024, 657, 159803 |
| 17. | J. Wang, Y. Shao, F. Yuan, H. Sun, D. Zhang, Z. Li, S. Ramesh, H. J. Woo, B. Wang, J, Energy Chem., 2023, 80, 291 |
| 18. | X. Han, Y. Cao, Y. Y. Liu, C. Li, H. Geng, H. Gu, P. Braunstein, J. P. Lang, Adv. Mater., 2024, 36, 2407274 |
| 19. | Q. Deng, L. Wang, J. Li, Q. Cheng, X. Liu, C. Chen, Q. Zhang, W. Zhong, H. Wang, L. Wu, C. Yang, Chinese Chem. Lett., 2023, 34, 107372 |
| 20. | M. Moradi, M. Nangir, A. Massoudi, Appl. Surf. Sci., 2021, 562, 150156 |
| 21. | K. Song, Y. Feng, X. Zhou, T. Qin, X. Zou, Y. Qi, Z. Chen, J. Rao, Z. Wang, N. Yue, X. Ge, W. Zhang, W. Zheng, Appl. Catal. B Environ., 2022, 316, 121591 |
| 22. | H. Wu, Z. Li, Z. Wang, Y. Ma, S. Huang, F. Ding, F. Li, Q. Zhai, Y. Ren, X. Zheng, Y. Yang, S. Tang, Y. Deng, X. Meng, Appl. Catal. B Environ., 2023, 325, 122356 |
| 23. | Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Nano-Micro Lett., 2021, 13, 203 |
| 24. | G. Dey, R. Jana, S. Saifi, R. Kumar, D. Bhattacharyya, A. Datta, A. S. K. Sinha, A. Aijaz, ACS Nano, 2023, 17, 19155 |
| 25. | C. Hu, F. Wei, Q. Liang, Q. Peng, Y. Yang, T. Taylor Isimjan, X. Yang, J. Energy Chem., 2023, 80, 247 |
| 26. | G. Bao, Y. Jin, Q. Fan, X. Chen, X. Wang, T. Yan, H. Chi, J. Lin, W. Cui, S. Zhang, J. Mater. Chem. A, 2024, 12, 6623 |
| 27. | W. Da Zhang, Q. T. Hu, L. L. Wang, J. Gao, H. Y. Zhu, X. Yan, Z. G. Gu, Appl. Catal. B Environ., 2021, 286, 119906 |
| 28. | Q. Yan, X. Duan, Y. Liu, F. Ge, H. Zheng, J. Mater. Chem. A, 2022, 11, 1430 |
| 29. | H. Chang, Y. F. Guo, X. Liu, P. F. Wang, Y. Xie, T. F. Yi, Appl. Catal. B Environ., 2023, 327, 122469 |
| 30. | S. Ren, X. Duan, F. Ge, Z. Chen, Q. Yang, M. Zhang, H. Zheng, Chem. Eng. J., 2022, 427, 131614 |
| 31. | Y. Tan, W. Zhu, Z. Zhang, W. Wu, R. Chen, S. Mu, H. Lv, N. Cheng, Nano Energy, 2021, 83, 105813 |
| 32. | M. Chen, F. Kong, H. Yao, Y. Chen, G. Meng, Z. Chang, C. Chen, H. Tian, L. Wang, X. Cui, J. Shi, Chem. Eng. J., 2023, 453, 139820 |
| 33. | S. Idris, F. Jan, M. Waheed, A. Alam, M. Ibrahim, A. F. AlAsmari, F. Alasmari, L. Bo, M. Khan, J. Mol. Struct., 2024, 1304, 137669 |
| 34. | G. C. Moore, M. K. Horton, E. Linscott, A. M. Ganose, M. Siron, D. D. O’Regan, K. A. Persson, Phys. Rev. Mater., 2024, 8, 014409 |
| 35. | Z. M. Şenol, H. Ertap, Y. Fernine, N. El Messaoudi, Polym. Bull., 2024, 81, 12795 |
| 36. | S. Gul, F. Jan, A. Alam, A. Shakoor, A. Khan, A. F. AlAsmari, F. Alasmari, M. Khan, L. Bo, Sci. Rep., 2024, 14, 3419 |
| 37. | Y. Cao, F. Lei, Y. Li, S. Qiu, Y. Wang, W. Zhang, Z. Zhang, J. Mater. Chem. A, 2021, 9, 16196 |
| 38. | Y. Feng, M. Xu, T. He, B. Chen, F. Gu, L. Zu, R. Meng, J. Yang, Adv. Mater., 2021, 33, 2007262 |
| 39. | M. F. Rahman, M. N. H. Toki, M. R. Islam, P. Barman, S. Chowdhury, M. Rasheduzzaman, M. Z. Hasan, Opt. Quantum Electron., 2024, 56, 206 |
| 40. | Y. Wang, T. Luo, Y. Li, A. Wang, D. Wang, J. L. Bao, U. Mohanty, C. K. Tsung, ACS Appl. Mater. Interfaces, 2021, 13, 51974 |
| 41. | P. Miry, V. Safarifard, M. Moradi, A. Massoudi, FlatChem, 2022, 34, 100382 |
| 42. | M. S. Uddin, M. K. Hossain, M. B. Uddin, G. F. I. Toki, M. Ouladsmane, M. H. K. Rubel, D. I. Tishkevich, P. Sasikumar, R. Haldhar, R. Pandey, Adv. Electron. Mater., 2024, 10, 2300751 |
| 43. | T. Bouzid, A. Grich, A. Naboulsi, A. Regti, M. El Himri, M. El Haddad, Sep. Purif. Technol., 2024, 351, 128107 |
| 44. | P. F. Zhang, H. Y. Zhuo, Y. Y. Dong, Y. Zhou, Y. W. Li, H. G. Hao, D. C. Li, W. J. Shi, S. Y. Zeng, S. L. Xu, X. J. Kong, Y. J. Wu, J. S. Zhao, S. Zhao, J. T. Li, ACS Appl. Mater. Interfaces, 2023, 15, 2940 |
| 45. | H. Rasheev, A. Seremak, R. Stoyanova, A. Tadjer, Molecules, 2022, 27, 586 |
| 46. | J. Zhang, T. Li, H. Zhang, Z. Huang, W. Zeng, Q. Zhou, Mater. Today Chem., 2024, 38, 102114 |
| 47. | T. Liu, G. Lv, M. Liu, C. Zhao, L. Liao, H. Liu, J. Shi, J. Zhang, J. Guo, ACS Appl. Mater. Interfaces, 2023, 15, 11906 |
| 48. | M. Perumalsamy, A. Sathyaseelan, S. Kamalakannan, V. Elumalai, H. C. Ham, S. J. Kim, Energy Storage Mater., 2024, 70, 103447 |
| 49. | D. Roy, P. Pal, T. Pal, R. A. Doong, Appl. Mater. Today, 2023, 35, 101944 |
| 50. | H. Murtaza, Q. Ain, J. Munir, H. M. Ghaithan, A. Ahmed Ali Ahmed, A. S. Aldwayyan, S. M. H. Qaid, Inorg. Chem. Commun., 2024, 162, 112206 |
| 51. | R. Oktavian, R. Goeminne, L. T. Glasby, P. Song, R. Huynh, O. T. Qazvini, O. Ghaffari-Nik, N. Masoumifard, J. L. Cordiner, P. Hovington, V. Van Speybroeck, P. Z. Moghadam, Nat. Commun., 2024, 15, 3898 |
| 52. | J. Liang, H. Yu, J. Shi, B. Li, L. Wu, M. Wang, Adv. Mater. , 2023, 35, 2209814 |
| 53. | A. Radwan, H. Jin, D. He, S. Mu, Nano-Micro Lett., 2021, 13, 132 |
| 54. | J. Rong, W. Chen, E. Gao, J. Wu, H. Ao, X. Zheng, Y. Zhang, Z. Li, M. Kim, Y. Yamauchi, C. Wang, Small, 2024, 20, 2402323 |
| 55. | N. Elboughdiri, I. Lakikza, A. Boublia, S. I. Aouni, N. El Houda Hammoudi, J. Georgin, D. S. P. Franco, H. Ferkous, D. Ghernaout, Y. Benguerba, Process Saf. Environ. Prot., 2024, 186, 995 |
| 56. | P. Geng, L. Wang, M. Du, Y. Bai, W. Li, Y. Liu, S. Chen, P. Braunstein, Q. Xu, H. Pang, Adv. Mater., 2022, 34, 2107836 |
| 57. | Z. Chen, Z. Zhang, L. Wang, Y. Li, Y. Wang, Y. Rui, A. Song, M. Li, Y. Xiang, K. Chu, L. Jiang, B. Tang, N. Han, G. Wang, H. Tian, Nanoscale, 2024, 16, 14339 |
| 58. | F. Zhu, J. Zhang, X. Cao, Y. Fang, C. Li, M. S. Irshad, T. Mei, Y. Chen, M. Li, X. Wang, J. Energy Storage, 2024, 104, 114643 |
| 59. | M. Azqandi, K. Nateq, M. Amarzadeh, M. Yoosefian, A. Yaghoot-Nezhad, A. Ahmad, B. Ramavandi, N. Nasseh, J. Environ. Chem. Eng., 2024, 12, 112875 |
| 60. | Q. Deng, Y. Yang, W. Zhao, Z. Tang, K. Yin, Y. Song, Y. Zhang, J. Colloid Interface Sci., 2023, 651, 883 |
| 61. | K. Y. Lin, M. R. Lai, M. Otani, T. Miyazaki, J. C. Jiang, J. Phys. Chem. C, 2024, 128, 16334 |
| 62. | D. Liu, L. Jiang, D. Chen, Z. Hao, B. Deng, Y. Sun, X. Liu, B. Jia, L. Chen, H. Liu, Chem. Eng. J., 2024, 482, 149165 |
| 63. | I. Rabichi, C. Sekkouri, F. E. Yaacoubi, K. Ennaciri, Z. Izghri, T. Bouzid, L. El Fels, A. Baçaoui, Water. Air. Soil Pollut., 2024, 235, 369 |
| 64. | Z. Zhai, W. Yan, L. Dong, S. Deng, D. P. Wilkinson, X. Wang, L. Zhang, J. Zhang, J. Mater. Chem. A, 2021, 9, 20320 |
| 65. | H. Gao, S. Wang, W. C. (Max) Cheong, K. Wang, H. Xu, A. Huang, J. Ma, J. Li, W. F. (Andy) Ip, K. San Hui, D. A. Dinh, X. Fan, F. Bin, F. Chen, K. N. Hui, Carbon N. Y., 2023, 203, 76 |
| 66. | S. Li, Y. Gao, N. Li, L. Ge, X. Bu, P. Feng, Energy Environ. Sci., 2021, 14, 1897 |
| 67. | D. Abid, I. Mjejri, R. Jaballi, P. Guionneau, S. Pechev, E. K. Hlil, N. Daro, Z. Elaoud, Inorg. Chem., 2024, 63, 6152 |
| 68. | A. Zaboli, H. Raissi, H. Hashemzadeh, F. Farzad, Phys. Chem. Chem. Phys., 2023, 25, 23937 |
| 69. | J. Li, S. Hou, T. Liu, C. Mei, L. Wang, J. Wang, L. Zhao, Batter. Supercaps, 2021, 4, 1858 |
| 70. | S. Hu, J. Wang, Y. Lu, L. Yang, L. Xiong, S. Zhao, L. Bai, C. Huang, C. Zhou, J. Zhu, W. Y. Zhou, Y. Zhou, Y. Yang, Appl. Surf. Sci., 2022, 579, 152183 |
| 71. | M. Lu, Y. Zhang, Q. Huang, X. Li, X. Lin, A. Zeb, C. Xu, Q. Luo, X. Xu, Adv. Sustain. Syst., 2022, 6, 2100463 |
| 72. | J. Lin, C. Xu, M. Lu, X. Lin, Z. Ali, C. Zeng, X. Xu, Y. Luo, Energy Environ. Mater., 2023, 6, e12284 |
| 73. | T. Wei, Z. Wang, M. Zhang, Q. Zhang, J. Lu, Y. Zhou, C. Sun, Z. Yu, Y. Wang, M. Qiao, S. Qin, Mater. Today Commun., 2022, 31, 103518 |
| 74. | M. He, W. Zhang, H. Zhang, J. Lian, Y. Gao, J. Wang, Y. Lv, X. Wang, R. Miao, L. Wang, Chem. Eng. J., 2024, 493, 152321 |
| 75. | H. Lian, R. Momen, Y. Xiao, B. Song, X. Hu, F. Zhu, H. Liu, L. Xu, W. Deng, H. Hou, G. Zou, X. Ji, Adv. Funct. Mater., 2023, 33, 2306060 |
| 76. | X. Guo, H. Xu, W. Li, Y. Liu, Y. Shi, Q. Li, H. Pang, Adv. Sci., 2023, 10, 2206084 |
| 77. | R. Goswami, B. D. Bankar, S. Rajput, N. Seal, R. S. Pillai, A. V. Biradar, S. Neogi, J. Mater. Chem. A, 2022, 10, 4316 |
| 78. | Q. Huang, X. Sha, R. Yang, H. Li, J. Peng, ACS Appl, Mater. Interfaces, 2024, 16, 13882 |
| 79. | Y. Shi, G. Song, B. Yang, Y. Tang, Z. Liu, Z. Zhang, M. Shakouri, J. Cheng, H. Pang, Adv. Mater., 2025, 12, 2416665 |
| 80. | L. Sun, H. Wang, S. Zhai, J. Sun, X. Fang, H. Yang, D. Zhai, C. Liu, W. Q. Deng, H. Wu, J. Energy Chem., 2023, 76, 368 |
| 81. | G. Sahoo, T. G. Senthamaraikannan, H. S. Jeong, P. Bandyopadhyay, D. H. Lim, S. K. Nayak, S. M. Jeong, J. Mater. Chem. A, 2024, 12, 15019 |
| 82. | H. Tang, Y. Wang, X. Liu, T. Tian, Q. Weng, X. Liu, T. Liu, J. Electroanal. Chem., 2024, 968, 118507 |
| 83. | B. Zhu, M. Zhang, Y. Liu, Y. Liu, X. Zhang, Y. Song, L. Wang, R. Mi, Chem. Eng. J., 2024, 482, 149161 |
| 84. | Y. Chen, M. Huang, G. Deng, C. Wu, H. Zhong, A. Zeb, X. Lin, Y. Wu, Z. Wu, Z. Xu, Y. Cai, Chem. Eng. J., 2024, 486, 150111 |
| 85. | K. A. Adegoke, A. K. Oyebamiji, A. O. Adeola, A. B. Olabintan, K. O. Oyedotun, B. B. Mamba, O. S. Bello, Coord. Chem. Rev., 2024, 517, 215959 |
| 86. | U. J. Ryu, S. Jee, P. C. Rao, J. Shin, C. Ko, M. Yoon, K. S. Park, K. M. Choi , Coord. Chem. Rev., 2021, 426, 213544 |
| 87. | J. Lin, T. Huang, M. Lu, X. Lin, R. C. K. Reddy, X. Xu, Chem. Eng. J., 2022, 433, 133770 |
| 88. | W. Du, J. Huang, Z. Peng, Z. Xu, Y. Wu, L. Hu, Y. Luo, Z. Xu, X. Lin, Mater. Today Chem., 2024, 37, 102030 |
| 89. | X. Zhang, Y. Peng, C. Zeng, Z. Lin, Y. Zhang, Z. Wu, X. Xu, X. Lin, A. Zeb, Y. Wu, L. Hu, J. Colloid Interface Sci., 2023, 643, 502 |
| 90. | T. Wei, C. Sun, X. Guo, Y. Zhou, M. Wang, X. Qiu, Q. Wang, Y. Tang, J. Colloid Interface Sci., 2024, 664, 596 |
| 91. | Y. Guo, M. Huang, H. Zhong, Z. Xu, Q. Ye, J. Huang, G. Ma, Z. Xu, A. Zeb, X. Lin, J. Colloid Interface Sci., 2023, 650, 1638 |
| 92. | Q. Feng, T. Li, Y. Miao, Y. Sui, B. Xiao, Z. Sun, J. Qi, F. Wei, Q. Meng, Y. Ren, X. Xue, J. Colloid Interface Sci., 2022, 608, 227 |
| 93. | L. Hu, Q. Wang, X. Zhu, T. Meng, B. Huang, J. Yang, X. Lin, Y. Tong, Nanoscale, 2021, 13, 716 |
| 94. | B. Cao, H. Liu, X. Zhang, P. Zhang, Q. Zhu, H. Du, L. Wang, R. Zhang, B. Xu, Nano-Micro Lett., 2021, 13, 202 |
| 95. | J. E. Zhou, H. Zhong, Y. Zhang, Q. Huang, B. Zhang, A. Zeb, Z. Xu, X. Lin, Chem. Eng. J., 2022, 450, 137448 |
| 96. | W. Du, Y. Zheng, X. Liu, J. Cheng, R. Chenna Krishna Reddy, A. Zeb, X. Lin, Y. Luo, Chem. Eng. J., 2022, 451, 138626 |
| 97. | Y. Duan, M. Xue, B. Liu, M. Zhang, Y. Wang, B. Wang, R. Zhang, K. Yan, Chinese J. Catal., 2024, 57, 68 |
| 98. | D. Majumdar, J. E. Philip, B. Gassoumi, S. Ayachi, B. Abdelaziz, B. Tüzün, S. Roy, Heliyon, 2024, 10, e29856 |
| 99. | N. Shafiq, M. Arshad, A. Ali, F. Rida, M. Mohany, U. Arshad, M. Umar, M. Milošević, South African J. Bot., 2024, 169, 276 |
| 100. | Y. Wang, S. Ding, J. Li, L. Wu, Z. Jiang, Z. F. Ma, X. Yuan, J. Electrochem. Soc., 2021, 168, 040528 |
| 101. | X. Zhang, G. Deng, M. Huang, Z. Xu, J. Huang, X. Xu, Z. Xu, M. Li, L. Hu, X. Lin, J. Energy Chem., 2024, 88, 112 |
| 102. | X. Zhang, M. Huang, Z. Peng, X. Sang, Y. Liu, X. Xu, Z. Xu, A. Zeb, Y. Wu, X. Lin, J. Colloid Interface Sci., 2023, 652, 1394 |
| 103. | S. Guo, Y. Xiao, A. Cherevan, D. Eder, L. Xu, Q. Zeng, Y. Ouyang, Q. Zhang, S. Huang, Mater. Today, 2023, 65, 37 |
| 104. | T. Li, L. Liang, Z. Chen, J. Zhu,, P. Shen, Chem. Eng. J., 2023, 474, 145970 |
| 105. | M. Du, J. Shi, P. Geng, W. Zhou, X. Zhang, S. Zhang, H. Pang, Mater. Today Chem., 2024, 41, 102289 |
| 106. | L. Zhou, P. Zhou, Y. Zhang, B. Liu, P. Gao, S. Guo, J. Energy Chem., 2021, 55, 355 |
| 107. | J. Liu, L. He, S. Zhao, S. Li, L. Hu, J. Y. Tian, J. Ding, Z. Zhang, M. Du, Adv. Sci., 2023, 10, 2205786 |
| 108. | D. Chen, S. Mukherjee, C. Zhang, Y. Li, B. Xiao, C. V. Singh, J. Colloid Interface Sci., 2022, 613, 435 |
| 109. | T. Liu, S. Fu, S. Xin, J. Li, H. Cui, Y. Liu, K. Liu, H. Wei, M. Wang, Appl. Surf. Sci., 2024, 655, 159617 |
| 110. | Q. Li, G. Zhang, Y. Xu, Y. Sun, H. Pang, Acta Phys. - Chim. Sin., 2024, 40, 2308045 |
| 111. | G. Zhang, H. Li, Q. Wang, Y. Su, Y. Sun, H. Pang, Nano Res., 2025, 18, 94907229 |
| 112. | W. Li, C. Li, J. Guo, T. Jiang, W. Kang, H. Pang, ChemSusChem, 2025, 1, e202402289 |
| 113. | M. Du, P. Geng, W. Feng, H. Xu, B. Li, H. Pang, Small, 2024, 20, 2401587 |
| 114. | Y. Zhang, Y. X. Su, Z. Cai, L. Tong, W. K. Dong, J. Mol. Struct., 2024, 1309, 138164 |
| 115. | A. Ayyaz, G. Murtaza, A. Usman, N. Sfina, A. S. Alshomrany, S. Younus, S. Saleem, Urwa-tul-Aysha, J. Inorg. Organomet. Polym. Mater., 2024, 34, 3560 |
| 116. | X. Wang, X. Zhang, Y. Zhao, D. Luo, L. Shui, Y. Li, G. Ma, Y. Zhu, Y. Zhang, G. Zhou, A. Yu, Z. Chen, Angew. Chem. Int. Ed., 2023, 62, e202306901 |
| 117. | Y. Fei, G. Li, Adv. Funct. Mater., 2024, 34, 2312550 |
| 118. | H. Zhang, H. Sun, L. Kang, Y. Zhang, L. Wang, K. Wang, Prot. Control Mod. Power Syst., 2024, 9, 21 |
| 119. | Y. W. Song, L. Shen, N. Yao, S. Feng, Q. Cheng, J. Ma, X. Chen, B. Q. Li, Q. Zhang, Angew. Chem. Int. Ed., 2024, 63, e202400343 |
| 120. | S. C. Kim, X. Gao, S. L. Liao, H. Su, Y. Chen, W. Zhang, L. C. Greenburg, J. A. Pan, X. Zheng, Y. Ye, M. S. Kim, P. Sayavong, A. Brest, J. Qin, Z. Bao, Y. Cui, Nat. Commun., 2024, 15, 1268 |
| 121. | M. Zhao, H. J. Peng, B. Q. Li, J. Q. Huang, Acc. Chem. Res., 2024, 57, 545 |
| 122. | X. Y. Li, S. Feng, Y. W. Song, C. X. Zhao, Z. Li, Z. X. Chen, Q. Cheng, X. Chen, X. Q. Zhang, B. Q. Li, J. Q. Huang, Q. Zhang, J. Am. Chem. Soc., 2024, 146, 14754 |
| 123. | Z. Han, S. Son, K. Kim, M. Geng, H. Yang, Chem. Eng. J., 2024, 481, 148389 |
| 124. | X. Wang, B. Zhu, D. Xu, Z. Gao, Y. Yao, T. Liu, J. Yu, L. Zhang, ACS Appl. Mater. Interfaces, 2023, 15, 26882 |
| 125. | Y. Lv, L. Bai, Q. Jin, S. Deng, X. Ma, F. Han, J. Wang, L. Zhang, L. Wu, X. Zhang, J. Energy Chem., 2024, 89, 397 |
| 126. | L. L. Su, N. Yao, Z. Li, C. X. Bi, Z. X. Chen, X. Chen, B. Q. Li, X. Q. Zhang, J. Q. Huang, Angew. Chem. Int. Ed., 2024, 63, e202318785 |
| 127. | Z. Chang, W. Liu, J. Feng, Z. Lin, C. Shi, T. Wang, Y. Lei, X. Zhao, J. Song, G. Wang, Batter. Supercaps, 2024, 7, e202300516 |
| 128. | L. Ren, K. Sun, Y. Wang, A. Kumar, J. Liu, X. Lu, Y. Zhao, Q. Zhu, W. Liu, H. Xu, X. Sun, Adv. Mater., 2024, 36, 2310547 |
| 129. | H. Zhang, S. Xin, J. Li, H. Cui, Y. Liu, Y. Yang, M. Wang, Nano Energy, 2021, 85, 106011 |
| 130. | W. Gao, Y. Liu, Y. Zhang, N. Baikalov, A. Konarov, Z. Bakenov, J. Alloys Compd., 2021, 882, 160728 |
| 131. | Y. Jiang, M. Du, P. Geng, B. Sun, R. Zhu, H. Pang, J. Colloid Interface Sci., 2024, 664, 617 |
| 132. | P. Chen, T. Wang, D. He, T. Shi, M. Chen, K. Fang, H. Lin, J. Wang, C. Wang, H. Pang, Angew. Chem. Int. Ed., 2023, 62, e202311693 |
| 133. | S. Zhai, W. Liu, Y. Hu, Z. Chen, H. Xu, S. Xu, L. Wu, Z. Ye, X. Wang, T. Mei, ACS Appl. Mater. Interfaces, 2022, 14, 50932 |
| 134. | G. Sun, T. Yang, J. Duan, Y. Zhang, M. Wang, R. Wang, C. Wang, J. Alloys Compd., 2021, 870, 159543 |
| 135. | W. Liu, H. Zong, M. Li, Z. Zeng, S. Gong, K. Yu, Z. Zhu, ACS Appl. Mater. Interfaces, 2023, 15, 13554 |
| 136. | Y. Liu, P. Shi, Y. Li, Y. Yang, J. Yao, J. Li, Z. Tao, Y. Gan, X. Liu, Z. Wu, C. Xia, J. Zheng, L. Lv, L. Tao, J. Zhang, H. Wang, H. Wan, H. Wang, J. Energy Storage, 2024, 96, 112730 |
| 137. | X. Teng, J. Lu, Y. Niu, S. Gong, M. Xu, T. J. Meyer, Z. Chen, Chem. Mater., 2022, 34, 6036 |
| 138. | C. Peng, S. Mei, X. Chen, Z. Wei, F. Huang, Y. Zhang, L. Ding, Y. Peng, Z. Deng, J. Alloys Compd., 2024, 1002, 175486 |
| 139. | G. Yuan, Y. Su, X. Zhang, B. Gao, J. Hu, Y. Sun, W. Li, Z. Zhang, M. Shakouri, H. Pang, Natl. Sci. Rev., 2024, 11, nwae336 |
| 140. | H. Pang, Y. Shi, B. Yang, G. Song, Z. Chen, M. Shakouri, W. Zhou, X. Zhang, G. Yuan, Angew. Chem. Int. Ed., 2024, 63, e202411579 |
| 141. | X. Liu, Z. Han, S. Zhao, H. Tang, T. Tian, Q. Weng, X. Liu, T. Liu, Mater. Today Energy, 2024, 44, 101659 |
| 142. | S. Deng, B. Xu, J. Zhao, C. W. Kan, X. Liu, Angew. Chem. Int. Ed., 2024, 63, e202401996 |
| 143. | X. Chen, J. H. Liu, H. Jiang, C. Zhan, Y. Gao, J. Li, H. Zhang, X. Cao, S. Dou, Y. Xiao, Energy Storage Mater., 2024, 65, 103168 |
| 144. | Z. Qiu, X. Guo, S. Cao, M. Du, Q. Wang, Y. Pi, H. Pang, Angew. Chem. Int. Ed., 2025, 64, e202415216 |
| 145. | L. Lei, B. Zhao, X. Pei, L. Gao, Y. Wu, X. Xu, P. Wang, S. Wu, S. Yuan, ACS Appl. Mater. Interfaces, 2024, 16, 485 |
| 146. | Z. Cao, C. Liu, Y. Zhou, B. Song, D. Xiong, S. Tao, X. T. Xiao, Y. M. Shu, W. Deng, J. Hu, H. Hou, G. Zou, X. Ji, J. Phys. Chem. Lett., 2024, 15, 8434 |
| 147. | Z. Cao, H. Zhang, B. Song, D. Xiong, S. Tao, W. Deng, J. Hu, H. Hou, G. Zou, X. Ji, Adv. Funct. Mater., 2023, 33, 2300339 |
| 148. | J. Ju, Y. Zhang, Y. Zhang, Z. Zhang, S. Chen, C. Zhao, W. Kang, Chem. Eng. J., 2024, 481, 148479 |
| 149. | Z. Yang, Q. Zhang, T. Wu, Q. Li, J. Shi, J. Gan, S. Xiang, H. Wang, C. Hu, Y. Tang, H. Wang, Angew. Chem. Int. Ed., 2024, 63, e202317457 |
| 150. | M. Du, B. Chu, Q. Wang, C. Li, Y. Lu, Z. Zhang, X. Xiao, C. Q. Xu, M. Gu, J. Li, H. Pang, Q. Xu, Adv. Mater., 2024, 36, 2412978 |
| 151. | S. Bahhar, A. Tahiri, A. Jabar, M. Louzazni, M. Idiri, H. Bioud, Comput. Mater. Sci., 2024, 238, 112928 |
| 152. | Y. H. Lee, Y. Jeoun, J. H. Kim, J. Shim, K. S. Ahn, S. H. Yu, Y. E. Sung, Adv. Funct. Mater., 2024, 34, 2310884 |
| 153. | S. Tang, Q. Wei, B. Liu, J. Yang, H, Jiang, Y. Ge, D. Wu, J. Li, T. Qiu, H. Zhang, X. Tian, Angew. Chem. Int. Ed., 2025, 64, e202510252 |
| 154. | W. He, T. Gu, X. Xu, S. Zuo, J. Shen, J. Liu, M. Zhu, ACS Appl. Mater. Interfaces, 2022, 14, 40031 |
| 155. | G. Yuan, Y. Liu, J. Xia, Y. Su, W. Wei, Y. Zhu, Y. An, H. Wu, F. Beejujwft, B. O. E. Tvsgbdf, Q. Bhfout, Nano Res., 2023, 16, 6881 |
| 156. | Z. Luo, Z. Liu, H. He, Z. Zhang, Y. Chen, C. Peng, J. Zeng, J. Mater. Sci. Technol., 2023, 145, 93 |
| 157. | Y. Zhang, Z. Li, M. Liu, J. Liu, Chem. Eng. J., 2023, 463, 142425 |
| 158. | Q. Hu, J. Hou, Y. Liu, L. Li, Q. Ran, J. Mao, X. Liu, J. Zhao, H. Pang, Adv. Mater., 2023, 35, 2303336 |
| 159. | X. Guo, H. Xu, Y. Tang, Z. Yang, F. Dou, W. Li, Q. Li, H. Pang, Adv. Mater., 2024, 36, 2408317 |
| 160. | Y. Zhang, Z. Li, B. Zhao, Z. Wang, J. Liu, J. Mater. Chem. A, 2024, 12, 1725 |
| 161. | Y. Zhang, Z. Li, L. Gong, X. Wang, P. Hu, J. Liu, J. Energy Chem., 2023, 77, 561 |
| 162. | J. Yu, D. Cai, J. Si, H. Zhan, Q. Wang, J. Mater. Chem. A, 2022, 10, 4100 |
| 163. | S. Wang, Y. Su, Z. Jiang, Z. Meng, T. Wang, M. Yang, W. Zhao, H. Chen, M. Shakouri, H. Pang, Nano Lett., 2024, 24, 15101 |
| 164. | Q. Li, G. Yuan, T. Pan, Y. Wang, Y. Xu, H. Pang, Int. J. Hydrogen Energy, 2024, 93, 338 |
| 165. | Y. Su, Y. Zhang, G. Yuan, Y. Tang, G. Zhang, M. Shakouri, H. C. Chen, H. Zhou, Z. Liu, H. Pang, Sci. China Chem., 2024, 68, 2958 |
| 166. | Y. Su, G. Yuan, J. Hu, G. Zhang, Y. Tang, Y. Chen, Y. Tian, S. Wang, M. Shakouri, H. Pang, Adv. Mater., 2024, 36, 2406094 |
| 167. | G. Zhang, H. Yang, H. Zhou, T. Huang, Y. F. Yang, G. Zhu, Y. Zhang, H. Pang, Angew. Chem. Int. Ed., 2024, 63, e202401903 |
| 168. | Y. Su, J. Hu, G. Yuan, G. Zhang, W. Wei, Y. Sun, X. Zhang, Z. Liu, N. T. Suen, H. C. Chen, H. Pang, Adv. Mater., 2023, 35, 2307003 |
| 169. | G. Zhang, Y. Li, G. Du, J. Lu, Q. Wang, K. Wu, S. Zhang, H. -Y. Chen, Y. Zhang, H. -G. Xue, M. Shakouri, Z. Liu, H. Pang, Angew. Chem. Int. Ed., 2025, 64, e202424650 |
| 170. | T. Chen, F. Wang, S. Cao, Y. Bai, S. Zheng, W. Li, S. Zhang, S. X. Hu, H. Pang, Adv. Mater., 2022, 34, 2201779 |
| 171. | A. El-Asri, A. Jmiai, H. Bourzi, Y. Lin, S. El Issami, Surf. Interfaces, 2024, 44, 103799 |
| 172. | S. Hussain, J. U. Rehman, A. Hussain, M. B. Tahir, F. Iqbal, Int. J. Hydrogen Energy, 2024, 62, 739 |
| 173. | W. Alexan, D. El-Damak, M. Gabr, IEEE Access, 2024, 12, 21092 |
| 174. | D. Du, H. He, R. Zheng, L. Zeng, X. Wang, C. Shu, C. Zhang, Adv. Energy Mater., 2024, 14, 2304238 |
| 175. | Y. Chen, S. Liu, Z. Bi, Z. Li, F. Zhou, R. Shi, T. Mu, Green Energy Environ., 2024, 9, 966 |
| 176. | Y. Yang, X. Hu, G. Wang, J. Han, Q. Zhang, W. Liu, Z. Xie, Z. Zhou, Adv. Funct. Mater., 2024, 34, 2315354 |
| 177. | W. Yu, T. Yoshii, A. Aziz, R. Tang, Z. Z. Pan, K. Inoue, M. Kotani, H. Tanaka, E. Scholtzová, D. Tunega, Y. Nishina, K. Nishioka, S. Nakanishi, Y. Zhou, O. Terasaki, H. Nishihara, Adv. Sci., 2023, 10, 2300268 |
| 178. | C. Zhao, Z. Yan, B. Zhou, Y. Pan, A. Hu, M. He, J. Liu, J. Long, Angew. Chem. Int. Ed., 2023, 62, e202302746 |
| 179. | S. Cao, Y. Li, Y. Tang, Y. Sun, W. Li, X. Guo, F. Yang, G. Zhang, H. Zhou, Z. Liu, Q. Li, M. Shakouri, H. Pang, Adv. Mater., 2023, 35, 2301011 |
| 180. | Z. Lian, Y. Lu, S. Zhao, Z. Li, Q. Liu, Adv. Sci., 2023, 10, 2205975 |
| 181. | P. Behera, T. J. Jose, D. S. Ramakrishna, P. L. Praveen, J. Mol. Struct., 2024, 1308, 138089 |
| 182. | M. Yuan, D. Liu, W. Liu, Z. Song, S. Shang, Z. Wang, J. Ren, S. Cui, Sep. Purif. Technol., 2024, 339, 126585 |
| 183. | Z. Zhu, J. Duan, S. Chen, Small, 2024, 20, 2309119 |
| 184. | Y. Duan, L. Wang, J. Zhang, C. Sun, R. Wen, M. Dou, ACS Appl. Energy Mater., 2023, 6, 3244 |
| 185. | X. Zheng, C. Han, C. S. Lee, W. Yao, C. Zhi, Y. Tang , Prog. Mater. Sci., 2024, 143, 101253 |
| 186. | K. Matuszek, S. L. Piper, A. Brzęczek-Szafran, B. Roy, S. Saher, J. M. Pringle, D. R. MacFarlane, Adv. Mater., 2024, 36, 2313023 |
| 187. | E. Hu, B. E. Jia, Q. Zhu, J. Xu, X. J. Loh, J. Chen, H. Pan, Q. Yan, Small, 2024, 21, 2309252 |
| 188. | Z. Yuan, Q. Lin, Y. Li, W. Han, L. Wang, Adv. Mater., 2023, 35, 2211527 |
| 189. | G. Du, H. Pang, Energy Storage Mater., 2021, 36, 387 |
| 190. | L. Kong, M. Liu, H. Huang, Y. Xu, X. H. Bu, Adv. Energy Mater., 2022, 12, 2100172 |
| 191. | Y. Hu, H. Huang, D. Yu, X. Wang, L. Li, H. Hu, X. Zhu, S. Peng, L. Wang, Nano-Micro Lett., 2021, 13, 159 |
| 192. | W. Zhou, M. Zhang, X. Kong, W. Huang, Q. Zhang, Adv. Sci., 2021, 8, 2004490 |
| 193. | T. Bashir, S. Zhou, S. Yang, S. A. Ismail, T. Ali, H. Wang, J. Zhao, L. Gao, Electrochem. Energy Rev., 2023, 6, 5 |
| 194. | Y. An, Y. Tian, C. Wei, Y. Tao, B. Xi, S. Xiong, J. Feng, Y. Qian, Nano Today, 2021, 37, 101094 |
| 195. | Q. Ran, H. Shi, H. Meng, S. P. Zeng, W. Bin Wan, W. Zhang, Z. Wen, X. Y. Lang, Q. Jiang, Nat. Commun., 2022, 13, 576 |
| 196. | A. James, Shivakumar, J. D. Rodney, S. Joshi, U. Dalimba, B. C. Kim, N. K. Udayashankar, Chem. Eng. J., 2024, 481, 148466 |
| 197. | X. Li, G. Zhao, K. Xie, P. Wang, C. Zhang, L. Lin, Surf. Interfaces, 2024, 46, 104028 |
| 198. | A. Boutramine, S. Al-Qaisi, S. Samah, N. Iram, T. A. Alrebdi, S. Bouzgarrou, A. S. Verma, S. Belhachi, R. Sharma, Opt. Quantum Electron., 2024, 56, 417 |
| 199. | N. Wu, W. He, S. Shi, X. Yuan, J. Li, J. Cao, C. Yuan, X. Liu, J. Colloid Interface Sci, 2025, 684, 658 |
| 200. | N. Wu, J. Shen, X. Zhou, S. Li, J. Li, G. Liu, D. Guo, W. Deng, C. Yuan, X. Liu, H. Hou, Adv. Energy Mater, 2025, 1, 2405729 |
| 201. | N. Wu, Z. Zhao, Y. Zhang, R. Hua, J. Li, G. Liu, D. Guo, J. Zhao, A. Cao, G. Sun, H. Hou, X. Liu, J. Colloid Interface Sci, 2025, 679, 990 |
| 202. | X. Xu, Y. Xu, J. Zhang, Y. Zhong, Z. Li, H. Qiu, H. Bin Wu, J. Wang, X. Wang, C. Gu, J. Tu, Nano-Micro Lett., 2023, 15, 56 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Varied MOF materials for diverse rechargeable battery types
Different aspects predicted from DFT calculations and advantages of DFT in MOFs
a Diagram depicting the fabrication process of Fe-Co-Ni NFSs through etching-induced structural transformation and b TDOS characterization: Fe-Ni, Co-Ni, and Fe-Co-Ni MOFs[72]. Copyright 2023, Wiley. c MIL-100 (Fe) Framework and d DFT modeling of TFSI adsorption on pristine MIL-100(Fe), its O sites, and its N sites[73]. Copyright 2022, Elsevier. e Synthesis of MOF interlayers with TA/defect integration, f Binding energy of UiO-66-NH2-MPD and g Binding energy of defect-containing UiO-66-NH2-MPD[74]. Copyright 2024, Elsevier. h 3D charge density variation in Fe-Co-Ni metal-organic frameworks[72]. Copyright 2023, Wiley.
a Schematic illustration of the preparation process of NF-MOF@MXene and b Lithium adsorbed at different sites[80]. Copyright 2022, Elsevier. c Schematic of the preparation process of Cu-HPC[83]. Copyright 2024, Elsevier. d Evaluate LCuTO, LCuTO/C, and LCuTO@HKUST electrode efficiencies across diverse speeds and e The diagram illustrates the straightforward high-temperature calcination approach used to synthesize the carbon-coated Li2CuTi3O8 electrode. Included as insets are both digital photographs and the crystal structures of HKUST-1 alongside the carbon-coated Li2CuTi3O8 material[82]. Copyright 2024, Elsevier. f Litransportation path through the O–Co–O site of Li–NiCo MOF, g Pictorial presentation of the synthesis methods and h DOS plots of Li-adsorption on sites of O–Co–O[81]. Copyright 2024, Royal Society of Chemistry. i Li+ uptake energy in both frameworks and j Evaluation of Cu-HPC anode cycling at 0.2 A g−1[83]. Copyright 2024, Elsevier. k The corresponding calculated adsorption energy[80]. Copyright 2022, Elsevier.
a Synthesis Diagram for Zn-Mn-MOF-Converted BDC-OV-ZMO, BTC-OV-ZMO, and IN-OV-ZMO[87]. Copyright 2022, Elsevier. b Schematic of the synthesis process for ZnMO-BDC, CoMO-BDC, CuMO-BDC, and NiMO-BDC derived from MOFs[89]. Copyright 2023, Elsevier. c 3D charge density variation in OV-ZMO[87]. Copyright 2022, Elsevier. OV-NMO Activation Energy and Trajectory d, e and f Procedure outlining BDC-, BTC-, and PMA-NMO creation[88]. Copyright 2024, Elsevier. g MCo2O4 (M=Zn, Ni, Cu) Synthesis: a diagrammatic representation, h DOS curves for ZnCo2O4 and i Assess performance using 0.1 to 0.6 A g−1 current densities[91]. Copyright 2023, Elsevier. j TDOS and PDOS profiles of OV-ZMO[87]. Copyright 2022, Elsevier. k Performance of XMO-BDC and XMO electrodes during cycling at 0.1 A g−1 and l Diagram illustrating the ZnMO-BDC electrochemical charge/discharge process[89]. Copyright 2023, Elsevier.
a Schematic illustration for the synthesis of ZnS/MXene hybrids[94]. Copyright 2021, Springer Singapore. b Production pathway for ZnTiO3/TiO2/C Materials[95]. Copyright 2022, Elsevier. c Illustration of fabrication methods for Fe-M-MOF-Evolved OV-NFO, OV-MFO, and OV-CFO[96]. Copyright 2022, Elsevier. d Schematic Depiction of MOF-Templated LiFePO4 Microparticle Production within an O, F-Doped Carbon Coating[9]. Copyright 2022, Elsevier. e DOS curves for OV-MFO[96]. Copyright 2022, Elsevier. f DOS Projections (Fermi Level at Zero, Dashed Line) for ZnS/Ti3C2Tx MXene[94]. Copyright 2021, Springer Singapore. g Overall and orbital-specific partial DOS profiles for LFP@OFC and h Charge density variance in LFP@OFC[9]. Copyright 2022, Elsevier. i Differential charge density for OV-MFO[96]. Copyright 2022, Elsevier. j Charge redistribution at the ZnS (111)/Ti3C2Tx MXene interface[94]. Copyright 2021, Springer Singapore.
a 3D representations of the crystal shapes and the (hkl) planes and b Schematic diagram of material application[56]. Copyright 2022, Wiley-Blackwell. c Schematic illustration of the samples, d The structures of UiO-66P, UiO-66D1 and UiO-66D2 and e The energy profiles of UiO-66P, UiO-66D1, and UiO-66D2[116]. Copyright 2023, John Wiley and Sons Ltd. f Optimized geometric structures of adsorbing surfaces and g UV–vis absorption spectra of pure Li2S4 solution and the shape-different samples at 15 h[56]. Copyright 2022, Wiley-Blackwell.
a Diagram of Mn2N0.86-MnO@C hybrid nanosphere formation[123]. Copyright 2024, Elsevier. The formation energies of different lithium polysulffdes on b Co3Se4 and c Ti3C2Tx[124]. Copyright 2023, American Chemical Society. d DFT-calculated binding energy of Li2S6 on Mn2N0.86, MnO, and Mn2N0.86-MnO.[123] Copyright 2024, Elsevier. e Detailed preparation process of Co3Se4@N−C/Ti3C2Tx and f cycle performances tested under 2C[124]. Copyright 2023, American Chemical Society. g UV spectroscopic analysis of 10 mM Li2S6 post-adsorption[123]. Copyright 2024, Elsevier. h Rate performance of Li−S batteries with different separators[124]. Copyright 2023, American Chemical Society. i Nitrogen adsorption/desorption isotherms of amorphous-carbon, MnO@C[123]. Copyright 2024, Elsevier. j cycle performances of Li−S batteries with different separators[124]. Copyright 2023, American Chemical Society.
a Synthesis process schematic of S/CoP-HNC as Li-S battery cathode[129]. Copyright 2021, Elsevier. b Diagram of S/NiFe@NC composite production process[130]. Copyright 2021, Elsevier. c SEM micrographs of CoP-HNC at varied resolutions[129]. Copyright 2021, Elsevier. d Diagram of LiPSs transformation process on the NiFe@NC interface and e DFT computations depicting binding energy[130]. Copyright 2021, Elsevier. f DFT modeling of CoP (211) and Co (111) light absorption profiles in LPS[129]. Copyright 2021, Elsevier. g UV-Vis Spectroscopy and Visuals of NiFe@NC Absorption of LiPSs Solutions[130]. Copyright 2021, Elsevier. h S/CoP-HNC bicycle efficiency at 3 °C and 5 °C[129]. Copyright 2021, Elsevier. i Extended 1C cycling performance for S/NiFe@NC and S/NC electrodes[130]. Copyright 2021, Elsevier.
a Schematic diagram of the synthesis of the S@CuIr/NC sample, b Diagram of the CuIr/NC-enhanced cathode's catalytic process and c Sulfur species affinity on CuIr and Cu Substrates[133]. Copyright 2022, American Chemical Society. d Fabrication Route for MC, MC@CN, and MC@CN@CNP Composites and The DOC of C3 e, h in figure[134]. Copyright 2021, Elsevier. f Extended cycling stability of S@CuIr/NC at 2, 5, 10 C across
a Zr12 Cluster Architectures, Tritopic Ligands (L1, L2, L3), Pillar Linker (L4), and Zr12 Layer-Pillared Compound 3[145]. Copyright 2024, American Chemical Society. (DOS) curves of b 2D Mn-MOF d 3D Mn-MOF[147]. Copyright 2023, Wiley-VCH Verlag. c Operational lifespan of bare Zn and MOFs@Zn symmetric cells at 0.5 mA cm−2/0.5 mAh cm−2[145]. Copyright 2024, American Chemical Society. e The mechanism illustration of Zn deposition on 2D Mn-MOF@Zn surface[147]. Copyright 2023, Wiley-VCH Verlag. f DFT calculations: Zn adsorption energy at the 3-2D/Zn junction versus the unbound Zn plane and g The Gibbs free energy of hydrogen adsorption (ΔGH) related to the HER activity at the 3-2D/Zn interface and the surface of Zn[145]. Copyright 2024, American Chemical Society. Simulation of density functional theory h the embedded energy barriers of Zn2+, SO42-, and H2O on bare Zn anode and 2D/3D Mn-MOF@Zn anode, i Cycling efficiency of bare Zn anodeVersus 2D Mn-MOF@Zn anode in ZICs at 0.5 g−1 and j Cycling efficiency of bare Zn anodeVersus 2D Mn-MOF@Zn anode in ZIBs at 4 A g−1[147]. Copyright 2023, Wiley-VCH Verlag.
a Detailed Modification Process for the Formation of Zn@ZIF-L Anode, c, d Charge density variations for zinc adsorption on c ZIF-L and d Zn (002), b Comparison of the cycling stability of symmetric cells of bare Zn and Zn@ZIF-L at 0.25 mA cm−2 and 0.25 mAh cm−2 and e Zn(002) Surface Adsorption Energies for Zn2+/H+ with Unit ZIF-L[154]. Copyright 2022, American Chemical Society. f Schematic preparation of CuZn@C NSs and g Calculated binding energies of Zn2+ upon Zn (002), Zn (001), Cu6Zn (111), and Cu6Zn-N (111) planes. Copyright 2023 Tsinghua University Press. Adsorption Configurations and ChargeVariations of Zn2+ on Zn (002) h, Zn (001) i, Cu6Zn (111) j, and Cu6Zn-N (111) k[155]. Copyright 2023, Tsinghua University Press.
a Schematic illustration of the formation process of CPVO nanosheets and b The calculated binding energy for Zn2+ inserted in V2O5, CVO and CPVO[160]. Copyright 2024, Royal Society of Chemistry. c Schematic illustration of the formation process of PVO nanobelts and Total density of states for d pristineV2O5 and f PVO[157]. Copyright 2023, Elsevier. e Schematic diagrams for comparing the structural stability of V2O5 and CPVO cathodes[160]. Copyright 2024, Royal Society of Chemistry. g sustained cycling efficiency at 10.0 A g−1 and h the migration energy barriers accompanied[156]. Copyright 2023, Elsevier. i, k Charge density variation upon Zn2+ insertion in V2O5 and PVO[157]. Copyright 2023, Elsevier. j Charge density variance upon Zn2+ insertion into CPVO[160]. Copyright 2024, Royal Society of Chemistry.
a Diagram outlining porous Ag-V2O5 creation and b Charge distribution upon Zn2+ insertion into Ag-V2O5[161]. Copyright 2023, Elsevier. c Schematic illustration of the synthesis of the self-standing NiCo2S4/HCS@CF film and d Specific capacities of the NiCo2S4/HCS@CFs based on the NiCo2S4 active material and entire weight of the cathode[162]. Copyright 2022, Royal Society of Chemistry. e Total density of states for Ag-V2O5 and f Cycling and efficiency metrics of V2O5 and Ag-V2O5 at 0.1 A g−1 current density[161]. Copyright 2023, Elsevier. g Cycling performance of the NiCo2S4/HCS@CFs and NiCo2S4@CFs[162]. Copyright 2022, Royal Society of Chemistry. h Evaluate the performance of V2O5 and Ag-V2O5 across different current densities[161]. Copyright 2023, Elsevier. i Adsorption energy of OH- on carbon, NiCo2S4 and NiCo2S4/carbon[162]. Copyright 2022, Royal Society of Chemistry.
a Synthesis process of Co-doped MOF-74@CC electrodes. b Computational models of NiCo-MOF-74 (Co/Ni=1) systems (brown: C, white: H, red: O, grey: Ni, blue: Co) and c NZB Durability at 50 mA cm−2 (inset: operational test powering an LED and small fan)[170]. Copyright 2022, Wiley-Blackwell. d Schematic illustration of the synthesis process of NiMn-based MOF. e Complete discharge curves for the Ni-MOFs. f Bader analysis of metal charges within NiMn0.05-MOF framework. Nickel (Ni) is shown in grey; manganese (Mn) in purple and g The cycle durability of LOBs based on Ni-MOFs[11]. Copyright 2023, Elsevier. h Schematic synthesis of FeS2@C yolk–shell spheres and self-standing/bind-free FeS2@C/CNT with an interpenetrative network structure, i Potential configurations for Al ion adsorption at N–C and FeS2 interfaces, j FeS2@C/CNT electrode performance: Cycle Life & Efficiency at 1 A g−1. Inset e: Flexible configuration in soft-package AIBs and k Capacity retention of FeS2@C/CNT and FeS2/C electrodes at a current density of 100 mAh g−1 from −25 to 50 °C[191]. Copyright 2021, Springer Singapore.
Future challenges and prospects of DFT in MOFs for rechargeable batteries.