Citation: | Fengkun Hao, Yunhao Wang, Zhanxi Fan. Rational design of single-atom catalysts for electrochemical carbon dioxide reduction toward multi-carbon products[J]. Energy Lab, 2023, 1(2): 220023. doi: 10.54227/elab.20220023 |
Electrochemical carbon dioxide (CO2) reduction is emerging as a promising technique to decrease atmospheric CO2 concentration and relieve energy pressure. Besides the single-carbon (C1) species, multi-carbon (C2+) products are more preferred because of their elevated energy density and/or larger economic value. Single atom catalysts (SACs) have been widely used in the field of catalysis due to their tunable active center and unique electronic structure. So far, extensive research progresses have been achieved in utilizing SACs to promote the CO2 reduction toward C1 products, but little attention is paid to the formation of high-value C2+ products. In this review, we present the recent advances of electrochemical reduction of CO2 to C2+ products with SACs. Firstly, the reaction mechanism of converting CO2 to C2+ products is briefly introduced. Then the general design principles of SACs toward C2+ products are systematically discussed. After that, we highlight the representative studies on the C2+ generation and the corresponding mechanism with SACs, including the copper and non-copper based SACs. Finally, we summarize the latest progresses and provide personal perspectives for the future design and target preparation of advanced SACs for the high-performance CO2 electrolysis to specific C2+ products.
1. | D. R. Yang, X. Wang, SmartMat, 2022, 3, 54 |
2. | L. G. Wang, D. S. Wang, Y. D. Li, Carbon Energy, 2022, 4, 1021 |
3. | H. F. Wang, C. Tang, C. X. Zhao, J. Q. Huang, Q. Zhang, Adv. Funct. Mater., 2022, 32, 2204755 |
4. | T. T. Lu, H. Wang, Nano Res., 2022, 15, 9764 |
5. | R. Shi, J. Guo, X. Zhang, G. I. N. Waterhouse, Z. Han, Y. Zhao, L. Shang, C. Zhou, L. Jiang, T. Zhang, Nat. Commun., 2020, 11, 3028 |
6. | F. P. Pan, X. X. Yang, T. O'carroll, H. Y. Li, K. J. Chen, G. Wu, Adv. Energy Mater., 2022, 12, 2200586 |
7. | Q. Zhu, Y. M. Gu, X. Y. Liang, X. Z. Wang, J. Ma, ACS Catal., 2022, 12, 12336 |
8. | W. Zhang, Z. Jin, Z. Chen, Adv. Sci., 2022, 9, 2105204 |
9. | Y. Shi, B. Wei, D. Legut, S. Y. Du, J. S. Francisco, R. F. Zhang, Adv. Funct. Mater., 2022, 32, 2210218 |
10. | D. Scarpa, M. Sarno, Catalysts, 2022, 12, 275 |
11. | X. Xu, E. Liu, N. Zhu, F. Liu, F. Qian, Energies, 2022, 15, 1023 |
12. | Z. Zhang, D. Wang, J. Mater. Chem. A, 2022, 10, 5863 |
13. | X. Y. Zhang, Z. Zhang, H. B. Li, R. Gao, M. L. Xiao, J. B. Zhu, M. Feng, Z. W. Chen, Adv. Energy Mater., 2022, 12, 2201461 |
14. | D. Zeng, H. P. Wang, X. D. Zhu, H. Cao, Y. Y. Zhou, W. M. Wang, L. Zhang, W. Z. Wang, Chem. Eng. J., 2023, 451, 138801 |
15. | L. Zhao, J. Bian, X. Zhang, L. Bai, L. Xu, Y. Qu, Z. Li, Y. Li, L. Jing, Adv. Mater., 2022, 34, 2205303 |
16. | Y. P. Zhang, J. X. Xu, J. Zhou, L. Wang, Chin. J. Catal., 2022, 43, 971 |
17. | J. Zhou, T. Wang, L. Chen, L. Liao, Y. Wang, S. Xi, B. Chen, T. Lin, Q. Zhang, C. Ye, X. Zhou, Z. Guan, L. Zhai, Z. He, G. Wang, J. Wang, J. Yu, Y. Ma, P. Lu, Y. Xiong, S. Lu, Y. Chen, B. Wang, C. S. Lee, J. Cheng, L. Gu, T. Zhao, Z. Fan, Proc. Natl. Acad. Sci., 2022, 119, e2204666119 |
18. | Y. Wang, J. Zhou, C. Lin, B. Chen, Z. Guan, A. M. Ebrahim, G. Qian, C. Ye, L. Chen, Y. Ge, Q. Yun, X. Wang, X. Zhou, G. Wang, K. Li, P. Lu, Y. Ma, Y. Xiong, T. Wang, L. Zheng, S. Chu, Y. Chen, B. Wang, C. S. Lee, Y. Liu, Q. Zhang, Z. Fan, Adv. Funct. Mater., 2022, 32, 2202737 |
19. | Y. Ma, J. Yu, M. Sun, B. Chen, X. Zhou, C. Ye, Z. Guan, W. Guo, G. Wang, S. Lu, D. Xia, Y. Wang, Z. He, L. Zheng, Q. Yun, L. Wang, J. Zhou, P. Lu, J. Yin, Y. Zhao, Z. Luo, L. Zhai, L. Liao, Z. Zhu, R. Ye, Y. Chen, Y. Lu, S. Xi, B. Huang, C. S. Lee, Z. Fan, Adv. Mater., 2022, 34, 2110607 |
20. | W. Guo, Y. Zhang, J. Su, Y. Song, L. Huang, L. Cheng, X. Cao, Y. Dou, Y. Ma, C. Ma, H. Zhu, T. Zheng, Z. Wang, H. Li, Z. Fan, Q. Liu, Z. Zeng, J. Dong, C. Xia, B. Z. Tang, R. Ye, Small, 2022, 18, 2201311 |
21. | Z. Fan, M. Bosman, Z. Huang, Y. Chen, C. Ling, L. Wu, Y. A. Akimov, R. Laskowski, B. Chen, P. Ercius, J. Zhang, X. Qi, M. H. Goh, Y. Ge, Z. Zhang, W. Niu, J. Wang, H. Zheng, H. Zhang, Nat. Commun., 2020, 11, 3293 |
22. | Y. Chen, Z. Fan, J. Wang, C. Ling, W. Niu, Z. Huang, G. Liu, B. Chen, Z. Lai, X. Liu, B. Li, Y. Zong, L. Gu, J. Wang, X. Wang, H. Zhang, J. Am. Chem. Soc., 2020, 142, 12760 |
23. | J. Yu, J. Yin, R. Li, Y. Ma, Z. Fan, Chem Catal., 2022, 2, 2229 |
24. | X. Zhang, X. Zhu, S. Bo, C. Chen, M. Qiu, X. Wei, N. He, C. Xie, W. Chen, J. Zheng, P. Chen, S. P. Jiang, Y. Li, Q. Liu, S. Wang, Nat. Commun., 2022, 13, 5337 |
25. | Y. Wang, Z. Tian, Q. Yang, K. Tong, X. Tang, N. Zhang, J. Zhou, L. Zhang, Q. Zhang, S. Dai, Y. Lin, Z. Lu, L. Chen, Nano Lett., 2022, 22, 8381 |
26. | J. Wang, J. Yu, M. Sun, L. Liao, Q. Zhang, L. Zhai, X. Zhou, L. Li, G. Wang, F. Meng, D. Shen, Z. Li, H. Bao, Y. Wang, J. Zhou, Y. Chen, W. Niu, B. Huang, L. Gu, C. S. Lee, Z. Fan, Small, 2022, 18, 2106766 |
27. | B. X. Zhang, Y. P. Chen, J. M. Wang, H. G. Pan, W. P. Sun, Adv. Funct. Mater., 2022, 32, 2202227 |
28. | J. J. Su, Y. Liu, Y. Song, L. B. Huang, W. H. Guo, X. H. Cao, Y. B. Dou, L. Cheng, G. Li, Q. S. Hu, R. Q. Ye, SmartMat, 2022, 3, 35 |
29. | S. J. Shen, C. Han, B. Wang, Y. Wang, Prog. Chem., 2022, 34, 533 |
30. | Y. Zhu, X. Yang, C. Peng, C. Priest, Y. Mei, G. Wu, Small, 2021, 17, 2005148 |
31. | Y. Zhu, X. Cui, H. Liu, Z. Guo, Y. Dang, Z. Fan, Z. Zhang, W. Hu, Nano Res., 2021, 14, 4471 |
32. | Y. Ma, J. Wang, J. Yu, J. Zhou, X. Zhou, H. Li, Z. He, H. Long, Y. Wang, P. Lu, J. Yin, H. Sun, Z. Zhang, Z. Fan, Matter, 2021, 4, 888 |
33. | C. Chang, W. Chen, Y. Chen, Y. Chen, Y. Chen, F. Ding, C. Fan, H. Jin Fan, Z. Fan, C. Gong, Y. Gong, Q. He, X. Hong, S. Hu, W. Hu, W. Huang, Y. Huang, W. Ji, D. Li, L.-J. Li, Q. Li, L. Lin, C. Ling, M. Liu, N. Liu, Z. Liu, K. Ping Loh, J. Ma, F. Miao, H. Peng, M. Shao, L. Song, S. Su, S. Sun, C. Tan, Z. Tang, D. Wang, H. Wang, J. Wang, X. Wang, X. Wang, A. T. S. Wee, Z. Wei, Y. Wu, Z.-S. Wu, J. Xiong, Q. Xiong, W. Xu, P. Yin, H. Zeng, Z. Zeng, T. Zhai, H. Zhang, H. Zhang, Q. Zhang, T. Zhang, X. Zhang, L.-D. Zhao, M. Zhao, W. Zhao, Y. Zhao, K.-G. Zhou, X. Zhou, Y. Zhou, H. Zhu, H. Zhang, Z. Liu, Acta Phys. -Chim. Sin., 2021, 37, 2108017 |
34. | S. Wang, Z. Qian, Q. Huang, Y. Tan, F. Lv, L. Zeng, C. Shang, K. Wang, G. Wang, Y. Mao, Y. Wang, Q. Zhang, L. Gu, S. Guo, Adv. Energy Mater., 2022, 12, 2201278 |
35. | Y. Q. Zheng, Y. Wang, Y. L. Yuan, H. W. Huang, ChemNanoMat, 2021, 7, 502 |
36. | Y. Zhao, L. Zheng, D. Jiang, W. Xia, X. Xu, Y. Yamauchi, J. Ge, J. Tang, Small, 2021, 17, 2006590 |
37. | W. Zhang, Y. Chao, W. Zhang, J. Zhou, F. Lv, K. Wang, F. Lin, H. Luo, J. Li, M. Tong, E. Wang, S. Guo, Adv. Mater., 2021, 33, 2102576 |
38. | S. Lu, J. Liang, H. Long, H. Li, X. Zhou, Z. He, Y. Chen, H. Sun, Z. Fan, H. Zhang, Acc. Chem. Res., 2020, 53, 2106 |
39. | H. Li, X. Zhou, W. Zhai, S. Lu, J. Liang, Z. He, H. Long, T. Xiong, H. Sun, Q. He, Z. Fan, H. Zhang, Adv. Energy Mater., 2020, 10, 2002019 |
40. | B. Pan, J. Fan, J. Zhang, Y. Luo, C. Shen, C. Wang, Y. Wang, Y. Li, ACS Energy Lett., 2022, 7, 4224 |
41. | Y. Wang, C. Li, Z. Fan, Y. Chen, X. Li, L. Cao, C. Wang, L. Wang, D. Su, H. Zhang, T. Mueller, C. Wang, Nano Lett., 2020, 20, 8074 |
42. | Y. Ge, Z. Huang, C. Ling, B. Chen, G. Liu, M. Zhou, J. Liu, X. Zhang, H. Cheng, G. Liu, Y. Du, C.-J. Sun, C. Tan, J. Huang, P. Yin, Z. Fan, Y. Chen, N. Yang, H. Zhang, J. Am. Chem. Soc., 2020, 142, 18971 |
43. | M. Liu, Y.-R. Wang, H.-M. Ding, M. Lu, G.-K. Gao, L.-Z. Dong, Q. Li, Y. Chen, S.-L. Li, Y.-Q. Lan, Sci. Bull., 2021, 66, 1659 |
44. | S. B. Zhang, Y. F. Wu, Y. X. Zhang, Z. Q. Niu, Sci. China Chem., 2021, 64, 1908 |
45. | J. Zhang, W. Cai, F. X. Hu, H. Yang, B. Liu, Chem. Sci., 2021, 12, 6800 |
46. | H. Zhang, W. Cheng, D. Luan, X. W. D. Lou, Angew. Chem. Int. Ed., 2021, 60, 13177 |
47. | B. H. Zhang, Y. Z. Jiang, M. X. Gao, T. Y. Ma, W. P. Sun, H. G. Pan, Nano Energy, 2021, 80, 105504 |
48. | Z. Zhai, W. Yan, L. Dong, S. Deng, D. P. Wilkinson, X. Wang, L. Zhang, J. Zhang, J. Mater. Chem. A, 2021, 9, 20320 |
49. | Z. Tao, A. J. Pearce, J. M. Mayer, H. Wang, J. Am. Chem. Soc., 2022, 144, 8641 |
50. | Y. Wu, Y. Liang, H. Wang, Acc. Chem. Res., 2021, 54, 3149 |
51. | G. Jiang, D. Han, Z. Han, J. Gao, X. Wang, Z. Weng, Q.-H. Yang, Trans. Tianjin Univ., 2022, 28, 265 |
52. | B. Pan, Y. Wang, Y. Li, Chem Catal., 2022, 2, 1267 |
53. | G. Y. Xu, Q. Liu, H. Yan, Chem. Res. Chin. Univ., 2022, 38, 1146 |
54. | J. Wu, G. C. He, H. L. Fei, Chem. J. Chin. Univ., 2022, 43, 20220051 |
55. | S. Tajik, Z. Dourandish, F. G. Nejad, H. Beitollahi, A. A. Afshar, P. M. Jahani, A. Di Bartolomeo, J. Electrochem. Soc., 2022, 169, 046504 |
56. | S. Swain, A. Altaee, M. Saxena, A. K. Samal, Coord. Chem. Rev., 2022, 470, 214710 |
57. | X. B. Zheng, P. Li, S. X. Dou, W. P. Sun, H. G. Pan, D. S. Wang, Y. D. Li, Energy Environ. Sci., 2021, 14, 2809 |
58. | H. Yang, L. Shang, Q. Zhang, R. Shi, G. I. N. Waterhouse, L. Gu, T. Zhang, Nat. Commun., 2019, 10, 4585 |
59. | R. Wang, J. Liu, Q. Huang, L. Z. Dong, S. L. Li, Y. Q. Lan, Angew. Chem. Int. Ed., 2021, 60, 19829 |
60. | D. Karapinar, N. T. Huan, N. Ranjbar Sahraie, J. Li, D. Wakerley, N. Touati, S. Zanna, D. Taverna, L. H. Galvao Tizei, A. Zitolo, F. Jaouen, V. Mougel, M. Fontecave, Angew. Chem. Int. Ed., 2019, 58, 15098 |
61. | Z. Q. Zhang, Y. Lei, W. M. Huang, Chin. Chem. Lett., 2022, 33, 3623 |
62. | Y. Liu, Y. Wang, S. Zhao, Z. Tang, Small Methods, 2022, 6, 2200773 |
63. | W. Li, X. S. Chu, F. Wang, Y. Y. Dang, X. Y. Liu, T. H. Ma, J. Y. Li, C. Y. Wang, Appl. Catal. B, 2022, 304, 121000 |
64. | J. Li, H. Li, W. Xie, S. Li, Y. Song, K. Fan, J. Y. Lee, M. Shao, Small Methods, 2022, 6, 2101324 |
65. | T. Jin, X. F. Liu, Q. Gao, H. Y. Zhu, C. Lian, J. T. Wang, R. Q. Wu, Y. Lyu, Chem. Eng. J., 2022, 433, 134089 |
66. | H. Choi, D. H. Kim, M. H. Han, H. S. Oh, J. Heo, H. K. Lim, C. H. Choi, Electrochim. Acta, 2022, 431, 141138 |
67. | M. Shen, W. Hu, C. Duan, J. Li, S. Ding, L. Zhang, J. Zhu, Y. Ni, J. Colloid Interface Sci., 2023, 629, 778 |
68. | R. Sui, X. J. Zhang, X. D. Wang, X. Y. Wang, J. J. Pei, Y. F. Zhang, X. R. Liu, W. X. Chen, W. Zhu, Z. B. Zhuang, Nano Res., 2022, 15, 7968 |
69. | Z. J. Mao, C. Ding, X. Liu, Q. Zhang, X. X. Qin, H. Li, F. Yang, Q. Li, X. G. Zhang, J. L. Zhang, W. B. Cai, ACS Catal., 2022, 12, 8848 |
70. | C. X. Jia, H. Qin, C. Zhen, H. Z. Zhu, Y. Q. Yang, A. L. Han, L. Z. Wang, G. Liu, H. M. Cheng, Nano Res., 2022, 15, 10014 |
71. | X. Zhou, Y. Ma, Y. Ge, S. Zhu, Y. Cui, B. Chen, L. Liao, Q. Yun, Z. He, H. Long, L. Li, B. Huang, Q. Luo, L. Zhai, X. Wang, L. Bai, G. Wang, Z. Guan, Y. Chen, C. S. Lee, J. Wang, C. Ling, M. Shao, Z. Fan, H. Zhang, J. Am. Chem. Soc., 2022, 144, 547 |
72. | Y. Zhang, Y. Mo, Z. Cao, ACS Appl. Mater. Interfaces, 2022, 14, 1002 |
73. | X. Ye, J. Ma, W. Yu, X. Pan, C. Yang, C. Wang, Q. Liu, Y. Huang, J. Energy Chem., 2022, 67, 184 |
74. | B. Wu, X. Yu, M. Huang, L. S. Zhong, Y. H. Sun, Chin. J. Chem. Eng., 2022, 43, 62 |
75. | M. Li, B. Hua, L. C. Wang, Z. Zhou, K. J. Stowers, D. Ding, Catal. Today, 2022, 388-389, 403 |
76. | Y. Jiang, Y. Sung, C. Choi, G. Joo Bang, S. Hong, X. Tan, T. S. Wu, Y. L. Soo, P. Xiong, M. Meng-Jung Li, L. Hao, Y. Jung, Z. Sun, Angew. Chem. Int. Ed., 2022, 61, e202203836 |
77. | X. S. Lv, T. Mou, J. W. Li, L. Z. Kou, T. Frauenheim, Adv. Funct. Mater., 2022, 32, 2201262 |
78. | J. Leverett, T. Tran-Phu, J. A. Yuwono, P. Kumar, C. Kim, Q. F. Zhai, C. Han, J. T. Qu, J. Cairney, A. N. Simonov, R. K. Hocking, L. M. Dai, R. Daiyan, R. Amal, Adv. Energy Mater., 2022, 12, 2201500 |
79. | Y. Zhang, P. Li, C. M. Zhao, G. Zhou, F. Y. Zhou, Q. T. Zhang, C. L. Su, Y. Wu, Sci. Bull., 2022, 67, 1679 |
80. | B. Zhang, B. Zhang, Y. Jiang, T. Ma, H. Pan, W. Sun, Small, 2021, 17, 2101443 |
81. | J. L. Yu, J. Wang, Y. B. Ma, J. W. Zhou, Y. H. Wang, P. Y. Lu, J. W. Yin, R. Q. Ye, Z. L. Zhu, Z. X. Fan, Adv. Funct. Mater., 2021, 31, 2102151 |
82. | M. K. Wilsey, C. P. Cox, R. C. Forsythe, L. R. Mccarney, A. M. Muller, Catal. Sci. Technol., 2021, 11, 416 |
83. | Q. Wang, C. Cai, M. Dai, J. Fu, X. Zhang, H. Li, H. Zhang, K. Chen, Y. Lin, H. Li, J. Hu, M. Miyauchi, M. Liu, Small Sci., 2021, 1, 2000028 |
84. | M. Li, H. Wang, W. Luo, P. C. Sherrell, J. Chen, J. Yang, Adv. Mater., 2020, 32, 2001848 |
85. | D. F. Gao, R. M. Aran-Ais, H. S. Jeon, B. Roldan Cuenya, Nat. Catal., 2019, 2, 198 |
86. | Z. X. Wei, Y. T. Zhu, J. Y. Liu, Z. C. Zhang, W. P. Hu, H. Xu, Y. Z. Feng, J. M. Ma, Rare Met., 2021, 40, 767 |
87. | X. Zhao, Z. H. Levell, S. Yu, Y. Liu, Chem. Rev., 2022, 122, 10675 |
88. | X. T. Wang, H. Niu, X. H. Wan, J. Wang, C. G. Kuai, Z. F. Zhang, Y. Z. Guo, Appl. Surf. Sci., 2022, 582, 152470 |
89. | S. R. Hui, P. De Luna, Matter, 2021, 4, 1555 |
90. | T. N. Nguyen, M. Salehi, Q. V. Le, A. Seifitokaldani, C. T. Dinh, ACS Catal., 2020, 10, 10068 |
91. | Z. Q. Tian, C. Priest, L. Chen, Adv. Theor. Simul., 2018, 1, 1800004 |
92. | W. Zhang, B. Jia, X. Liu, T. Ma, SmartMat, 2022, 3, 5 |
93. | Y.-R. Wang, M. Liu, G.-K. Gao, Y.-L. Yang, R.-X. Yang, H.-M. Ding, Y. Chen, S.-L. Li, Y.-Q. Lan, Angew. Chem. Int. Ed., 2021, 60, 21952 |
94. | T. K. Todorova, M. W. Schreiber, M. Fontecave, ACS Catal., 2020, 10, 1754 |
95. | J. T. Feaster, C. Shi, E. R. Cave, T. Hatsukade, D. N. Abram, K. P. Kuhl, C. Hahn, J. K. Nørskov, T. F. Jaramillo, ACS Catal., 2017, 7, 4822 |
96. | X. Tan, H. Li, S. Yang, ChemCatChem, 2021, 13, 4859 |
97. | Z. Y. Sun, Y. N. Hu, D. N. Zhou, M. R. Sun, S. Wang, W. X. Chen, ACS Energy Lett., 2021, 6, 3992 |
98. | W. Shao, X. Zhang, Nanoscale, 2021, 13, 7081 |
99. | K. Lakshmanan, W. H. Huang, S. A. Chala, B. W. Taklu, E. A. Moges, J. F. Lee, P. Y. Huang, Y. C. Lee, M. C. Tsai, W. N. Su, B. J. Hwang, Adv. Funct. Mater., 2022, 32, 2109310 |
100. | K. Zhao, X. Nie, H. Wang, S. Chen, X. Quan, H. Yu, W. Choi, G. Zhang, B. Kim, J. G. Chen, Nat. Commun., 2020, 11, 2455 |
101. | D. L. Meng, M. D. Zhang, D. H. Si, M. J. Mao, Y. Hou, Y. B. Huang, R. Cao, Angew. Chem. Int. Ed., 2021, 60, 25485 |
102. | W. J. Li, L. F. Li, Q. N. Xia, S. Hong, L. J. Wang, Z. B. Yao, T. S. Wu, Y. L. Soo, H. Zhang, T. W. B. Lo, A. W. Robertson, Q. Y. Liu, L. D. Hao, Z. Y. Sun, Appl. Catal. B, 2022, 318, 121823 |
103. | W. Sangkhun, J. Ponchai, C. Phawa, A. Pengsawang, K. Faungnawakij, T. Butburee, ChemCatChem, 2022, 14, e202101266 |
104. | L. D. Ramirez-Valencia, E. Bailon-Garcia, F. Carrasco-Marin, A. F. Perez-Cadenas, Catalysts, 2021, 11, 351 |
105. | W. Quan, Y. Lin, Y. Luo, Y. Huang, Adv. Sci., 2021, 8, 2101597 |
106. | Y. B. Lu, Z. H. Zhang, H. M. Wang, Y. Wang, Appl. Catal. B, 2021, 292, 120162 |
107. | J. Liu, Y. M. Cai, R. B. Song, S. C. Ding, Z. Y. Lyu, Y. C. Chang, H. Y. Tian, X. Zhang, D. Du, W. L. Zhu, Y. Zhou, Y. H. Lin, Mater. Today, 2021, 48, 95 |
108. | H. Liu, J. Xia, N. Zhang, H. Cheng, W. Bi, X. Zu, W. Chu, H. Wu, C. Wu, Y. Xie, Nat. Catal., 2021, 4, 202 |
109. | F. Liang, K. Zhang, L. Zhang, Y. Zhang, Y. Lei, X. Sun, Small, 2021, 17, 2100323 |
110. | F. H. Li, Q. Tang, J. Mater. Chem. A, 2021, 9, 8761 |
111. | S. Huo, J. Lu, X. Wang, Energy Sci. Eng., 2022, 10, 1584 |
112. | H. He, H. H. Wang, J. Liu, X. Liu, W. Li, Y. Wang, Molecules, 2021, 26, 6501 |
113. | C. E. Creissen, M. Fontecave, Nat. Commun., 2022, 13, 2280 |
114. | X. Yuan, S. Chen, D. Cheng, L. Li, W. Zhu, D. Zhong, Z. J. Zhao, J. Li, T. Wang, J. Gong, Angew. Chem. Int. Ed., 2021, 60, 15344 |
115. | X. Bai, X. Zhao, Y. Zhang, C. Ling, Y. Zhou, J. Wang, Y. Liu, J. Am. Chem. Soc., 2022, 144, 17140 |
116. | Z. T. Sun, Z. L. Song, W. J. Yin, Adv. Energy Sustainability Res., 2022, 3, 2100152 |
117. | X. Y. Zhao, K. Zhao, Y. M. Liu, Y. Su, S. Chen, H. T. Yu, X. Quan, ACS Catal., 2022, 12, 11412 |
118. | D. Zhao, K. Yu, P. Y. Song, W. Y. Feng, B. T. Hu, W. C. Cheong, Z. W. Zhuang, S. J. Liu, K. A. Sun, J. T. Zhang, C. Chen, Energy Environ. Sci., 2022, 15, 3795 |
119. | T. Zhang, X. Han, H. Liu, M. Biset-Peiro, J. Li, X. Zhang, P. Y. Tang, B. Yang, L. R. Zheng, J. R. Morante, J. Arbiol, Adv. Funct. Mater., 2022, 32, 2111446 |
120. | W. Zhang, Y. Xia, S. Chen, Y. Hu, S. Yang, Z. Tie, Z. Jin, Nano Lett., 2022, 22, 3340 |
121. | L. Zhai, S. Yang, C. Lu, C. X. Cui, Q. Xu, J. Liu, X. Yang, X. Meng, S. Lu, X. Zhuang, G. Zeng, Z. Jiang, Small, 2022, 18, 2200736 |
122. | H. Y. Zhao, H. Cao, Z. S. Zhang, Y. G. Wang, ACS Catal., 2022, 12, 11380 |
123. | Y. Zhang, T. Liu, X. Wang, Q. Dang, M. Zhang, S. Zhang, X. Li, S. Tang, J. Jiang, ACS Appl. Mater. Interfaces, 2022, 14, 9073 |
124. | X. Yang, J. Cheng, X. Yang, Y. Xu, W. Sun, N. Liu, J. Zhou, Nanoscale, 2022, 14, 6846 |
125. | X. Yang, J. Cheng, H. Lv, X. Yang, L. Ding, Y. Xu, K. Zhang, W. Sun, J. Zhou, Chem. Eng. J., 2022, 450, 137950 |
126. | W. F. Dong, N. Zhang, S. X. Li, S. X. Min, J. Peng, W. Y. Liu, D. P. Zhan, H. C. Bai, J. Mater. Chem. A, 2022, 10, 10892 |
127. | J. Feng, H. Gao, L. Zheng, Z. Chen, S. Zeng, C. Jiang, H. Dong, L. Liu, S. Zhang, X. Zhang, Nat. Commun., 2020, 11, 4341 |
128. | G. C. D. Bandomo, S. S. Mondal, F. Franco, A. Bucci, V. Martin-Diaconescu, M. A. Ortuno, P. H. Van Langevelde, A. Shafir, N. Lopez, J. Lloret-Fillol, ACS Catal., 2021, 11, 7210 |
129. | H. Yang, N. Han, J. Deng, J. Wu, Y. Wang, Y. Hu, P. Ding, Y. Li, Y. Li, J. Lu, Adv. Energy Mater., 2018, 8, 1801536 |
130. | Y. Qiao, W. Lai, K. Huang, T. Yu, Q. Wang, L. Gao, Z. Yang, Z. Ma, T. Sun, M. Liu, C. Lian, H. Huang, ACS Catal., 2022, 12, 2357 |
131. | K. Fan, Y. Jia, Y. Ji, P. Kuang, B. Zhu, X. Liu, J. Yu, ACS Catal., 2020, 10, 358 |
132. | Z. L. Jiang, T. Wang, J. J. Pei, H. S. Shang, D. N. Zhou, H. J. Li, J. C. Dong, Y. Wang, R. Cao, Z. B. Zhuang, W. X. Chen, D. S. Wang, J. T. Zhang, Y. D. Li, Energy Environ. Sci., 2020, 13, 2856 |
133. | M. Jia, S. Hong, T. S. Wu, X. Li, Y. L. Soo, Z. Sun, Chem. Commun., 2019, 55, 12024 |
134. | Y. Z. Zhang, H. Jang, X. Ge, W. Zhang, Z. J. Li, L. Q. Hou, L. Zhai, X. Q. Wei, Z. Wang, M. G. Kim, S. G. Liu, Q. Qin, X. Liu, J. Cho, Adv. Energy Mater., 2022, 12, 2202695 |
135. | W. Xie, H. Li, G. Cui, J. Li, Y. Song, S. Li, X. Zhang, J. Y. Lee, M. Shao, M. Wei, Angew. Chem. Int. Ed., 2021, 60, 7382 |
136. | J. Yang, X. M. Liu, H. Yuan, J. G. Sun, L. D. Li, K. E. J. Goh, Z. G. Yu, J. M. Xue, J. Wang, Y. W. Zhang, Appl. Catal. A, 2022, 642, 118708 |
137. | Y. Y. Xu, C. Jiang, H. Gong, H. R. Xue, B. Gao, P. Li, K. Chang, X. L. Huang, T. Wang, J. P. He, Nano Res., 2022, 15, 4100 |
138. | Y. Y. Xu, H. Gong, L. Song, Y. L. Kong, C. Jiang, H. R. Xue, P. Li, X. L. Huang, J. P. He, T. Wang, Mater. Today Energy, 2022, 25, 100967 |
139. | L. L. Liao, G. M. Xia, Y. G. Wang, G. G. Ye, H. M. Wang, Appl. Catal. B, 2022, 318, 121826 |
140. | R. Sui, J. Pei, J. Fang, X. Zhang, Y. Zhang, F. Wei, W. Chen, Z. Hu, S. Hu, W. Zhu, Z. Zhuang, ACS Appl. Mater. Interfaces, 2021, 13, 17736 |
141. | X. Shen, X. Liu, S. Wang, T. Chen, W. Zhang, L. Cao, T. Ding, Y. Lin, D. Liu, L. Wang, W. Zhang, T. Yao, Nano Lett., 2021, 21, 686 |
142. | J. Li, W. D. Chen, R. Lin, M. R. Huang, M. Wang, M. S. Chai, H. W. Zhu, Part. Part. Syst. Charact., 2021, 38, 2100148 |
143. | X. Ma, Y. Shen, S. Yao, M. Shu, R. Si, C. An, Chem. Eur. J., 2020, 26, 4143 |
144. | W. Y. Li, X. Zhao, J. S. Dang, J. Mater. Chem. A, 2019, 7, 13935 |
145. | A. S. Malik, H. Bali, F. Czirok, A. Szamosvolgyi, G. Halasi, A. Efremova, B. Smid, A. Sapi, A. Kukovecz, Z. Konya, Fuel, 2022, 326, 124994 |
146. | Y. Wang, H. Arandiyan, J. Scott, K. F. Aguey-Zinsou, R. Amal, ACS Appl. Energy Mater., 2018, 1, 6781 |
147. | V. A. Nasluzov, E. A. Ivanova-Shor, A. M. Shor, S. S. Laletina, K. M. Neyman, Materials, 2021, 14, 6888 |
148. | B. Xiong, J. Liu, Y. J. Yang, W. Liu, J. Environ. Chem. Eng., 2022, 10, 108056 |
149. | G. D. Fao, J. C. Jiang, Mol. Catal., 2022, 526, 112402 |
150. | N. Zhang, X. Zhang, Y. Kang, C. Ye, R. Jin, H. Yan, R. Lin, J. Yang, Q. Xu, Y. Wang, Q. Zhang, L. Gu, L. Liu, W. Song, J. Liu, D. Wang, Y. Li, Angew. Chem. Int. Ed., 2021, 60, 13388 |
151. | H. Han, S. Jin, S. Park, M. H. Seo, W. B. Kim, Appl. Catal. B, 2021, 292, 120173 |
152. | A. M. Abdel-Mageed, K. Wiese, A. Hauble, J. Bansmann, J. Rabeah, M. Parlinska-Wojtan, A. Bruckner, R. J. Behm, J. Catal., 2021, 401, 160 |
153. | Y. R. Wang, C. Zhang, X. Y. Wang, J. Q. Guo, Z. M. Sun, H. B. Zhang, ACS Catal., 2020, 10, 7808 |
154. | Y. Q. Chen, J. R. Zhang, L. J. Yang, X. Z. Wang, Q. Wu, Z. Hu, Electrochem. Energy Rev., 2022, 5, 11 |
155. | D. N. Zhou, X. Y. Li, H. S. Shang, F. J. Qin, W. X. Chen, J. Mater. Chem. A, 2021, 9, 23382 |
156. | J. Wang, Y. M. Zhang, Y. B. Ma, J. W. Yin, Y. H. Wang, Z. X. Fan, ACS Mater. Lett., 2022, 4, 2058 |
157. | J. W. Xiao, T. Y. Zhang, Q. Wang, Curr. Opin. Green Sustainable Chem., 2022, 37, 100660 |
158. | L. Zou, Y. S. Wei, C. C. Hou, C. Li, Q. Xu, Small, 2021, 17, 2004809 |
159. | K. L. Wu, Z. B. Fang, C. Peng, Y. N. Zhang, B. B. Jiang, Y. S. Kang, Z. M. Chen, M. F. Ye, Y. X. Wu, X. W. Wei, S. J. Liu, S. Li, J. Zhang, Nano Res., 2022, 4862 |
160. | G. Shi, Y. Xie, L. Du, X. Fu, X. Chen, W. Xie, T. B. Lu, M. Yuan, M. Wang, Angew. Chem. Int. Ed., 2022, 61, e202203569 |
161. | C. Hu, Y. Wang, J. Chen, H. F. Wang, K. Shen, K. Tang, L. Chen, Y. Li, Small, 2022, 18, 2201391 |
162. | Q. X. Li, D. H. Si, W. Lin, Y. B. Wang, H. J. Zhu, Y. B. Huang, R. Cao, Sci. China Chem., 2022, 65, 1584 |
163. | K. Li, S. Zhang, X. Zhang, S. Liu, H. Jiang, T. Jiang, C. Shen, Y. Yu, W. Chen, Nano Lett., 2022, 22, 1557 |
164. | Z. Li, J. Jiang, X. Liu, Z. Zhu, J. Wang, Q. He, Q. Kong, X. Niu, J. S. Chen, J. Wang, R. Wu, Small, 2022, 18, 2203495 |
165. | Y. Li, S. L. Zhang, W. Cheng, Y. Chen, D. Luan, S. Gao, X. W. D. Lou, Adv. Mater., 2022, 34, 2105204 |
166. | Y. Li, X. F. Lu, S. Xi, D. Luan, X. Wang, X. W. D. Lou, Angew. Chem. Int. Ed., 2022, 61, e202201491 |
167. | S. M. Li, X. Y. Lu, S. Q. Zhao, M. Ceccato, X. M. Hu, A. Roldan, M. Liu, K. Daasbjerg, ACS Catal., 2022, 12, 7386 |
168. | L. Chen, C. Tang, Y. Zheng, E. Skúlason, Y. Jiao, J. Mater. Chem. A, 2022, 10, 5998 |
169. | J. G. Rivera De La Cruz, M. Fontecave, Phys. Chem. Chem. Phys., 2022, 24, 15767 |
170. | H. P. Xu, D. Rebollar, H. Y. He, L. N. Chong, Y. Z. Liu, C. Liu, C. J. Sun, T. Li, J. V. Muntean, R. E. Winans, D. J. Liu, T. Xu, Nat. Energy, 2020, 5, 623 |
171. | W. Rong, H. Zou, W. Zang, S. Xi, S. Wei, B. Long, J. Hu, Y. Ji, L. Duan, Angew. Chem. Int. Ed., 2021, 60, 466 |
172. | J. Zhao, J. X. Zhao, F. Y. Li, Z. F. Chen, J. Phys. Chem. C, 2018, 122, 19712 |
173. | W. Pei, S. Zhou, J. J. Zhao, X. Xu, Y. Du, S. X. Dou, Nano Energy, 2020, 76, 105049 |
174. | P. Song, P. Zhu, X. Su, M. Hou, D. Zhao, J. Zhang, Chem. Asian J., 2022, 17, e202200716 |
175. | R. Z. Li, D. S. Wang, Adv. Energy Mater., 2022, 12, 2103564 |
176. | D. H. Wu, B. L. He, Y. Y. Wang, P. Lv, D. W. Ma, Y. Jia, J. Phys. D: Appl. Phys., 2022, 55, 203001 |
177. | Q. An, J. Jiang, W. Cheng, H. Su, Y. Jiang, Q. Liu, Small Methods, 2022, 6, 2200408 |
178. | D. C. Chen, Z. W. Chen, Z. L. Lu, J. Tang, X. X. Zhang, C. V. Singh, J. Mater. Chem. A, 2020, 8, 21241 |
179. | S. Li, A. X. Guan, C. Yang, C. Peng, X. M. Lv, Y. L. Ji, Y. L. Quan, Q. H. Wang, L. J. Zhang, G. F. Zheng, ACS Mater. Lett., 2021, 3, 1729 |
180. | A. X. Guan, Z. Chen, Y. L. Quan, C. Peng, Z. Q. Wang, S. K. Sham, C. Yang, Y. L. Ji, L. P. Qian, X. Xu, G. F. Zheng, ACS Energy Lett., 2020, 5, 1044 |
181. | Z. Xu, Z. Ao, M. Yang, S. Wang, J. Hazard. Mater., 2022, 424, 127427 |
182. | A. M. Abdel-Mageed, S. Wohlrab, Catalysts, 2022, 12, 16 |
183. | R. T. Hannagan, G. Giannakakis, M. Flytzani-Stephanopoulos, E. C. H. Sykes, Chem. Rev., 2020, 120, 12044 |
184. | S. L. Chu, C. Kang, W. Park, Y. Han, S. Hong, L. D. Hao, H. Zhang, T. W. B. Lo, A. W. Robertson, Y. S. Jung, B. X. Han, Z. Y. Sun, SmartMat, 2022, 3, 194 |
185. | P. Shao, W. Zhou, Q.-L. Hong, L. Yi, L. Zheng, W. Wang, H.-X. Zhang, H. Zhang, J. Zhang, Angew. Chem. Int. Ed., 2021, 60, 16687 |
186. | D.-J. Liu, Joule, 2022, 6, 1978 |
187. | H. Deng, C. Guo, P. Shi, G. Zhao, ChemCatChem, 2021, 13, 4325 |
188. | P. Hu, S. Wang, Y. Zhuo, ACS Appl. Mater. Interfaces, 2022, 14, 1056 |
189. | W. Hua, H. Sun, L. Lin, Q. Q. Mu, B. Y. Yang, Y. H. Su, H. R. Wu, F. L. Lyu, J. Zhong, Z. Deng, Y. Peng, Chem. Eng. J., 2022, 446, 137296 |
190. | G. Huang, Q. Niu, J. Zhang, H. Huang, Q. Chen, J. Bi, L. Wu, Chem. Eng. J., 2022, 427, 131018 |
191. | J. R. Huang, X. F. Qiu, Z. H. Zhao, H. L. Zhu, Y. C. Liu, W. Shi, P. Q. Liao, X. M. Chen, Angew. Chem. Int. Ed., 2022, 61, e202210985 |
192. | M. Huang, B. Deng, X. Zhao, Z. Zhang, F. Li, K. Li, Z. Cui, L. Kong, J. Lu, F. Dong, L. Zhang, P. Chen, ACS Nano, 2022, 16, 2110 |
193. | X. X. Huang, Y. J. Ma, L. J. Zhi, Acta Phys.-Chim. Sin., 2022, 38, 2011050 |
194. | X. Liu, Z. X. Wang, Y. Tian, J. X. Zhao, J. Phys. Chem. C, 2020, 124, 3722 |
195. | Y. Zhang, Z. X. Cao, J. Phys. Chem. C, 2021, 125, 13331 |
196. | M. He, W. An, Y. Wang, Y. Men, S. Liu, Small, 2021, 17, 2104445 |
197. | H. M. Liu, Q. L. Huang, W. An, Y. Q. Wang, Y. Men, S. Liu, J. Energy Chem., 2021, 61, 507 |
198. | T. Roongcharoen, P. Mano, T. Jitwatanasirikul, P. Sikam, T. Butburee, K. Takahashi, S. Namuangruk, Appl. Surf. Sci., 2022, 595, 153527 |
199. | S. Fu, X. Liu, J. Ran, Y. Jiao, Catal. Today, 2022, 397-399, 574 |
200. | Y. Xue, Y. Guo, H. Cui, Z. Zhou, Small Methods, 2021, 5, 2100736 |
201. | X. Mao, G. Kour, L. Zhang, T. He, S. Wang, C. Yan, Z. Zhu, A. Du, Catal. Sci. Technol., 2019, 9, 6800 |
202. | Y. Meng, Z. Xu, Z. Shen, Q. Xia, Y. Cao, Y. Wang, X. Li, J. Mater. Chem. A, 2022, 10, 6508 |
203. | T. Zheng, C. Liu, C. Guo, M. Zhang, X. Li, Q. Jiang, W. Xue, H. Li, A. Li, C. W. Pao, J. Xiao, C. Xia, J. Zeng, Nat. Nanotechnol., 2021, 16, 1386 |
204. | Y. Zhao, Z. D. Han, G. Y. Gao, W. Y. Zhang, Y. Qu, H. Y. Zhu, P. F. Zhu, G. F. Wang, Adv. Funct. Mater., 2021, 31, 2104976 |
205. | Q. L. Zhao, Y. A. Wang, M. Li, S. Q. Zhu, T. H. Li, J. X. Yang, T. Lin, E. P. Delmo, Y. N. Wang, J. Jang, M. Gu, M. H. Shao, SmartMat, 2022, 3, 183 |
206. | W. J. Wang, Y. Gao, H. D. Li, F. B. Tian, D. Li, T. Cui, Appl. Surf. Sci., 2021, 545, 148953 |
207. | H. He, Y. Jagvaral, Phys. Chem. Chem. Phys., 2017, 19, 11436 |
208. | C. M. Ding, C. C. Feng, Y. H. Mei, F. Y. Liu, H. Wang, M. Dupuis, C. Li, Appl. Catal. B, 2020, 268, 118391 |
209. | F. Liu, Z. Fan, Chem. Soc. Rev., 2023, 52, 1723 |
210. | J.-D. Yi, R. Xie, Z.-L. Xie, G.-L. Chai, T.-F. Liu, R.-P. Chen, Y.-B. Huang, R. Cao, Angew. Chem. Int. Ed., 2020, 59, 23641 |
211. | S.-C. Lin, C.-C. Chang, S.-Y. Chiu, H.-T. Pai, T.-Y. Liao, C.-S. Hsu, W.-H. Chiang, M.-K. Tsai, H. M. Chen, Nat. Commun., 2020, 11, 3525 |
212. | L. Xiong, X. Zhang, L. Chen, Z. Deng, S. Han, Y. Chen, J. Zhong, H. Sun, Y. Lian, B. Yang, X. Yuan, H. Yu, Y. Liu, X. Yang, J. Guo, M. H. Rümmeli, Y. Jiao, Y. Peng, Adv. Mater., 2021, 33, 2101741 |
213. | Y. Xu, C. Li, Y. Xiao, C. Wu, Y. Li, Y. Li, J. Han, Q. Liu, J. He, ACS Appl. Mater. Interfaces, 2022, 14, 11567 |
214. | Y. Katayama, F. Nattino, L. Giordano, J. Hwang, R. R. Rao, O. Andreussi, N. Marzari, Y. Shao-Horn, J. Phys. Chem. C, 2019, 123, 5951 |
215. | T. Tang, Z. Wang, J. Guan, Adv. Funct. Mater., 2022, 32, 2111504 |
216. | Q. Chen, A. W. Robertson, K. He, C. Gong, E. Yoon, A. I. Kirkland, G. D. Lee, J. H. Warner, ACS Nano, 2016, 10, 142 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Schematic illustration of the artificial carbon cycle via electrochemical reduction of CO2 powered by renewable energy sources.
Schematic illustration of reaction mechanisms and pathways for CO2RR toward various products.[6] Copyright 2022, John Wiley and Sons.
Schematic illustration of typical elements involved in SACs for CO2RR.
a Free energy diagrams of the conversion from CO2 to CH3COCH3 on Cu-pyridinic-N4 and Cu-pyrrolic-N4 at the potential of −0.36 V. b,c Production rates of various products on b Cu-SA/NPC and c Cu-SA/NPCAr under different potentials, respectively.[100] Copyright 2020, Springer Nature. d Schematic illustration of the conversion between CuN4 and Cun clusters at different potentials.[113] Copyright 2022, Springer Nature. e Computational models of the structures of CuN4 (left panel)_and Cu13N4 cluster (right panel). Colour code: black, carbon; grey, nitrogen; blue, copper.[169] Copyright 2022, Royal Society of Chemistry.
a Schematic illustration of the dynamic conversion of Cu catalysts under different working conditions.[115] Copyright 2022, American Chemical Society. b Schematic illustration for the preparation of Cu SACs using the amalgamated Cu–Li method.[170] Copyright 2020, Springer Nature. c The structure of Cu SACs analyzed by Cu K-edge EXAFS in the Fourier-transformed space. d,e Fourier transform of experimental EXAFS spectra of Cu0.5NC at d different working potentials and e different states, respectively.[60] Copyright 2019, John Wiley and Sons.
a Schematic illustration for the structure of Cu catalysts with different sizes. b The total current density and cumulative FE of different products on Cu catalysts with different sizes from -0.8 to -1.4 V (vs. RHE).[171] Copyright 2021, John Wiley and Sons.
a Free energy diagrams of CO2 reduction to C2H4 on Cu2@C2N at 0.00 and −0.76 V (vs. RHE).[172] Copyright 2018, American Chemical Society. b Reaction mechanism of CO2 reduction to C2+ products (mainly C2H5OH and C2H4) on DACs.[178] Copyright 2020, Royal Society of Chemistry. c Illustration of the CO reduction to C2+ products on the dual Cu–Cu (left panel) and Cu–Ni (right panel) SACs. d FE of C2 products on the dual Cu SACs, Cu1.4Ni SACs, CuNi SACs, and Ni SACs at −1.0 to −2.0 V (vs. RHE).[179] Copyright 2021, American Chemical Society.
a Scheme of the preparation process of Cu–N–C-T catalysts. b,c Electrochemical CO2RR performances of the b Cu–N–C-800 and c Cu–N–C-900 catalysts under different potentials.[180] Copyright 2020, American Chemical Society. d Illustration of the chain structures of Cu-PzX catalysts used for CO2RR in a flow cell. e FE of various products on Cu-PzX catalysts from −0.6 to −1.1 V (vs RHE).[59] Copyright 2021, John Wiley and Sons. f Illustration of the efficient reduction of CO2 to C2H4 on the PTF(Ni)/Cu tandem catalyst. g FE of C2H4 and CH4 on PTF(Ni)/Cu and PTF/Cu catalysts at −0.9 to −1.4 V (vs RHE).[101] Copyright 2021, John Wiley and Sons.
a FE of various products for CO2RR at different current densities in a flow cell. b FE of C2H4 in CO reduction on the pure CuO and Bi-CuO(VO)_0.5% at different potentials.[102] Copyright 2022, Elsevier. c FE of CO and C2H4 in CO2RR on single Sb/CuO(VO) at different current densities in a flow cell.[184] Copyright 2022, John Wiley and Sons. d Computational structures of the reaction intermediates and pathways starting with three *CO. Colour code: Cu, orange and green; C, brown; O, red; H, pink.[168] Copyright 2022, Royal Society of Chemistry.
a Schematic illustration of the preparation process of Fe-n-f-CNTs. b FE of various products on Fe-n-f-CNTs at −0.6 to −1.2 V (vs. RHE).[99] Copyright 2022, John Wiley and Sons. c Illustration of the structures and various products for Fe/GDY applied in CO/CO2 reduction.[194] Copyright 2020, American Chemical Society. d Illustration of the structures and various products for M@Mo2C applied in CO2RR.[195] Copyright 2021, American Chemical Society. e Gibbs free energy change (ΔG) of *CO toward *CO+*CO with respect to *CO + H+ + e− → *CHO for different catalysts under 0 V (vs RHE). f Reverse-volcano relation of the binding energy (BE) of *CO+*CO and *CO for different catalysts.[196] Copyright 2021, John Wiley and Sons. g Gibbs free energy change (ΔG) of *CO toward *CO+*CO with respect to *CO + H+ + e− → *CHO for various catalysts. [197] Copyright 2021, Elsevier.
a The computational structure for SACs on g-C3N4 matrix (left panel) and metal elements that are considered for screening (right panel). Color code: C, green; N, blue; metal center, brown. b The limiting potentials of various metal SACs on g-C3N4 for the CO2RR.[199] Copyright 2022, Elsevier. c HRTEM image of a hole in graphene with individual Si atoms (marked with white arrows) on its edge.[216] Copyright 2016, American Chemical Society. d Two kinds of Si binding sites at the graphene edges. Colour code: C, grey; Si, blue. e The limiting potentials of various products of CO2 reduction on two kinds of Si SACs.[201] Copyright 2019, Royal Society of Chemistry. f Schematic illustration of the electron hybrid orbitals on the catalyst B@Bi toward the activation of CO2 molecules. g The inverse volcano plot between η and intermediate ΔGO* − ΔGOH* for B2@Bi and B@Bi catalysts in different coordination environments. h Comparison of the limiting potentials of B@Bi and B2@Bi catalysts for CO2RR and HER in different environments.[202] Copyright 2022, Royal Society of Chemistry.