| Citation: | Shengjie Bai, Wenyu Zheng, Qingling Huang. Energy and mass transfer at interfaces in solar-driven photocatalytic CO2 reduction reactions[J]. Energy Lab. doi: 10.54227/elab.20250010 |
Solar-driven photocatalytic CO2 reduction represents a transformative approach to renewable energy storage and carbon neutrality. By converting low-density, intermittent solar energy into stable, energy-dense green chemicals, this technology addresses critical limitations in renewable energy utilization and promotes a circular carbon economy. However, its industrial-scale application is hindered by inefficiencies in energy and mass transfer across key interfaces. This highlight introduces the fundamental challenges and recent advancements in optimizing three critical interfaces: the light harvesting interface, charge transfer interface, and catalytic reaction interface. We discuss strategies to enhance light absorption, charge carrier dynamics, and reactant adsorption/desorption, providing insights into the design of efficient photocatalytic systems for CO2 reduction.
| 1. | N. Ye, K. Wang, Y. J. Tan, Z. Y. Qian, H. Y. Guo, C. S. Shang, Z. Lin, Q. Z. Huang, Y. X. Liu, L. Li, Y. Gu, Y. Han, C. H. Zhou, M. C. Luo, S. J. Guo, Nat. Synth, 2025, 4, 799 |
| 2. | F. Yang, Y. Lin, X. Wang, C. Liu, L. Zhong, D. Han, D. Yu, Energy Lab, 2024, 2, 240013 |
| 3. | K. Wang, Y. Hu, X. Liu, J. Li, B. Liu, Nat. Commun., 2025, 16, 2094 |
| 4. | Z. Cai, H. Liu, J. Dai, B. Li, L. Yang, J. Wang and H. Zhu, Nat. Commun., 2025, 16, 2601 |
| 5. | X. Yu, M. Sun, T. Yan, L. Jia, M. Chu, L. Zhang, W. Huang, B. Huang, Y. Li, Energ. Environ. Sci., 2024, 17, 2260 |
| 6. | V. Andrei, I. Roh, J. -A. Lin, J. Lee, Y. Shan, C. -K. Lin, S. Shelton, E. Reisner, P. Yang, Nat. Catal., 2025, 8, 137 |
| 7. | X. Wan, Y. Li, Y. Chen, J. Ma, Y. -A. Liu, E. -D. Zhao, Y. Gu, Y. Zhao, Y. Cui, R. Li, D. Liu, R. Long, K. M. Liew, Y. Xiong, Nat. Commun., 2024, 15, 1273 |
| 8. | X. Li, L. Li, G. Chen, X. Chu, X. Liu, C. Naisa, D. Pohl, M. Löffler, X. Feng, Nat. Commun., 2023, 14, 4034 |
| 9. | X. Deng, J. Zhang, K. Qi, G. Liang, F. Xu, J. Yu, Nat. Commun., 2024, 15, 4807 |
| 10. | Q. Li, C. Ni, J. Cui, C. Li, F. Fan, J. Am. Chem. Soc., 2025, 147, 9103 |
| 11. | B. L. Wang, W. Li, J. M. Liu, T. Gan, S. Q. Gao, L. Li, T. J. Zhang, Y. D. Zhou, Z. H. Shi, J. Y. Li, Y. L. Liu, J. H. Yu, Adv. Mater, 2025, 1, 2407154 |
| 12. | X. Tan, K. Sun, Z. Zhuang, B. Hu, Y. Zhang, Q. Liu, C. He, Z. Xu, C. Chen, H. Xiao, C. Chen, J. Am. Chem. Soc., 2023, 145, 8656 |
| 13. | L. Jin, Y. Ji, Y. Li, Carbon Neutr., 2025, 4, e70011 |
| 14. | J. Yu, L. Huang, Q. Tang, S. -B. Yu, Q. -Y. Qi, J. Zhang, D. Ma, Y. Lei, J. Su, Y. Song, J. -C. Eloi, R. L. Harniman, U. Borucu, L. Zhang, M. Zhu, F. Tian, L. Du, D. L. Phillips, I. Manners, R. Ye, J. Tian, Nat. Catal., 2023, 6, 464 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
The three primary interfaces governing photocatalytic performance: (i) light harvesting, (ii) charge transfer, and (iii) catalytic reaction surface